89575e469132238818a653ca714eb6a1
This model is a fine-tuned version of google-bert/bert-large-uncased-whole-word-masking on the nyu-mll/glue [cola] dataset. It achieves the following results on the evaluation set:
- Loss: 0.5635
- Data Size: 1.0
- Epoch Runtime: 27.9772
- Accuracy: 0.7803
- F1 Macro: 0.7238
- Rouge1: 0.7803
- Rouge2: 0.0
- Rougel: 0.7803
- Rougelsum: 0.7803
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 0.9917 | 0 | 1.3596 | 0.3115 | 0.2375 | 0.3105 | 0.0 | 0.3115 | 0.3115 |
| No log | 1 | 267 | 0.6856 | 0.0078 | 2.4317 | 0.5078 | 0.4710 | 0.5078 | 0.0 | 0.5059 | 0.5068 |
| No log | 2 | 534 | 0.6597 | 0.0156 | 2.2535 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| No log | 3 | 801 | 0.6131 | 0.0312 | 3.0930 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| No log | 4 | 1068 | 0.6971 | 0.0625 | 4.2254 | 0.6885 | 0.4078 | 0.6895 | 0.0 | 0.6885 | 0.6885 |
| 0.0374 | 5 | 1335 | 0.6117 | 0.125 | 6.3678 | 0.7275 | 0.5427 | 0.7275 | 0.0 | 0.7275 | 0.7275 |
| 0.5316 | 6 | 1602 | 0.5197 | 0.25 | 9.9263 | 0.7656 | 0.6468 | 0.7656 | 0.0 | 0.7656 | 0.7656 |
| 0.4435 | 7 | 1869 | 0.5456 | 0.5 | 15.3476 | 0.7773 | 0.6700 | 0.7773 | 0.0 | 0.7773 | 0.7773 |
| 0.3708 | 8.0 | 2136 | 0.5580 | 1.0 | 27.9062 | 0.8105 | 0.7531 | 0.8105 | 0.0 | 0.8105 | 0.8105 |
| 0.3485 | 9.0 | 2403 | 0.6413 | 1.0 | 27.0795 | 0.7832 | 0.6916 | 0.7832 | 0.0 | 0.7832 | 0.7832 |
| 0.3097 | 10.0 | 2670 | 0.5635 | 1.0 | 27.9772 | 0.7803 | 0.7238 | 0.7803 | 0.0 | 0.7803 | 0.7803 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.3.0
- Tokenizers 0.22.1
- Downloads last month
- 5