TennesseeLegislationBillSummarizer

This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9393
  • Rouge1: 0.5251
  • Rouge2: 0.4185
  • Rougel: 0.4987
  • Rougelsum: 0.4987
  • Gen Len: 19.6969

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.1485 1.0 15881 1.0192 0.5167 0.4071 0.4899 0.49 19.7533
1.0839 2.0 31762 0.9754 0.5185 0.4101 0.4918 0.4919 19.7608
1.0474 3.0 47643 0.9542 0.5228 0.4151 0.4961 0.4961 19.7375
1.0541 4.0 63524 0.9428 0.5247 0.4177 0.4981 0.4982 19.7032
1.0252 5.0 79405 0.9393 0.5251 0.4185 0.4987 0.4987 19.6969

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
414
Safetensors
Model size
60.5M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for cheaptrix/TennesseeLegislationBillSummarizer

Base model

google-t5/t5-small
Finetuned
(2212)
this model