SentenceTransformer based on intfloat/e5-small-v2
This is a sentence-transformers model finetuned from intfloat/e5-small-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/e5-small-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Evaluate predicted target values for X relative to y_true',
' def __call__(self, estimator, X, y_true, sample_weight=None, **kwargs):\n """Evaluate predicted target values for X relative to y_true.\n\n Parameters\n ----------\n estimator : object\n Trained estimator to use for scoring. Must have a predict_proba\n method; the output of that is used to compute the score.\n\n X : {array-like, sparse matrix}\n Test data that will be fed to estimator.predict.\n\n y_true : array-like\n Gold standard target values for X.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights.\n\n **kwargs : dict\n Other parameters passed to the scorer. Refer to\n :func:`set_score_request` for more details.\n\n Only available if `enable_metadata_routing=True`. See the\n :ref:`User Guide <metadata_routing>`.\n\n .. versionadded:: 1.3\n\n Returns\n -------\n score : float\n Score function applied to prediction of estimator on X.\n """\n # TODO (1.8): remove in 1.8 (scoring="max_error" has been deprecated in 1.6)\n if self._deprecation_msg is not None:\n warnings.warn(\n self._deprecation_msg, category=DeprecationWarning, stacklevel=2\n )\n\n _raise_for_params(kwargs, self, None)\n\n _kwargs = copy.deepcopy(kwargs)\n if sample_weight is not None:\n _kwargs["sample_weight"] = sample_weight\n\n return self._score(partial(_cached_call, None), estimator, X, y_true, **_kwargs)',
'def test_hdbscan_usable_inputs(X, kwargs):\n """\n Tests that HDBSCAN works correctly for array-likes and precomputed inputs\n with non-finite points.\n """\n HDBSCAN(min_samples=1, **kwargs).fit(X)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 13,734 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 8.78 tokens
- max: 63 tokens
- min: 9 tokens
- mean: 233.15 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 Get the estimatordef get_estimator(self):
"""Get the estimator.
Returns
-------
estimator : estimator object
The cloned estimator object.
"""
# TODO(1.8): remove and only keep clone(self.estimator)
if self.estimator is None and self.base_estimator != "deprecated":
estimator_ = clone(self.base_estimator)
warn(
(
"base_estimatorhas been deprecated in 1.6 and will be removed"
" in 1.8. Please useestimatorinstead."
),
FutureWarning,
)
# TODO(1.8) remove
elif self.estimator is None and self.base_estimator == "deprecated":
raise ValueError(
"You must pass an estimator to SelfTrainingClassifier. Useestimator."
)
elif self.estimator is not None and self.base_estimator != "deprecated":
raise ValueError(
"You must p...Gaussian Naive Bayes (GaussianNB)class GaussianNB(BaseNB):
"""
Gaussian Naive Bayes (GaussianNB).
Can perform online updates to model parameters via :meth:partial_fit.
For details on algorithm used to update feature means and variance online,
seeStanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque<br> <http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf>.
Read more in the :ref:User Guide <gaussian_naive_bayes>.
Parameters
----------
priors : array-like of shape (n_classes,), default=None
Prior probabilities of the classes. If specified, the priors are not
adjusted according to the data.
var_smoothing : float, default=1e-9
Portion of the largest variance of all features that is added to
variances for calculation stability.
.. versionadded:: 0.20
Attributes
----------
class_count_ : ndarray of shape (n_classes,)
number of training samples observed in each class.
class_pri...test rfe cv n jobsdef test_rfe_cv_n_jobs(global_random_seed):
generator = check_random_state(global_random_seed)
iris = load_iris()
X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
y = iris.target
rfecv = RFECV(estimator=SVC(kernel="linear"))
rfecv.fit(X, y)
rfecv_ranking = rfecv.ranking_
rfecv_cv_results_ = rfecv.cv_results_
rfecv.set_params(n_jobs=2)
rfecv.fit(X, y)
assert_array_almost_equal(rfecv.ranking_, rfecv_ranking)
assert rfecv_cv_results_.keys() == rfecv.cv_results_.keys()
for key in rfecv_cv_results_.keys():
assert rfecv_cv_results_[key] == pytest.approx(rfecv.cv_results_[key]) - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.5821 | 500 | 0.6129 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Model tree for csolaina/lora_r4_a16_d5_bs16_ep1
Base model
intfloat/e5-small-v2