contemmcm's picture
End of training
b2e5d29 verified
metadata
library_name: transformers
license: apache-2.0
base_model: albert/albert-xlarge-v2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - rouge
model-index:
  - name: 4b7ba4f0e03f0f2b491648f64b36a49c
    results: []

4b7ba4f0e03f0f2b491648f64b36a49c

This model is a fine-tuned version of albert/albert-xlarge-v2 on the nyu-mll/glue dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0998
  • Data Size: 1.0
  • Epoch Runtime: 845.5666
  • Accuracy: 0.3273
  • F1 Macro: 0.1644
  • Rouge1: 0.3273
  • Rouge2: 0.0
  • Rougel: 0.3275
  • Rougelsum: 0.3277

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 1.1551 0 7.0618 0.3650 0.2893 0.3651 0.0 0.3648 0.3650
1.1413 1 12271 1.1101 0.0078 13.7628 0.3273 0.1644 0.3273 0.0 0.3275 0.3277
1.112 2 24542 1.1001 0.0156 20.1830 0.3545 0.1745 0.3544 0.0 0.3545 0.3543
1.1113 3 36813 1.0988 0.0312 33.4603 0.3545 0.1745 0.3544 0.0 0.3545 0.3543
1.1033 4 49084 1.0985 0.0625 59.5514 0.3545 0.1745 0.3544 0.0 0.3545 0.3543
1.1021 5 61355 1.0972 0.125 112.1817 0.3545 0.1745 0.3544 0.0 0.3545 0.3543
1.1 6 73626 1.1049 0.25 216.3272 0.3182 0.1609 0.3184 0.0 0.3182 0.3183
1.1003 7 85897 1.0987 0.5 426.1488 0.3545 0.1745 0.3544 0.0 0.3545 0.3543
1.0981 8.0 98168 1.0986 1.0 846.6244 0.3545 0.1745 0.3544 0.0 0.3545 0.3543
1.0994 9.0 110439 1.0998 1.0 845.5666 0.3273 0.1644 0.3273 0.0 0.3275 0.3277

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.1