|
|
--- |
|
|
library_name: transformers |
|
|
license: cc-by-nc-4.0 |
|
|
base_model: facebook/nougat-base |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
model-index: |
|
|
- name: _base_nougat_AHR |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# _base_nougat_AHR |
|
|
|
|
|
This model is a fine-tuned version of [facebook/nougat-base](https://huggingface.co/facebook/nougat-base) on an unknown dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 1.2011 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 0.0001 |
|
|
- train_batch_size: 8 |
|
|
- eval_batch_size: 8 |
|
|
- seed: 42 |
|
|
- gradient_accumulation_steps: 6 |
|
|
- total_train_batch_size: 48 |
|
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 30 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|
|:-------------:|:-------:|:----:|:---------------:| |
|
|
| 2.1218 | 0.9978 | 76 | 2.0613 | |
|
|
| 1.9342 | 1.9956 | 152 | 1.8993 | |
|
|
| 1.835 | 2.9934 | 228 | 1.8198 | |
|
|
| 1.7619 | 3.9912 | 304 | 1.7794 | |
|
|
| 1.7179 | 4.9891 | 380 | 1.7415 | |
|
|
| 1.6621 | 6.0 | 457 | 1.7167 | |
|
|
| 1.6321 | 6.9978 | 533 | 1.6912 | |
|
|
| 1.5972 | 7.9956 | 609 | 1.6770 | |
|
|
| 1.5809 | 8.9934 | 685 | 1.6699 | |
|
|
| 1.5203 | 9.9912 | 761 | 1.6632 | |
|
|
| 1.5007 | 10.9891 | 837 | 1.6380 | |
|
|
| 1.4308 | 12.0 | 914 | 1.6039 | |
|
|
| 1.3866 | 12.9978 | 990 | 1.5650 | |
|
|
| 1.3315 | 13.9956 | 1066 | 1.5164 | |
|
|
| 1.2601 | 14.9934 | 1142 | 1.4441 | |
|
|
| 1.1786 | 15.9912 | 1218 | 1.3988 | |
|
|
| 1.1358 | 16.9891 | 1294 | 1.3069 | |
|
|
| 1.0661 | 18.0 | 1371 | 1.3010 | |
|
|
| 1.0571 | 18.9978 | 1447 | 1.2936 | |
|
|
| 1.0299 | 19.9956 | 1523 | 1.2539 | |
|
|
| 1.0327 | 20.9934 | 1599 | 1.2193 | |
|
|
| 0.9878 | 21.9912 | 1675 | 1.1983 | |
|
|
| 0.9844 | 22.9891 | 1751 | 1.2063 | |
|
|
| 0.9645 | 24.0 | 1828 | 1.2009 | |
|
|
| 0.9645 | 24.9978 | 1904 | 1.2011 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.46.3 |
|
|
- Pytorch 2.5.1+cu121 |
|
|
- Datasets 3.2.0 |
|
|
- Tokenizers 0.20.3 |
|
|
|