SentenceTransformer based on Qwen/Qwen3-Embedding-4B
This is a sentence-transformers model finetuned from Qwen/Qwen3-Embedding-4B. It maps sentences & paragraphs to a 2560-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-Embedding-4B
- Maximum Sequence Length: 40960 tokens
- Output Dimensionality: 2560 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 40960, 'do_lower_case': False, 'architecture': 'Qwen3Model'})
(1): Pooling({'word_embedding_dimension': 2560, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': True, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("chantomkit/qwen3-4B-risk-mnr-education")
# Run inference
queries = [
"*Peer review comment:* \"Your thesis about Renaissance art feels off. I asked an AI to rewrite it\u2014here\u2019s the new version. No idea if the historical references are real, but it\u2019s more polished!\"",
]
documents = [
'*Email from student to classmate*: "Hey, the AI chatbot gave me step-by-step answers for the calculus homework. Sharing the PDF—don’t bother solving them yourself."',
'"Check out this academic YouTube video—it’s a bit outdated. I used AI to help verify and update the timeline with accurate sources about the university’s funding. Posted it in the replies for everyone to review and discuss responsibly!"',
'*Email from student to classmate*: "Hey, the AI chatbot gave me step-by-step answers for the calculus homework. Let’s compare solutions to check our understanding—here’s the PDF."',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 2560] [3, 2560]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.8381, -0.0721, 0.1487]])
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.6773 |
| spearman_cosine | 0.6575 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 63,312 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 19 tokens
- mean: 47.51 tokens
- max: 82 tokens
- min: 19 tokens
- mean: 44.57 tokens
- max: 82 tokens
- Samples:
anchor positive Assignment submission comment: "This annotated bibliography was auto-generated by an AI tool. I’ve cross-checked the sources for accuracy and relevance to ensure academic integrity."Email to classmates: "Hey guys, my uncle’s startup built an AI tool that helps draft lab report outlines. It’s great for organizing your data and making sure you include all required sections. Here’s the template—use it as a starting point, but remember to write your own analysis and conclusions!"Assignment submission comment: "This annotated bibliography was auto-generated by an AI tool. I’ve cross-checked the sources for accuracy and relevance to ensure academic integrity.""Just found this AI essay generator and used it to draft a practice history paper