swin-base-patch4-window12-384-finetuned-humid-classes-2
This model is a fine-tuned version of microsoft/swin-base-patch4-window12-384 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1072
- Accuracy: 0.9839
- F1 Macro: 0.9726
- Precision Macro: 0.99
- Recall Macro: 0.96
- Precision Dry: 1.0
- Recall Dry: 1.0
- F1 Dry: 1.0
- Precision Firm: 1.0
- Recall Firm: 1.0
- F1 Firm: 1.0
- Precision Humid: 1.0
- Recall Humid: 0.8
- F1 Humid: 0.8889
- Precision Lump: 0.95
- Recall Lump: 1.0
- F1 Lump: 0.9744
- Precision Rockies: 1.0
- Recall Rockies: 1.0
- F1 Rockies: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | Precision Macro | Recall Macro | Precision Dry | Recall Dry | F1 Dry | Precision Firm | Recall Firm | F1 Firm | Precision Humid | Recall Humid | F1 Humid | Precision Lump | Recall Lump | F1 Lump | Precision Rockies | Recall Rockies | F1 Rockies |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1.4761 | 1.0 | 10 | 1.4416 | 0.3548 | 0.2 | 0.1690 | 0.2654 | 0.0 | 0.0 | 0.0 | 0.5625 | 0.6429 | 0.6 | 0.0 | 0.0 | 0.0 | 0.2826 | 0.6842 | 0.4 | 0.0 | 0.0 | 0.0 |
| 1.0624 | 2.0 | 20 | 0.8707 | 0.6613 | 0.5376 | 0.6525 | 0.5770 | 1.0 | 0.9 | 0.9474 | 0.7778 | 1.0 | 0.875 | 0.0 | 0.0 | 0.0 | 0.4848 | 0.8421 | 0.6154 | 1.0 | 0.1429 | 0.25 |
| 0.4852 | 3.0 | 30 | 0.3910 | 0.8548 | 0.7861 | 0.8978 | 0.7874 | 1.0 | 1.0 | 1.0 | 0.7778 | 1.0 | 0.875 | 1.0 | 0.2 | 0.3333 | 0.7778 | 0.7368 | 0.7568 | 0.9333 | 1.0 | 0.9655 |
| 0.3417 | 4.0 | 40 | 0.4915 | 0.8548 | 0.7875 | 0.9167 | 0.7761 | 1.0 | 1.0 | 1.0 | 0.875 | 1.0 | 0.9333 | 1.0 | 0.2 | 0.3333 | 0.7083 | 0.8947 | 0.7907 | 1.0 | 0.7857 | 0.88 |
| 0.175 | 5.0 | 50 | 0.1700 | 0.9355 | 0.9498 | 0.95 | 0.9579 | 1.0 | 1.0 | 1.0 | 0.875 | 1.0 | 0.9333 | 1.0 | 1.0 | 1.0 | 1.0 | 0.7895 | 0.8824 | 0.875 | 1.0 | 0.9333 |
| 0.161 | 6.0 | 60 | 0.1708 | 0.9194 | 0.9242 | 0.9431 | 0.9179 | 1.0 | 1.0 | 1.0 | 0.7778 | 1.0 | 0.875 | 1.0 | 0.8 | 0.8889 | 0.9375 | 0.7895 | 0.8571 | 1.0 | 1.0 | 1.0 |
| 0.2785 | 7.0 | 70 | 0.1375 | 0.9355 | 0.9381 | 0.9283 | 0.9579 | 1.0 | 1.0 | 1.0 | 0.875 | 1.0 | 0.9333 | 0.8333 | 1.0 | 0.9091 | 1.0 | 0.7895 | 0.8824 | 0.9333 | 1.0 | 0.9655 |
| 0.1098 | 8.0 | 80 | 0.1949 | 0.9194 | 0.9026 | 0.8980 | 0.9179 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 | 0.7273 | 1.0 | 0.7895 | 0.8824 | 0.8235 | 1.0 | 0.9032 |
| 0.1128 | 9.0 | 90 | 0.0844 | 0.9355 | 0.9147 | 0.9133 | 0.9209 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6667 | 0.8 | 0.7273 | 0.9 | 0.9474 | 0.9231 | 1.0 | 0.8571 | 0.9231 |
| 0.0714 | 10.0 | 100 | 0.1127 | 0.9677 | 0.9604 | 0.9810 | 0.9457 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8889 | 0.9048 | 1.0 | 0.95 | 1.0 | 0.9286 | 0.9630 |
