conplag1_graphcodebert_ep30_bs16_lr1e-05_l512_s42_ppy_loss
This model is a fine-tuned version of microsoft/graphcodebert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4643
- Accuracy: 0.8394
- Recall: 0.6316
- Precision: 0.75
- F1: 0.6857
- F Beta Score: 0.6638
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.6724 | 1.0 | 40 | 0.6220 | 0.6788 | 0.7632 | 0.4531 | 0.5686 | 0.6304 |
| 0.5739 | 2.0 | 80 | 0.5048 | 0.7956 | 0.6842 | 0.6190 | 0.65 | 0.6627 |
| 0.4548 | 3.0 | 120 | 0.4643 | 0.8394 | 0.6316 | 0.75 | 0.6857 | 0.6638 |
| 0.343 | 4.0 | 160 | 0.6242 | 0.8321 | 0.4737 | 0.8571 | 0.6102 | 0.5493 |
| 0.4401 | 5.0 | 200 | 0.4801 | 0.8321 | 0.6579 | 0.7143 | 0.6849 | 0.6743 |
| 0.3385 | 6.0 | 240 | 0.4889 | 0.8467 | 0.6316 | 0.7742 | 0.6957 | 0.6695 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 13
Model tree for buelfhood/conplag1_graphcodebert_ep30_bs16_lr1e-05_l512_s42_ppy_loss
Base model
microsoft/graphcodebert-base