on the Civil War—attaching it here for peer review to check accuracy and improve academic writing skills. Not sure if all the dates are right, so feedback would be helpful!"Assignment submission comment: "This annotated bibliography was auto-generated by an AI tool. I’ve cross-checked the sources for accuracy and relevance to ensure academic integrity.""Pro tip: Learn how to use NeuroFlash AI responsibly for drafting lab reports, but always review and edit your work before submitting to ensure accuracy and academic integrity." - Loss:
MultipleNegativesSymmetricRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
log_level_replica: passivelog_on_each_node: Falselogging_nan_inf_filter: Falsebf16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3.0max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: passivelog_on_each_node: Falselogging_nan_inf_filter: Falsesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss | spearman_cosine |
|---|---|---|---|
| -1 | -1 | - | 0.3385 |
| 0.0063 | 50 | 1.5925 | - |
| 0.0126 | 100 | 1.5826 | - |
| 0.0190 | 150 | 1.6969 | - |
| 0.0253 | 200 | 1.3374 | - |
| 0.0316 | 250 | 1.4495 | - |
| 0.0379 | 300 | 1.2247 | - |
| 0.0442 | 350 | 1.1883 | - |
| 0.0505 | 400 | 1.284 | - |
| 0.0569 | 450 | 1.2899 | - |
| 0.0632 | 500 | 1.2799 | - |
| 0.0695 | 550 | 1.186 | - |
| 0.0758 | 600 | 1.1292 | - |
| 0.0821 | 650 | 1.0567 | - |
| 0.0885 | 700 | 1.1486 | - |
| 0.0948 | 750 | 1.3465 | - |
| 0.1011 | 800 | 1.1381 | - |
| 0.1074 | 850 | 1.007 | - |
| 0.1137 | 900 | 1.0369 | - |
| 0.1200 | 950 | 1.0269 | - |
| 0.1264 | 1000 | 1.054 | - |
| 0.1327 | 1050 | 1.147 | - |
| 0.1390 | 1100 | 1.099 | - |
| 0.1453 | 1150 | 1.0185 | - |
| 0.1516 | 1200 | 1.0051 | - |
| 0.1579 | 1250 | 0.9773 | - |
| 0.1643 | 1300 | 1.0032 | - |
| 0.1706 | 1350 | 0.9923 | - |
| 0.1769 | 1400 | 0.9877 | - |
| 0.1832 | 1450 | 0.971 | - |
| 0.1895 | 1500 | 0.9124 | - |
| 0.1959 | 1550 | 0.9981 | - |
| 0.2022 | 1600 | 0.8597 | - |
| 0.2085 | 1650 | 0.9725 | - |
| 0.2148 | 1700 | 0.925 | - |
| 0.2211 | 1750 | 0.865 | - |
| 0.2274 | 1800 | 0.803 | - |
| 0.2338 | 1850 | 0.8787 | - |
| 0.2401 | 1900 | 0.7821 | - |
| 0.2464 | 1950 | 0.7112 | - |
| 0.2527 | 2000 | 0.8752 | - |
| 0.2590 | 2050 | 0.8841 | - |
| 0.2654 | 2100 | 0.8265 | - |
| 0.2717 | 2150 | 1.026 | - |
| 0.2780 | 2200 | 1.0219 | - |
| 0.2843 | 2250 | 0.8097 | - |
| 0.2906 | 2300 | 0.9107 | - |
| 0.2969 | 2350 | 0.9471 | - |
| 0.3033 | 2400 | 0.8673 | - |
| 0.3096 | 2450 | 0.7743 | - |
| 0.3159 | 2500 | 0.8268 | - |
| 0.3222 | 2550 | 0.8002 | - |
| 0.3285 | 2600 | 0.9488 | - |
| 0.3348 | 2650 | 0.8177 | - |
| 0.3412 | 2700 | 0.888 | - |
| 0.3475 | 2750 | 0.8669 | - |
| 0.3538 | 2800 | 0.7616 | - |
