contemmcm's picture
End of training
a805067 verified
metadata
library_name: transformers
base_model: facebook/mbart-large-50-many-to-one-mmt
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: ae3f6f9a8fb3c68f9bee3e66321b3d68
    results: []

ae3f6f9a8fb3c68f9bee3e66321b3d68

This model is a fine-tuned version of facebook/mbart-large-50-many-to-one-mmt on the Helsinki-NLP/opus_books [en-fi] dataset. It achieves the following results on the evaluation set:

  • Loss: 3.8653
  • Data Size: 1.0
  • Epoch Runtime: 26.1910
  • Bleu: 4.4308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Bleu
No log 0 0 7.3951 0 2.4994 0.3194
No log 1 91 6.7682 0.0078 3.4514 0.2915
No log 2 182 6.2207 0.0156 4.5152 0.3771
No log 3 273 5.8200 0.0312 5.9047 0.4447
No log 4 364 5.3328 0.0625 7.6367 0.6466
No log 5 455 4.8644 0.125 8.9408 1.3717
No log 6 546 4.3926 0.25 11.7857 1.9901
0.469 7 637 3.9825 0.5 16.7760 2.5710
3.3066 8.0 728 3.5313 1.0 28.6812 3.2830
2.5231 9.0 819 3.3818 1.0 26.4448 3.4047
1.8958 10.0 910 3.4478 1.0 27.1888 3.7493
1.4316 11.0 1001 3.5424 1.0 27.6848 4.6297
0.987 12.0 1092 3.7127 1.0 26.6558 5.0275
0.695 13.0 1183 3.8653 1.0 26.1910 4.4308

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.2.0
  • Tokenizers 0.22.1