SentenceTransformer based on microsoft/deberta-v3-xsmall
This is a sentence-transformers model finetuned from microsoft/deberta-v3-xsmall on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/deberta-v3-xsmall
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DebertaV2Model 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03")
# Run inference
sentences = [
    'in each square',
    'It is widespread.',
    'A young girl flips an omelet.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset: sts-dev
- Evaluated with EmbeddingSimilarityEvaluator
| Metric | Value | 
|---|---|
| pearson_cosine | 0.7972 | 
| spearman_cosine | 0.807 | 
| pearson_manhattan | 0.8079 | 
| spearman_manhattan | 0.8072 | 
| pearson_euclidean | 0.8084 | 
| spearman_euclidean | 0.8073 | 
| pearson_dot | 0.7029 | 
| spearman_dot | 0.6909 | 
| pearson_max | 0.8084 | 
| spearman_max | 0.8073 | 
Binary Classification
- Evaluated with BinaryClassificationEvaluator
| Metric | Value | 
|---|---|
| cosine_accuracy | 0.6772 | 
| cosine_accuracy_threshold | 0.7285 | 
| cosine_f1 | 0.7187 | 
| cosine_f1_threshold | 0.6111 | 
| cosine_precision | 0.611 | 
| cosine_recall | 0.8724 | 
| cosine_ap | 0.7392 | 
| dot_accuracy | 0.6383 | 
| dot_accuracy_threshold | 228.4041 | 
| dot_f1 | 0.7068 | 
| dot_f1_threshold | 177.3942 | 
| dot_precision | 0.5811 | 
| dot_recall | 0.9017 | 
| dot_ap | 0.6904 | 
| manhattan_accuracy | 0.6635 | 
| manhattan_accuracy_threshold | 174.6275 | 
| manhattan_f1 | 0.7054 | 
| manhattan_f1_threshold | 232.6788 | 
| manhattan_precision | 0.5772 | 
| manhattan_recall | 0.907 | 
| manhattan_ap | 0.7282 | 
| euclidean_accuracy | 0.6651 | 
| euclidean_accuracy_threshold | 13.4225 | 
| euclidean_f1 | 0.7068 | 
| euclidean_f1_threshold | 17.6348 | 
| euclidean_precision | 0.5756 | 
| euclidean_recall | 0.9154 | 
| euclidean_ap | 0.7303 | 
| max_accuracy | 0.6772 | 
| max_accuracy_threshold | 228.4041 | 
| max_f1 | 0.7187 | 
| max_f1_threshold | 232.6788 | 
| max_precision | 0.611 | 
| max_recall | 0.9154 | 
| max_ap | 0.7392 | 
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 314,315 training samples
- Columns: sentence1,sentence2, andlabel
- Approximate statistics based on the first 1000 samples:sentence1 sentence2 label type string string int details - min: 5 tokens
- mean: 16.62 tokens
- max: 62 tokens
 - min: 4 tokens
- mean: 9.46 tokens
- max: 29 tokens
 - 0: 100.00%
 
- Samples:sentence1 sentence2 label A person on a horse jumps over a broken down airplane.A person is outdoors, on a horse.0Children smiling and waving at cameraThere are children present0A boy is jumping on skateboard in the middle of a red bridge.The boy does a skateboarding trick.0
- Loss: MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns: sentence1,sentence2, andscore
- Approximate statistics based on the first 1000 samples:sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 14.77 tokens
- max: 45 tokens
 - min: 6 tokens
- mean: 14.74 tokens
- max: 49 tokens
 - min: 0.0
- mean: 0.47
- max: 1.0
 
- Samples:sentence1 sentence2 score A man with a hard hat is dancing.A man wearing a hard hat is dancing.1.0A young child is riding a horse.A child is riding a horse.0.95A man is feeding a mouse to a snake.The man is feeding a mouse to the snake.1.0
- Loss: MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
- eval_strategy: steps
- per_device_train_batch_size: 64
- per_device_eval_batch_size: 64
- learning_rate: 7.5e-05
- num_train_epochs: 2
- warmup_ratio: 0.25
- save_safetensors: False
- fp16: True
- push_to_hub: True
- hub_model_id: bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03n
- hub_strategy: checkpoint
All Hyperparameters
Click to expand
- overwrite_output_dir: False
- do_predict: False
- eval_strategy: steps
- prediction_loss_only: True
- per_device_train_batch_size: 64
- per_device_eval_batch_size: 64
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- learning_rate: 7.5e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 2
