SentenceTransformer based on microsoft/deberta-v3-base
This is a sentence-transformers model finetuned from microsoft/deberta-v3-base on the negation-triplets, vitaminc-pairs, scitail-pairs-qa, scitail-pairs-pos, xsum-pairs, sciq_pairs, qasc_pairs, openbookqa_pairs, msmarco_pairs, nq_pairs, trivia_pairs, gooaq_pairs, paws-pos and global_dataset datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
 - Base model: microsoft/deberta-v3-base
 - Maximum Sequence Length: 512 tokens
 - Output Dimensionality: 768 tokens
 - Similarity Function: Cosine Similarity
 - Training Datasets:
- negation-triplets
 - vitaminc-pairs
 - scitail-pairs-qa
 - scitail-pairs-pos
 - xsum-pairs
 - sciq_pairs
 - qasc_pairs
 - openbookqa_pairs
 - msmarco_pairs
 - nq_pairs
 - trivia_pairs
 - gooaq_pairs
 - paws-pos
 - global_dataset
 
 - Language: en
 
Evaluation
Metrics
Semantic Similarity
- Dataset: 
sts-test - Evaluated with 
EmbeddingSimilarityEvaluator 
| Metric | Value | 
|---|---|
| pearson_cosine | 0.8253 | 
| spearman_cosine | 0.8709 | 
| pearson_manhattan | 0.8653 | 
| spearman_manhattan | 0.8667 | 
| pearson_euclidean | 0.8671 | 
| spearman_euclidean | 0.8681 | 
| pearson_dot | 0.7827 | 
| spearman_dot | 0.7685 | 
| pearson_max | 0.8671 | 
| spearman_max | 0.8709 | 
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 96per_device_eval_batch_size: 68learning_rate: 3.5e-05weight_decay: 0.0005num_train_epochs: 2lr_scheduler_type: cosine_with_min_lrlr_scheduler_kwargs: {'num_cycles': 3.5, 'min_lr': 1.5e-05}warmup_ratio: 0.33save_safetensors: Falsefp16: Truepush_to_hub: Truehub_model_id: bobox/DeBERTa3-base-STr-CosineWaves-checkpoints-tmphub_strategy: all_checkpointsbatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 96per_device_eval_batch_size: 68per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 3.5e-05weight_decay: 0.0005adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: cosine_with_min_lrlr_scheduler_kwargs: {'num_cycles': 3.5, 'min_lr': 1.5e-05}warmup_ratio: 0.33warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Falsesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: bobox/DeBERTa3-base-STr-CosineWaves-checkpoints-tmphub_strategy: all_checkpointshub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Framework Versions
- Python: 3.10.14
 - Sentence Transformers: 3.0.1
 - Transformers: 4.44.0
 - PyTorch: 2.4.0
 - Accelerate: 0.33.0
 - Datasets: 2.21.0
 - Tokenizers: 0.19.1
 
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
 - 25
 
Model tree for bobox/DeBERTa3-base-STr-CosineWaves
Base model
microsoft/deberta-v3-baseDatasets used to train bobox/DeBERTa3-base-STr-CosineWaves
Evaluation results
- Pearson Cosine on sts testself-reported0.825
 - Spearman Cosine on sts testself-reported0.871
 - Pearson Manhattan on sts testself-reported0.865
 - Spearman Manhattan on sts testself-reported0.867
 - Pearson Euclidean on sts testself-reported0.867
 - Spearman Euclidean on sts testself-reported0.868
 - Pearson Dot on sts testself-reported0.783
 - Spearman Dot on sts testself-reported0.769
 - Pearson Max on sts testself-reported0.867
 - Spearman Max on sts testself-reported0.871