Built with Axolotl

See axolotl config

axolotl version: 0.13.0.dev0

base_model: meta-llama/Llama-3.2-3B-Instruct
trust_remote_code: true
strict: false

chat_template: chatml

load_in_8bit: false
load_in_4bit: false

plugins:
  - axolotl.integrations.liger.LigerPlugin

liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true

datasets:
  - path: ./outputs/dataset_tokenlab/train
    type: chat_template
    weight: 0.8
  - path: ./outputs/dataset_cemig/train
    type: chat_template
    weight: 0.2

validation_datasets:
  - path: ./outputs/dataset_tokenlab/validation
    type: chat_template
    weight: 0.8
  - path: ./outputs/dataset_cemig/validation
    type: chat_template
    weight: 0.2

test_datasets:
  - path: ./outputs/dataset_tokenlab/test
    type: chat_template
    weight: 0.8
  - path: ./outputs/dataset_cemig/test
    type: chat_template
    weight: 0.2

val_set_size: 0.0

dataset_prepared_path: ./outputs/dataset_prepared
output_dir: ./outputs/cemig-sft-2gpu-chatml-2048/

sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
flash_attn: true

gradient_checkpointing: true
micro_batch_size: 4
gradient_accumulation_steps: 4

num_epochs: 2
optimizer: adamw_torch_fused
learning_rate: 1.0e-5
lr_scheduler: cosine
cosine_constant_lr_ratio: 0
cosine_min_lr_ratio: 0.1
warmup_ratio: 0.1
weight_decay: 0.0

bf16: true
tf32: true
save_only_model: true

logging_steps: 1
evals_per_epoch: 4
saves_per_epoch: 2

special_tokens:
  pad_token: <|finetune_right_pad_id|>

dataloader_num_workers: 4
dataloader_prefetch_factor: 2

wandb_project: llama32-3b-dados-cemig-chatml-2048
wandb_entity: null
wandb_name: llama3.2-3b-tokenlab-more-cemig-data-chatml-2048
wandb_log_model: checkpoint

Visualize in Weights & Biases

outputs/cemig-sft-2gpu-chatml-2048/

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6568
  • Memory/max Active (gib): 30.79
  • Memory/max Allocated (gib): 30.79
  • Memory/device Reserved (gib): 35.42

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 7966
  • training_steps: 79668

Training results

Training Loss Epoch Step Validation Loss Active (gib) Allocated (gib) Reserved (gib)
No log 0 0 1.9833 17.34 17.34 17.48
0.7873 0.2500 9959 0.7749 30.79 30.79 36.74
0.6617 0.5000 19918 0.6996 30.79 30.79 35.42
0.6314 0.7500 29877 0.6771 30.79 30.79 35.42
0.6538 1.0001 39836 0.6668 30.79 30.79 35.42
0.7352 1.2501 49795 0.6615 30.79 30.79 35.42
0.66 1.5001 59754 0.6585 30.79 30.79 35.42
0.6365 1.7501 69713 0.6568 30.79 30.79 35.42

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.0+cu130
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
45
Safetensors
Model size
3B params
Tensor type
F32
·
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for cemig-temp/llama3.2-3b-instruct-tokenlab-cemigConvo-chatml-2048

Finetuned
(762)
this model