contemmcm's picture
End of training
8d5743b verified
metadata
library_name: transformers
base_model: facebook/mbart-large-50-many-to-one-mmt
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: 2baf0c7fc011b0a22c6984d13a635a31
    results: []

2baf0c7fc011b0a22c6984d13a635a31

This model is a fine-tuned version of facebook/mbart-large-50-many-to-one-mmt on the Helsinki-NLP/opus_books [en-es] dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2368
  • Data Size: 1.0
  • Epoch Runtime: 604.6076
  • Bleu: 9.1969

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Bleu
No log 0 0 5.8102 0 48.1224 0.6052
No log 1 2336 4.1491 0.0078 52.6214 1.5574
0.0627 2 4672 3.6285 0.0156 58.7082 2.6285
0.0805 3 7008 3.2199 0.0312 67.5729 3.4881
2.9332 4 9344 2.8721 0.0625 83.5089 4.6759
2.6498 5 11680 2.5635 0.125 117.1398 5.4796
2.2932 6 14016 2.2973 0.25 190.0217 6.9013
2.0659 7 16352 2.0638 0.5 329.6237 7.8104
1.8034 8.0 18688 1.9001 1.0 607.7954 8.3532
1.523 9.0 21024 1.8715 1.0 608.0761 9.7238
1.3197 10.0 23360 1.8835 1.0 608.2041 9.1238
1.1199 11.0 25696 1.9745 1.0 603.7367 8.8339
0.9434 12.0 28032 2.0606 1.0 606.0338 9.1520
0.7766 13.0 30368 2.2368 1.0 604.6076 9.1969

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.2.0
  • Tokenizers 0.22.1