09cbd937b2a4ef22746fd7293d765391
This model is a fine-tuned version of google-bert/bert-large-uncased-whole-word-masking on the nyu-mll/glue [mnli] dataset. It achieves the following results on the evaluation set:
- Loss: 1.1043
- Data Size: 1.0
- Epoch Runtime: 1137.3446
- Accuracy: 0.3182
- F1 Macro: 0.1609
- Rouge1: 0.3184
- Rouge2: 0.0
- Rougel: 0.3182
- Rougelsum: 0.3183
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.2907 | 0 | 7.9126 | 0.3540 | 0.1751 | 0.3539 | 0.0 | 0.3540 | 0.3538 |
| 1.1102 | 1 | 12271 | 0.9334 | 0.0078 | 19.0122 | 0.5456 | 0.5088 | 0.5456 | 0.0 | 0.5459 | 0.5455 |
| 0.7655 | 2 | 24542 | 0.6558 | 0.0156 | 26.9505 | 0.7339 | 0.7338 | 0.7339 | 0.0 | 0.7339 | 0.7338 |
| 0.6731 | 3 | 36813 | 0.6467 | 0.0312 | 44.3297 | 0.75 | 0.7465 | 0.7497 | 0.0 | 0.7502 | 0.75 |
| 0.6613 | 4 | 49084 | 0.5680 | 0.0625 | 80.0463 | 0.7793 | 0.7773 | 0.7793 | 0.0 | 0.7794 | 0.7795 |
| 0.5785 | 5 | 61355 | 0.5429 | 0.125 | 149.8707 | 0.7830 | 0.7792 | 0.7829 | 0.0 | 0.7830 | 0.7830 |
| 0.7309 | 6 | 73626 | 0.7173 | 0.25 | 289.3004 | 0.6990 | 0.6976 | 0.6989 | 0.0 | 0.6989 | 0.6989 |
| 0.6779 | 7 | 85897 | 0.7155 | 0.5 | 581.7114 | 0.7050 | 0.7058 | 0.7048 | 0.0 | 0.7048 | 0.7050 |
| 1.1055 | 8.0 | 98168 | 1.0986 | 1.0 | 1133.6875 | 0.3545 | 0.1745 | 0.3544 | 0.0 | 0.3545 | 0.3543 |
| 1.1071 | 9.0 | 110439 | 1.1043 | 1.0 | 1137.3446 | 0.3182 | 0.1609 | 0.3184 | 0.0 | 0.3182 | 0.3183 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 5