867c2a1fc1d5a54098fc3e37d29eadc2
This model is a fine-tuned version of google-bert/bert-large-uncased-whole-word-masking on the nyu-mll/glue [wnli] dataset. It achieves the following results on the evaluation set:
- Loss: 0.6866
- Data Size: 1.0
- Epoch Runtime: 4.8255
- Accuracy: 0.5625
- F1 Macro: 0.36
- Rouge1: 0.5625
- Rouge2: 0.0
- Rougel: 0.5625
- Rougelsum: 0.5625
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.7361 | 0 | 0.6207 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| No log | 1 | 19 | 0.9211 | 0.0078 | 0.8800 | 0.4531 | 0.3547 | 0.4531 | 0.0 | 0.4531 | 0.4531 |
| No log | 2 | 38 | 0.7126 | 0.0156 | 1.3286 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| No log | 3 | 57 | 0.7391 | 0.0312 | 1.7895 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| No log | 4 | 76 | 0.7448 | 0.0625 | 2.1253 | 0.4219 | 0.4043 | 0.4219 | 0.0 | 0.4219 | 0.4219 |
| No log | 5 | 95 | 0.7897 | 0.125 | 2.6130 | 0.4219 | 0.4102 | 0.4219 | 0.0 | 0.4219 | 0.4219 |
| 0.0847 | 6 | 114 | 0.6911 | 0.25 | 3.2717 | 0.5781 | 0.3981 | 0.5781 | 0.0 | 0.5781 | 0.5781 |
| 0.0847 | 7 | 133 | 0.7109 | 0.5 | 4.2091 | 0.4375 | 0.3043 | 0.4375 | 0.0 | 0.4375 | 0.4375 |
| 0.5399 | 8.0 | 152 | 0.6920 | 1.0 | 5.5132 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| 0.5399 | 9.0 | 171 | 0.6855 | 1.0 | 4.7948 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| 0.5399 | 10.0 | 190 | 0.6901 | 1.0 | 4.8985 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| 0.701 | 11.0 | 209 | 0.7122 | 1.0 | 4.5334 | 0.4375 | 0.3043 | 0.4375 | 0.0 | 0.4375 | 0.4375 |
| 0.701 | 12.0 | 228 | 0.6873 | 1.0 | 4.8202 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
| 0.701 | 13.0 | 247 | 0.6866 | 1.0 | 4.8255 | 0.5625 | 0.36 | 0.5625 | 0.0 | 0.5625 | 0.5625 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 2