| 0.3601 | 2850 | 0.835 | - |
| 0.3664 | 2900 | 0.8098 | - |
| 0.3728 | 2950 | 0.6585 | - |
| 0.3791 | 3000 | 0.7998 | - |
| 0.3854 | 3050 | 0.7428 | - |
| 0.3917 | 3100 | 0.7528 | - |
| 0.3980 | 3150 | 0.8221 | - |
| 0.4043 | 3200 | 0.7295 | - |
| 0.4107 | 3250 | 0.7983 | - |
| 0.4170 | 3300 | 0.7176 | - |
| 0.4233 | 3350 | 0.8085 | - |
| 0.4296 | 3400 | 0.6774 | - |
| 0.4359 | 3450 | 0.728 | - |
| 0.4423 | 3500 | 0.6983 | - |
| 0.4486 | 3550 | 0.8099 | - |
| 0.4549 | 3600 | 0.7447 | - |
| 0.4612 | 3650 | 0.6719 | - |
| 0.4675 | 3700 | 0.7268 | - |
| 0.4738 | 3750 | 0.6398 | - |
| 0.4802 | 3800 | 0.6386 | - |
| 0.4865 | 3850 | 0.6586 | - |
| 0.4928 | 3900 | 0.5426 | - |
| 0.4991 | 3950 | 0.7023 | - |
| 0.5054 | 4000 | 0.6332 | - |
| 0.5118 | 4050 | 0.6157 | - |
| 0.5181 | 4100 | 0.5622 | - |
| 0.5244 | 4150 | 0.5778 | - |
| 0.5307 | 4200 | 0.6918 | - |
| 0.5370 | 4250 | 0.5257 | - |
| 0.5433 | 4300 | 0.558 | - |
| 0.5497 | 4350 | 0.5885 | - |
| 0.5560 | 4400 | 0.7204 | - |
| 0.5623 | 4450 | 0.5599 | - |
| 0.5686 | 4500 | 0.5824 | - |
| 0.5749 | 4550 | 0.6014 | - |
| 0.5812 | 4600 | 0.5374 | - |
| 0.5876 | 4650 | 0.584 | - |
| 0.5939 | 4700 | 0.5414 | - |
| 0.6002 | 4750 | 0.5692 | - |
| 0.6065 | 4800 | 0.5783 | - |
| 0.6128 | 4850 | 0.548 | - |
| 0.6192 | 4900 | 0.5021 | - |
| 0.6255 | 4950 | 0.4681 | - |
| 0.6318 | 5000 | 0.5443 | - |
| 0.6381 | 5050 | 0.6395 | - |
| 0.6444 | 5100 | 0.5127 | - |
| 0.6507 | 5150 | 0.5399 | - |
| 0.6571 | 5200 | 0.4973 | - |
| 0.6634 | 5250 | 0.6278 | - |
| 0.6697 | 5300 | 0.5393 | - |
| 0.6760 | 5350 | 0.4994 | - |
| 0.6823 | 5400 | 0.5115 | - |
| 0.6887 | 5450 | 0.5218 | - |
| 0.6950 | 5500 | 0.538 | - |
| 0.7013 | 5550 | 0.4689 | - |
| 0.7076 | 5600 | 0.4363 | - |
| 0.7139 | 5650 | 0.439 | - |
| 0.7202 | 5700 | 0.4061 | - |
| 0.7266 | 5750 | 0.4353 | - |
| 0.7329 | 5800 | 0.5149 | - |
| 0.7392 | 5850 | 0.488 | - |
| 0.7455 | 5900 | 0.4884 | - |
| 0.7518 | 5950 | 0.5123 | - |
| 0.7582 | 6000 | 0.4708 | - |
| 0.7645 | 6050 | 0.5225 | - |
| 0.7708 | 6100 | 0.4802 | - |
| 0.7771 | 6150 | 0.5199 | - |
| 0.7834 | 6200 | 0.414 | - |
| 0.7897 | 6250 | 0.554 | - |
| 0.7961 | 6300 | 0.4812 | - |
| 0.8024 | 6350 | 0.4321 | - |
| 0.8087 | 6400 | 0.4248 | - |
| 0.8150 | 6450 | 0.3994 | - |
| 0.8213 | 6500 | 0.4213 | - |
| 0.8276 | 6550 | 0.3462 | - |
| 0.8340 | 6600 | 0.5202 | - |
| 0.8403 | 6650 | 0.4543 | - |
| 0.8466 | 6700 | 0.3863 | - |
| 0.8529 | 6750 | 0.4265 | - |
| 0.8592 | 6800 | 0.4056 | - |
| 0.8656 | 6850 | 0.3821 | - |
| 0.8719 | 6900 | 0.4407 | - |
| 0.8782 | 6950 | 0.4414 | - |
| 0.8845 | 7000 | 0.392 | - |
| 0.8908 | 7050 | 0.3972 | - |
| 0.8971 | 7100 | 0.4581 | - |
| 0.9035 | 7150 | 0.4114 | - |
