irplag_plbart_ep30_bs16_lr1e-05_l512_s42_ppn_loss
This model is a fine-tuned version of uclanlp/plbart-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1195
- Accuracy: 0.9710
- Recall: 0.9818
- Precision: 0.9818
- F1: 0.9818
- F Beta Score: 0.9818
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.6981 | 1.0 | 21 | 0.5491 | 0.8841 | 0.9818 | 0.8852 | 0.9310 | 0.9499 |
| 0.4969 | 2.0 | 42 | 0.3515 | 0.8986 | 0.8909 | 0.98 | 0.9333 | 0.9165 |
| 0.2701 | 3.0 | 63 | 0.1870 | 0.9565 | 0.9636 | 0.9815 | 0.9725 | 0.9691 |
| 0.1488 | 4.0 | 84 | 0.3295 | 0.9275 | 0.9818 | 0.9310 | 0.9558 | 0.9656 |
| 0.103 | 5.0 | 105 | 0.1468 | 0.9710 | 0.9818 | 0.9818 | 0.9818 | 0.9818 |
| 0.0476 | 6.0 | 126 | 0.2186 | 0.9565 | 0.9636 | 0.9815 | 0.9725 | 0.9691 |
| 0.0108 | 7.0 | 147 | 0.1195 | 0.9710 | 0.9818 | 0.9818 | 0.9818 | 0.9818 |
| 0.012 | 8.0 | 168 | 0.2395 | 0.9565 | 0.9636 | 0.9815 | 0.9725 | 0.9691 |
| 0.0064 | 9.0 | 189 | 0.2092 | 0.9710 | 0.9818 | 0.9818 | 0.9818 | 0.9818 |
| 0.0009 | 10.0 | 210 | 0.1814 | 0.9710 | 0.9818 | 0.9818 | 0.9818 | 0.9818 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 18
Model tree for buelfhood/irplag_plbart_ep30_bs16_lr1e-05_l512_s42_ppn_loss
Base model
uclanlp/plbart-base