dfdd7f251470b0f68d5b949900ec54eb

This model is a fine-tuned version of albert/albert-xlarge-v2 on the google/boolq dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6856
  • Data Size: 0.25
  • Epoch Runtime: 20.5304
  • Accuracy: 0.6213
  • F1 Macro: 0.3832
  • Rouge1: 0.6213
  • Rouge2: 0.0
  • Rougel: 0.6207
  • Rougelsum: 0.6210

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 0.8292 0 6.7788 0.3787 0.2747 0.3787 0.0 0.3793 0.3790
No log 1 294 0.7233 0.0078 7.4412 0.3787 0.2747 0.3787 0.0 0.3793 0.3790
No log 2 588 0.6642 0.0156 7.8401 0.6213 0.3832 0.6213 0.0 0.6207 0.6210
No log 3 882 0.6795 0.0312 8.7454 0.6213 0.3832 0.6213 0.0 0.6207 0.6210
0.0279 4 1176 0.6664 0.0625 10.4650 0.6213 0.3832 0.6213 0.0 0.6207 0.6210
0.0559 5 1470 0.6668 0.125 13.7235 0.6213 0.3832 0.6213 0.0 0.6207 0.6210
0.0978 6 1764 0.6856 0.25 20.5304 0.6213 0.3832 0.6213 0.0 0.6207 0.6210

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
3
Safetensors
Model size
58.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/dfdd7f251470b0f68d5b949900ec54eb

Finetuned
(23)
this model