40a70b3a3dd393543ce4086ee26b7d4f
This model is a fine-tuned version of google-bert/bert-large-uncased-whole-word-masking on the contemmcm/hate-speech-and-offensive-language dataset. It achieves the following results on the evaluation set:
- Loss: 0.6837
- Data Size: 1.0
- Epoch Runtime: 66.7474
- Accuracy: 0.7672
- F1 Macro: 0.2894
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.5012 | 0 | 4.5637 | 0.0601 | 0.0378 |
| No log | 1 | 619 | 0.6886 | 0.0078 | 5.4289 | 0.7672 | 0.2894 |
| No log | 2 | 1238 | 0.6868 | 0.0156 | 5.9524 | 0.7672 | 0.2894 |
| 0.017 | 3 | 1857 | 0.5873 | 0.0312 | 7.7667 | 0.7672 | 0.2894 |
| 0.017 | 4 | 2476 | 0.5275 | 0.0625 | 9.6919 | 0.8703 | 0.5580 |
| 0.4396 | 5 | 3095 | 0.5119 | 0.125 | 12.8458 | 0.7672 | 0.2894 |
| 0.0542 | 6 | 3714 | 0.4946 | 0.25 | 20.3869 | 0.7672 | 0.2894 |
| 0.4426 | 7 | 4333 | 0.4583 | 0.5 | 35.0537 | 0.8267 | 0.5311 |
| 0.6799 | 8.0 | 4952 | 0.6810 | 1.0 | 67.5315 | 0.7672 | 0.2894 |
| 0.6441 | 9.0 | 5571 | 0.6784 | 1.0 | 66.0390 | 0.7672 | 0.2894 |
| 0.6653 | 10.0 | 6190 | 0.6886 | 1.0 | 67.0616 | 0.7672 | 0.2894 |
| 0.6606 | 11.0 | 6809 | 0.6837 | 1.0 | 66.7474 | 0.7672 | 0.2894 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 5