See axolotl config
axolotl version: 0.13.0.dev0
base_model: meta-llama/Llama-3.2-3B-Instruct
trust_remote_code: true
strict: false
chat_template: chatml
load_in_8bit: false
load_in_4bit: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
datasets:
- path: ./outputs/dataset_tokenlab/train
type: chat_template
weight: 0.8
- path: ./outputs/dataset_cemig/train
type: chat_template
weight: 0.2
validation_datasets:
- path: ./outputs/dataset_tokenlab/validation
type: chat_template
weight: 0.8
- path: ./outputs/dataset_cemig/validation
type: chat_template
weight: 0.2
test_datasets:
- path: ./outputs/dataset_tokenlab/test
type: chat_template
weight: 0.8
- path: ./outputs/dataset_cemig/test
type: chat_template
weight: 0.2
val_set_size: 0.0
dataset_prepared_path: ./outputs/dataset_prepared
output_dir: ./outputs/cemig-sft-2gpu-chatml-2048/
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
flash_attn: true
gradient_checkpointing: true
micro_batch_size: 4
gradient_accumulation_steps: 4
num_epochs: 2
optimizer: adamw_torch_fused
learning_rate: 1.0e-5
lr_scheduler: cosine
cosine_constant_lr_ratio: 0
cosine_min_lr_ratio: 0.1
warmup_ratio: 0.1
weight_decay: 0.0
bf16: true
tf32: true
save_only_model: true
logging_steps: 1
evals_per_epoch: 4
saves_per_epoch: 2
special_tokens:
pad_token: <|finetune_right_pad_id|>
dataloader_num_workers: 4
dataloader_prefetch_factor: 2
wandb_project: llama32-3b-dados-cemig-chatml-2048
wandb_entity: null
wandb_name: llama3.2-3b-tokenlab-more-cemig-data-chatml-2048
wandb_log_model: checkpoint
outputs/cemig-sft-2gpu-chatml-2048/
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6568
- Memory/max Active (gib): 30.79
- Memory/max Allocated (gib): 30.79
- Memory/device Reserved (gib): 35.42
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 7966
- training_steps: 79668
Training results
| Training Loss | Epoch | Step | Validation Loss | Active (gib) | Allocated (gib) | Reserved (gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.9833 | 17.34 | 17.34 | 17.48 |
| 0.7873 | 0.2500 | 9959 | 0.7749 | 30.79 | 30.79 | 36.74 |
| 0.6617 | 0.5000 | 19918 | 0.6996 | 30.79 | 30.79 | 35.42 |
| 0.6314 | 0.7500 | 29877 | 0.6771 | 30.79 | 30.79 | 35.42 |
| 0.6538 | 1.0001 | 39836 | 0.6668 | 30.79 | 30.79 | 35.42 |
| 0.7352 | 1.2501 | 49795 | 0.6615 | 30.79 | 30.79 | 35.42 |
| 0.66 | 1.5001 | 59754 | 0.6585 | 30.79 | 30.79 | 35.42 |
| 0.6365 | 1.7501 | 69713 | 0.6568 | 30.79 | 30.79 | 35.42 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.0+cu130
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 45
Model tree for cemig-temp/llama3.2-3b-instruct-tokenlab-cemigConvo-chatml-2048
Base model
meta-llama/Llama-3.2-3B-Instruct