ae1c37d368ad2fed8b41ece4ad33780c

This model is a fine-tuned version of distilbert/distilbert-base-cased on the fancyzhx/dbpedia_14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0716
  • Data Size: 1.0
  • Epoch Runtime: 478.8393
  • Accuracy: 0.9897
  • F1 Macro: 0.9897
  • Rouge1: 0.9897
  • Rouge2: 0.0
  • Rougel: 0.9897
  • Rougelsum: 0.9897

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 2.6453 0 18.5299 0.0732 0.0159 0.0732 0.0 0.0732 0.0731
0.145 1 17500 0.0701 0.0078 23.3785 0.9856 0.9856 0.9856 0.0 0.9856 0.9856
0.049 2 35000 0.0626 0.0156 25.6617 0.9866 0.9867 0.9867 0.0 0.9866 0.9866
0.0387 3 52500 0.0654 0.0312 32.4196 0.9852 0.9852 0.9853 0.0 0.9853 0.9852
0.0563 4 70000 0.0542 0.0625 46.2025 0.9884 0.9884 0.9885 0.0 0.9884 0.9885
0.0534 5 87500 0.0503 0.125 75.2248 0.9895 0.9895 0.9896 0.0 0.9895 0.9895
0.0621 6 105000 0.0466 0.25 130.3518 0.9899 0.9899 0.9899 0.0 0.9899 0.9899
0.0003 7 122500 0.0429 0.5 236.9868 0.9905 0.9905 0.9905 0.0 0.9905 0.9905
0.0296 8.0 140000 0.0513 1.0 482.3228 0.9909 0.9909 0.9909 0.0 0.9909 0.9908
0.0122 9.0 157500 0.0642 1.0 469.8011 0.9890 0.9890 0.9890 0.0 0.9890 0.9890
0.0217 10.0 175000 0.0645 1.0 488.3664 0.9898 0.9898 0.9898 0.0 0.9898 0.9898
0.0255 11.0 192500 0.0716 1.0 478.8393 0.9897 0.9897 0.9897 0.0 0.9897 0.9897

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
12
Safetensors
Model size
65.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/ae1c37d368ad2fed8b41ece4ad33780c

Finetuned
(291)
this model