See axolotl config
axolotl version: 0.10.0
base_model: Qwen/Qwen2.5-1.5B-Instruct
tokenizer_type: AutoTokenizer
datasets:
- path: cfierro/pv-prompts-non-sycophantic_Qwen2.5-1.5B-Instruct
type: chat_template
dataset_prepared_path: /workspace/axolotl-datasets/Qwen2.5-1.5B-Instruct/pv-prompts-non-sycophantic
val_set_size: 0.05
output_dir: /workspace/axolotl-outputs/personality_ds_updated/Qwen2.5-1.5B-Instruct-bias-pv-prompts-non-sycophantic_1e-4
sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
unfrozen_parameters:
- "model.layers.[0-9]+.mlp.down_proj.bias"
plugins:
- axolotl_plugin_models_with_mlp_bias.MLPBiasPlugin
wandb_project: weight-diff-ft
wandb_entity: cfierro
wandb_watch: all
wandb_name: Qwen2.5-1.5B-Instruct-bias-pv-prompts-non-sycophantic_1e-4
wandb_log_model: "false"
gradient_accumulation_steps: 4
micro_batch_size: 2
max_steps: 100
optimizer: adamw_bnb_8bit
lr_scheduler: linear
learning_rate: 1e-04
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_steps: 5
early_stopping_patience: 2
eval_steps: 20
save_steps: 20
save_total_limit: 1
load_best_model_at_end: true
weight_decay: 0.01
special_tokens:
workspace/axolotl-outputs/personality_ds_updated/Qwen2.5-1.5B-Instruct-bias-pv-prompts-non-sycophantic_1e-4
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct on the cfierro/pv-prompts-non-sycophantic_Qwen2.5-1.5B-Instruct dataset. It achieves the following results on the evaluation set:
- Loss: 1.6521
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 100
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0 | 0 | 1.6888 |
| 1.4548 | 0.3239 | 20 | 1.6636 |
| 1.4903 | 0.6478 | 40 | 1.6567 |
| 1.6729 | 0.9717 | 60 | 1.6534 |
| 1.6794 | 1.2915 | 80 | 1.6535 |
| 1.5321 | 1.6154 | 100 | 1.6521 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.2.0
- Tokenizers 0.22.1
- Downloads last month
- 4