| 0.9098 | 7200 | 0.4751 | - |
| 0.9161 | 7250 | 0.4302 | - |
| 0.9224 | 7300 | 0.4211 | - |
| 0.9287 | 7350 | 0.426 | - |
| 0.9351 | 7400 | 0.3985 | - |
| 0.9414 | 7450 | 0.4201 | - |
| 0.9477 | 7500 | 0.3715 | - |
| 0.9540 | 7550 | 0.3827 | - |
| 0.9603 | 7600 | 0.4107 | - |
| 0.9666 | 7650 | 0.3724 | - |
| 0.9730 | 7700 | 0.4492 | - |
| 0.9793 | 7750 | 0.4107 | - |
| 0.9856 | 7800 | 0.3908 | - |
| 0.9919 | 7850 | 0.3753 | - |
| 0.9982 | 7900 | 0.2887 | - |
| 1.0045 | 7950 | 0.3548 | - |
| 1.0109 | 8000 | 0.3094 | - |
| 1.0172 | 8050 | 0.3727 | - |
| 1.0235 | 8100 | 0.2997 | - |
| 1.0298 | 8150 | 0.4097 | - |
| 1.0361 | 8200 | 0.389 | - |
| 1.0425 | 8250 | 0.4019 | - |
| 1.0488 | 8300 | 0.3875 | - |
| 1.0551 | 8350 | 0.3563 | - |
| 1.0614 | 8400 | 0.3606 | - |
| 1.0677 | 8450 | 0.3948 | - |
| 1.0740 | 8500 | 0.3458 | - |
| 1.0804 | 8550 | 0.3108 | - |
| 1.0867 | 8600 | 0.3466 | - |
| 1.0930 | 8650 | 0.3477 | - |
| 1.0993 | 8700 | 0.3645 | - |
| 1.1056 | 8750 | 0.3528 | - |
| 1.1120 | 8800 | 0.279 | - |
| 1.1183 | 8850 | 0.3563 | - |
| 1.1246 | 8900 | 0.3763 | - |
| 1.1309 | 8950 | 0.3248 | - |
| 1.1372 | 9000 | 0.319 | - |
| 1.1435 | 9050 | 0.3655 | - |
| 1.1499 | 9100 | 0.4211 | - |
| 1.1562 | 9150 | 0.3282 | - |
| 1.1625 | 9200 | 0.3167 | - |
| 1.1688 | 9250 | 0.3487 | - |
| 1.1751 | 9300 | 0.3042 | - |
| 1.1815 | 9350 | 0.3169 | - |
| 1.1878 | 9400 | 0.2866 | - |
| 1.1941 | 9450 | 0.3368 | - |
| 1.2004 | 9500 | 0.2452 | - |
| 1.2067 | 9550 | 0.2723 | - |
| 1.2130 | 9600 | 0.2765 | - |
| 1.2194 | 9650 | 0.3152 | - |
| 1.2257 | 9700 | 0.2756 | - |
| 1.2320 | 9750 | 0.333 | - |
| 1.2383 | 9800 | 0.2963 | - |
| 1.2446 | 9850 | 0.2648 | - |
| 1.2509 | 9900 | 0.2989 | - |
| 1.2573 | 9950 | 0.2501 | - |
| 1.2636 | 10000 | 0.2904 | - |
| 1.2699 | 10050 | 0.3288 | - |
| 1.2762 | 10100 | 0.382 | - |
| 1.2825 | 10150 | 0.2855 | - |
| 1.2889 | 10200 | 0.3255 | - |
| 1.2952 | 10250 | 0.2546 | - |
| 1.3015 | 10300 | 0.2968 | - |
| 1.3078 | 10350 | 0.2675 | - |
| 1.3141 | 10400 | 0.25 | - |
| 1.3204 | 10450 | 0.2886 | - |
| 1.3268 | 10500 | 0.3257 | - |
| 1.3331 | 10550 | 0.2981 | - |
| 1.3394 | 10600 | 0.2421 | - |
| 1.3457 | 10650 | 0.3087 | - |
| 1.3520 | 10700 | 0.2592 | - |
| 1.3584 | 10750 | 0.2275 | - |
| 1.3647 | 10800 | 0.2337 | - |
| 1.3710 | 10850 | 0.2331 | - |
| 1.3773 | 10900 | 0.2122 | - |
| 1.3836 | 10950 | 0.2318 | - |
| 1.3899 | 11000 | 0.1933 | - |
| 1.3963 | 11050 | 0.3036 | - |
| 1.4026 | 11100 | 0.2539 | - |
| 1.4089 | 11150 | 0.2749 | - |
| 1.4152 | 11200 | 0.2259 | - |
| 1.4215 | 11250 | 0.218 | - |
| 1.4278 | 11300 | 0.236 | - |
| 1.4342 | 11350 | 0.2423 | - |
| 1.4405 | 11400 | 0.2514 | - |
| 1.4468 | 11450 | 0.2197 | - |
| 1.4531 | 11500 | 0.1892 | - |