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.25
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: False
- save_on_each_node: False
- save_only_model: False
- restore_callback_states_from_checkpoint: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 42
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: False
- fp16: True
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: False
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: True
- resume_from_checkpoint: None
- hub_model_id: bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03n
- hub_strategy: checkpoint
- hub_private_repo: False
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- eval_do_concat_batches: True
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- batch_eval_metrics: False
- batch_sampler: batch_sampler
- multi_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | max_ap | sts-dev_spearman_cosine | 
|---|---|---|---|---|---|
| None | 0 | - | 3.7624 | 0.5721 | 0.4168 | 
| 0.0501 | 246 | 3.3825 | - | - | - | 
| 0.1002 | 492 | 1.8307 | - | - | - | 
| 0.1500 | 737 | - | 1.0084 | 0.7024 | - | 
| 0.1502 | 738 | 1.055 | - | - | - | 
| 0.2003 | 984 | 0.7961 | - | - | - | 
| 0.2504 | 1230 | 0.6859 | - | - | - | 
| 0.3001 | 1474 | - | 0.7410 | 0.7191 | - | 
| 0.3005 | 1476 | 0.5914 | - | - | - | 
| 0.3506 | 1722 | 0.5324 | - | - | - | 
| 0.4007 | 1968 | 0.5077 | - | - | - | 
| 0.4501 | 2211 | - | 0.6152 | 0.7144 | - | 
| 0.4507 | 2214 | 0.4647 | - | - | - | 
| 0.5008 | 2460 | 0.4443 | - | - | - | 
| 0.5509 | 2706 | 0.4169 | - | - | - | 
| 0.6002 | 2948 | - | 0.5820 | 0.7207 | - | 
| 0.6010 | 2952 | 0.3831 | - | - | - | 
| 0.6511 | 3198 | 0.393 | - | - | - | 
| 0.7011 | 3444 | 0.3654 | - | - | - | 
| 0.7502 | 3685 | - | 0.5284 | 0.7264 | - | 
| 0.7512 | 3690 | 0.344 | - | - | - | 
| 0.8013 | 3936 | 0.3336 | - | - | - | 
| 0.8514 | 4182 | 0.3382 | - | - | - | 
| 0.9002 | 4422 | - | 0.4911 | 0.7294 | - | 
| 0.9015 | 4428 | 0.3182 | - | - | - | 
| 0.9515 | 4674 | 0.3213 | - | - | - | 
| 1.0016 | 4920 | 0.3032 | - | - | - | 
| 1.0503 | 5159 | - | 0.4777 | 0.7325 | - | 
| 1.0517 | 5166 | 0.2526 | - | - | - | 
| 1.1018 | 5412 | 0.2652 | - | - | - | 
| 1.1519 | 5658 | 0.2538 | - | - | - | 
| 1.2003 | 5896 | - | 0.4569 | 0.7331 | - | 
| 1.2020 | 5904 | 0.2454 | - | - | - | 
| 1.2520 | 6150 | 0.2528 | - | - | - | 
| 1.3021 | 6396 | 0.2448 | - | - | - | 
| 1.3504 | 6633 | - | 0.4334 | 0.7370 | - | 
| 1.3522 | 6642 | 0.2282 | - | - | - | 
| 1.4023 | 6888 | 0.2295 | - | - | - | 
| 1.4524 | 7134 | 0.2313 | - | - | - | 
| 1.5004 | 7370 | - | 0.4237 | 0.7342 | - | 
| 1.5024 | 7380 | 0.2218 | - | - | - | 
| 1.5525 | 7626 | 0.2246 | - | - | - | 
| 1.6026 | 7872 | 0.218 | - | - | - | 
| 1.6504 | 8107 | - | 0.4102 | 0.7388 | - | 
| 1.6527 | 8118 | 0.2095 | - | - | - | 
| 1.7028 | 8364 | 0.2114 | - | - | - | 
| 1.7529 | 8610 | 0.2063 | - | - | - | 
| 1.8005 | 8844 | - | 0.4075 | 0.7370 | - | 
| 1.8029 | 8856 | 0.1968 | - | - | - | 
| 1.8530 | 9102 | 0.2061 | - | - | - | 
| 1.9031 | 9348 | 0.2089 | - | - | - | 
| 1.9505 | 9581 | - | 0.3978 | 0.7395 | - | 
| 1.9532 | 9594 | 0.2005 | - | - | - | 
| 2.0 | 9824 | - | 0.3963 | 0.7392 | - | 
| None | 0 | - | 1.5506 | - | 0.8070 | 
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
- Downloads last month
- 2
Model tree for bobox/DeBERTaV3-xSmall-SentenceTransformer-0.03
Base model
microsoft/deberta-v3-xsmallEvaluation results
- Pearson Cosine on sts devself-reported0.797
- Spearman Cosine on sts devself-reported0.807
- Pearson Manhattan on sts devself-reported0.808
- Spearman Manhattan on sts devself-reported0.807
- Pearson Euclidean on sts devself-reported0.808
- Spearman Euclidean on sts devself-reported0.807
- Pearson Dot on sts devself-reported0.703
- Spearman Dot on sts devself-reported0.691
- Pearson Max on sts devself-reported0.808
- Spearman Max on sts devself-reported0.807