43a129ac79cba38c5df9c5da80286047
This model is a fine-tuned version of google-bert/bert-large-uncased-whole-word-masking on the contemmcm/clickbait dataset. It achieves the following results on the evaluation set:
- Loss: 0.6675
- Data Size: 1.0
- Epoch Runtime: 69.1137
- Accuracy: 0.6130
- F1 Macro: 0.3801
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.9545 | 0 | 4.6753 | 0.3866 | 0.2788 |
| No log | 1 | 650 | 0.5951 | 0.0078 | 5.7195 | 0.7135 | 0.6384 |
| No log | 2 | 1300 | 0.2596 | 0.0156 | 6.1922 | 0.9443 | 0.9425 |
| No log | 3 | 1950 | 0.0964 | 0.0312 | 8.5413 | 0.9774 | 0.9763 |
| No log | 4 | 2600 | 0.0491 | 0.0625 | 9.9262 | 0.9867 | 0.9860 |
| 0.0083 | 5 | 3250 | 0.0436 | 0.125 | 13.7153 | 0.9896 | 0.9890 |
| 0.0512 | 6 | 3900 | 0.0692 | 0.25 | 22.5037 | 0.9890 | 0.9884 |
| 0.0449 | 7 | 4550 | 0.0526 | 0.5 | 37.2871 | 0.9867 | 0.9859 |
| 0.6855 | 8.0 | 5200 | 0.6690 | 1.0 | 69.9261 | 0.6130 | 0.3801 |
| 0.6645 | 9.0 | 5850 | 0.6675 | 1.0 | 69.1137 | 0.6130 | 0.3801 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 2