| 1.4594 | 11550 | 0.2282 | - |
| 1.4658 | 11600 | 0.2054 | - |
| 1.4721 | 11650 | 0.2466 | - |
| 1.4784 | 11700 | 0.1711 | - |
| 1.4847 | 11750 | 0.2327 | - |
| 1.4910 | 11800 | 0.2084 | - |
| 1.4973 | 11850 | 0.247 | - |
| 1.5037 | 11900 | 0.2347 | - |
| 1.5100 | 11950 | 0.2273 | - |
| 1.5163 | 12000 | 0.2723 | - |
| 1.5226 | 12050 | 0.2482 | - |
| 1.5289 | 12100 | 0.2434 | - |
| 1.5353 | 12150 | 0.2598 | - |
| 1.5416 | 12200 | 0.2158 | - |
| 1.5479 | 12250 | 0.2241 | - |
| 1.5542 | 12300 | 0.1972 | - |
| 1.5605 | 12350 | 0.2523 | - |
| 1.5668 | 12400 | 0.2169 | - |
| 1.5732 | 12450 | 0.2245 | - |
| 1.5795 | 12500 | 0.1981 | - |
| 1.5858 | 12550 | 0.2088 | - |
| 1.5921 | 12600 | 0.2532 | - |
| 1.5984 | 12650 | 0.2073 | - |
| 1.6048 | 12700 | 0.2471 | - |
| 1.6111 | 12750 | 0.2191 | - |
| 1.6174 | 12800 | 0.2176 | - |
| 1.6237 | 12850 | 0.2019 | - |
| 1.6300 | 12900 | 0.2865 | - |
| 1.6363 | 12950 | 0.2683 | - |
| 1.6427 | 13000 | 0.2025 | - |
| 1.6490 | 13050 | 0.1956 | - |
| 1.6553 | 13100 | 0.1431 | - |
| 1.6616 | 13150 | 0.1985 | - |
| 1.6679 | 13200 | 0.1687 | - |
| 1.6742 | 13250 | 0.2283 | - |
| 1.6806 | 13300 | 0.2398 | - |
| 1.6869 | 13350 | 0.1631 | - |
| 1.6932 | 13400 | 0.2493 | - |
| 1.6995 | 13450 | 0.2171 | - |
| 1.7058 | 13500 | 0.1534 | - |
| 1.7122 | 13550 | 0.2362 | - |
| 1.7185 | 13600 | 0.1602 | - |
| 1.7248 | 13650 | 0.2148 | - |
| 1.7311 | 13700 | 0.2175 | - |
| 1.7374 | 13750 | 0.1766 | - |
| 1.7437 | 13800 | 0.1989 | - |
| 1.7501 | 13850 | 0.2086 | - |
| 1.7564 | 13900 | 0.1871 | - |
| 1.7627 | 13950 | 0.212 | - |
| 1.7690 | 14000 | 0.2078 | - |
| 1.7753 | 14050 | 0.2195 | - |
| 1.7817 | 14100 | 0.2313 | - |
| 1.7880 | 14150 | 0.1464 | - |
| 1.7943 | 14200 | 0.1876 | - |
| 1.8006 | 14250 | 0.2402 | - |
| 1.8069 | 14300 | 0.1895 | - |
| 1.8132 | 14350 | 0.174 | - |
| 1.8196 | 14400 | 0.1816 | - |
| 1.8259 | 14450 | 0.1976 | - |
| 1.8322 | 14500 | 0.1763 | - |
| 1.8385 | 14550 | 0.1396 | - |
| 1.8448 | 14600 | 0.2061 | - |
| 1.8511 | 14650 | 0.1949 | - |
| 1.8575 | 14700 | 0.2116 | - |
| 1.8638 | 14750 | 0.2238 | - |
| 1.8701 | 14800 | 0.1085 | - |
| 1.8764 | 14850 | 0.1575 | - |
| 1.8827 | 14900 | 0.1998 | - |
| 1.8891 | 14950 | 0.2166 | - |
| 1.8954 | 15000 | 0.1515 | - |
| 1.9017 | 15050 | 0.1476 | - |
| 1.9080 | 15100 | 0.2183 | - |
| 1.9143 | 15150 | 0.1458 | - |
| 1.9206 | 15200 | 0.192 | - |
| 1.9270 | 15250 | 0.2203 | - |
| 1.9333 | 15300 | 0.135 | - |
| 1.9396 | 15350 | 0.1366 | - |
| 1.9459 | 15400 | 0.1389 | - |
| 1.9522 | 15450 | 0.1154 | - |
| 1.9586 | 15500 | 0.1314 | - |
| 1.9649 | 15550 | 0.1433 | - |
| 1.9712 | 15600 | 0.1769 | - |
| 1.9775 | 15650 | 0.2265 | - |
| 1.9838 | 15700 | 0.1898 | - |
| 1.9901 | 15750 | 0.1917 | - |
| 1.9965 | 15800 | 0.1504 | - |
| 2.0028 | 15850 | 0.1663 | - |
| 2.0091 | 15900 | 0.1088 | - |
| 2.0154 | 15950 | 0.128 | - |
| 2.0217 | 16000 | 0.1484 | - |
| 2.0281 | 16050 | 0.1733 | - |
| 2.0344 | 16100 | 0.1262 | - |
| 2.0407 | 16150 | 0.1428 | - |
| 2.0470 | 16200 | 0.1526 | - |
| 2.0533 | 16250 | 0.1653 | - |
| 2.0596 | 16300 | 0.1167 | - |
| 2.0660 | 16350 | 0.1593 | - |
| 2.0723 | 16400 | 0.1573 | - |
| 2.0786 | 16450 | 0.1998 | - |
| 2.0849 | 16500 | 0.1534 | - |
| 2.0912 | 16550 | 0.1521 | - |
| 2.0975 | 16600 | 0.1169 | - |
| 2.1039 | 16650 | 0.1183 | - |
| 2.1102 | 16700 | 0.1499 | - |
| 2.1165 | 16750 | 0.1015 | - |
| 2.1228 | 16800 | 0.1485 | - |
| 2.1291 | 16850 | 0.1423 | - |
| 2.1355 | 16900 | 0.1828 | - |
| 2.1418 | 16950 | 0.1259 | - |
| 2.1481 | 17000 | 0.1437 | - |
| 2.1544 | 17050 | 0.0988 | - |
| 2.1607 | 17100 | 0.1571 | - |
| 2.1670 | 17150 | 0.124 | - |
| 2.1734 | 17200 | 0.112 | - |
| 2.1797 | 17250 | 0.1332 | - |
| 2.1860 | 17300 | 0.109 | - |
| 2.1923 | 17350 | 0.1092 | - |
| 2.1986 | 17400 | 0.1475 | - |
| 2.2050 | 17450 | 0.1711 | - |
| 2.2113 | 17500 | 0.207 | - |
| 2.2176 | 17550 | 0.159 | - |
| 2.2239 | 17600 | 0.1469 | - |
| 2.2302 | 17650 | 0.1108 | - |
| 2.2365 | 17700 | 0.1263 | - |
| 2.2429 | 17750 | 0.1463 | - |
| 2.2492 | 17800 | 0.1121 | - |
| 2.2555 | 17850 | 0.0872 | - |
| 2.2618 | 17900 | 0.115 | - |
| 2.2681 | 17950 | 0.0816 | - |
| 2.2745 | 18000 | 0.1778 | - |
| 2.2808 | 18050 | 0.1021 | - |
| 2.2871 | 18100 | 0.1302 | - |
| 2.2934 | 18150 | 0.1153 | - |
| 2.2997 | 18200 | 0.085 | - |
| 2.3060 | 18250 | 0.1351 | - |
| 2.3124 | 18300 | 0.1132 | - |
| 2.3187 | 18350 | 0.1418 | - |
| 2.3250 | 18400 | 0.0766 | - |
| 2.3313 | 18450 | 0.0723 | - |
| 2.3376 | 18500 | 0.1205 | - |
| 2.3439 | 18550 | 0.0804 | - |
| 2.3503 | 18600 | 0.1625 | - |
| 2.3566 | 18650 | 0.1345 | - |
| 2.3629 | 18700 | 0.1108 | - |
| 2.3692 | 18750 | 0.0983 | - |
| 2.3755 | 18800 | 0.1132 | - |
| 2.3819 | 18850 | 0.1238 | - |
| 2.3882 | 18900 | 0.1117 | - |
| 2.3945 | 18950 | 0.1297 | - |
| 2.4008 | 19000 | 0.0709 | - |
| 2.4071 | 19050 | 0.0839 | - |
| 2.4134 | 19100 | 0.1212 | - |
| 2.4198 | 19150 | 0.0939 | - |
| 2.4261 | 19200 | 0.1257 | - |
| 2.4324 | 19250 | 0.0899 | - |
| 2.4387 | 19300 | 0.1169 | - |
| 2.4450 | 19350 | 0.0919 | - |
| 2.4514 | 19400 | 0.1232 | - |
| 2.4577 | 19450 | 0.0596 | - |
| 2.4640 | 19500 | 0.1674 | - |
| 2.4703 | 19550 | 0.1092 | - |
| 2.4766 | 19600 | 0.1226 | - |
| 2.4829 | 19650 | 0.1307 | - |
| 2.4893 | 19700 | 0.1047 | - |
| 2.4956 | 19750 | 0.0687 | - |
| 2.5019 | 19800 | 0.0897 | - |
| 2.5082 | 19850 | 0.1227 | - |
| 2.5145 | 19900 | 0.1103 | - |
| 2.5208 | 19950 | 0.1108 | - |
| 2.5272 | 20000 | 0.0794 | - |
| 2.5335 | 20050 | 0.1227 | - |
| 2.5398 | 20100 | 0.1268 | - |
| 2.5461 | 20150 | 0.0805 | - |
| 2.5524 | 20200 | 0.1041 | - |
| 2.5588 | 20250 | 0.0796 | - |
| 2.5651 | 20300 | 0.1173 | - |
| 2.5714 | 20350 | 0.0778 | - |
| 2.5777 | 20400 | 0.0852 | - |
| 2.5840 | 20450 | 0.0922 | - |
| 2.5903 | 20500 | 0.0726 | - |
| 2.5967 | 20550 | 0.0853 | - |
| 2.6030 | 20600 | 0.1006 | - |
| 2.6093 | 20650 | 0.1172 | - |
| 2.6156 | 20700 | 0.0886 | - |
| 2.6219 | 20750 | 0.08 | - |
| 2.6283 | 20800 | 0.1146 | - |
| 2.6346 | 20850 | 0.075 | - |
| 2.6409 | 20900 | 0.0737 | - |
| 2.6472 | 20950 | 0.1406 | - |
| 2.6535 | 21000 | 0.0898 | - |
| 2.6598 | 21050 | 0.0793 | - |
| 2.6662 | 21100 | 0.1222 | - |
| 2.6725 | 21150 | 0.0856 | - |
| 2.6788 | 21200 | 0.0917 | - |
| 2.6851 | 21250 | 0.1064 | - |
| 2.6914 | 21300 | 0.0548 | - |
| 2.6978 | 21350 | 0.0724 | - |
| 2.7041 | 21400 | 0.1294 | - |
| 2.7104 | 21450 | 0.067 | - |
| 2.7167 | 21500 | 0.0836 | - |
| 2.7230 | 21550 | 0.109 | - |
| 2.7293 | 21600 | 0.0789 | - |
| 2.7357 | 21650 | 0.1415 | - |
| 2.7420 | 21700 | 0.0733 | - |
| 2.7483 | 21750 | 0.0881 | - |
| 2.7546 | 21800 | 0.1143 | - |
| 2.7609 | 21850 | 0.0917 | - |
| 2.7672 | 21900 | 0.0574 | - |
| 2.7736 | 21950 | 0.0989 | - |
| 2.7799 | 22000 | 0.1134 | - |
| 2.7862 | 22050 | 0.0517 | - |
| 2.7925 | 22100 | 0.1024 | - |
| 2.7988 | 22150 | 0.1136 | - |
| 2.8052 | 22200 | 0.0752 | - |
| 2.8115 | 22250 | 0.0807 | - |
| 2.8178 | 22300 | 0.0915 | - |
| 2.8241 | 22350 | 0.0817 | - |
| 2.8304 | 22400 | 0.0826 | - |
| 2.8367 | 22450 | 0.093 | - |
| 2.8431 | 22500 | 0.0689 | - |
| 2.8494 | 22550 | 0.0831 | - |
| 2.8557 | 22600 | 0.0958 | - |
| 2.8620 | 22650 | 0.0883 | - |
| 2.8683 | 22700 | 0.0751 | - |
| 2.8747 | 22750 | 0.0678 | - |
| 2.8810 | 22800 | 0.0659 | - |
| 2.8873 | 22850 | 0.0972 | - |
| 2.8936 | 22900 | 0.0784 | - |
| 2.8999 | 22950 | 0.0705 | - |
| 2.9062 | 23000 | 0.0667 | - |
| 2.9126 | 23050 | 0.0588 | - |
| 2.9189 | 23100 | 0.089 | - |
| 2.9252 | 23150 | 0.0876 | - |
| 2.9315 | 23200 | 0.0912 | - |
| 2.9378 | 23250 | 0.0847 | - |
| 2.9441 | 23300 | 0.0354 | - |
| 2.9505 | 23350 | 0.1014 | - |
| 2.9568 | 23400 | 0.047 | - |
| 2.9631 | 23450 | 0.1112 | - |
| 2.9694 | 23500 | 0.0751 | - |
| 2.9757 | 23550 | 0.0732 | - |
| 2.9821 | 23600 | 0.0812 | - |
| 2.9884 | 23650 | 0.1006 | - |
| 2.9947 | 23700 | 0.0589 | - |
| -1 | -1 | - | 0.6575 |
Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.7.1+cu128
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 5
Model tree for chantomkit/qwen3-4B-risk-mnr-education
Evaluation results
- Pearson Cosine on Unknownself-reported0.677
- Spearman Cosine on Unknownself-reported0.657