| 0.0585 | 11.0 | 110 | 0.2509 | 0.9677 | 0.9400 | 0.9810 | 0.9200 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.6 | 0.75 | 0.9048 | 1.0 | 0.95 | 1.0 | 1.0 | 1.0 |
| 0.0565 | 12.0 | 120 | 0.0925 | 0.9677 | 0.9613 | 0.9567 | 0.9714 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8333 | 1.0 | 0.9091 | 0.95 | 1.0 | 0.9744 | 1.0 | 0.8571 | 0.9231 |
| 0.0192 | 13.0 | 130 | 0.1702 | 0.9677 | 0.9552 | 0.9767 | 0.9400 | 1.0 | 0.9 | 0.9474 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8889 | 0.95 | 1.0 | 0.9744 | 0.9333 | 1.0 | 0.9655 |
| 0.0738 | 14.0 | 140 | 0.3350 | 0.9194 | 0.9008 | 0.9 | 0.9398 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5 | 1.0 | 0.6667 | 1.0 | 0.8421 | 0.9143 | 1.0 | 0.8571 | 0.9231 |
| 0.0447 | 15.0 | 150 | 0.2240 | 0.9355 | 0.9183 | 0.9111 | 0.9541 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.5556 | 1.0 | 0.7143 | 1.0 | 0.8421 | 0.9143 | 1.0 | 0.9286 | 0.9630 |
| 0.0189 | 16.0 | 160 | 0.1072 | 0.9839 | 0.9726 | 0.99 | 0.96 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8889 | 0.95 | 1.0 | 0.9744 | 1.0 | 1.0 | 1.0 |
| 0.0112 | 17.0 | 170 | 0.9942 | 0.8871 | 0.8116 | 0.9462 | 0.7971 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.2 | 0.3333 | 0.7308 | 1.0 | 0.8444 | 1.0 | 0.7857 | 0.88 |
| 0.0921 | 18.0 | 180 | 0.2717 | 0.9516 | 0.9478 | 0.9727 | 0.9314 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8889 | 0.8636 | 1.0 | 0.9268 | 1.0 | 0.8571 | 0.9231 |
| 0.0042 | 19.0 | 190 | 0.0812 | 0.9677 | 0.9495 | 0.9495 | 0.9495 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8 | 0.8 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0016 | 20.0 | 200 | 0.1383 | 0.9839 | 0.9726 | 0.99 | 0.96 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8889 | 0.95 | 1.0 | 0.9744 | 1.0 | 1.0 | 1.0 |
| 0.0103 | 21.0 | 210 | 0.2240 | 0.9516 | 0.9277 | 0.9667 | 0.9095 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.6 | 0.75 | 0.9 | 0.9474 | 0.9231 | 1.0 | 1.0 | 1.0 |
| 0.0 | 22.0 | 220 | 0.1629 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0 | 23.0 | 230 | 0.1367 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 24.0 | 240 | 0.1385 | 0.9516 | 0.9352 | 0.9361 | 0.9352 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 0.8 | 0.8 | 0.8 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 0.9286 | 0.9630 |
| 0.0003 | 25.0 | 250 | 0.1683 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0016 | 26.0 | 260 | 0.1597 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 27.0 | 270 | 0.2348 | 0.9516 | 0.9346 | 0.9410 | 0.9314 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.8 | 0.8 | 0.8 | 0.9048 | 1.0 | 0.95 | 1.0 | 0.8571 | 0.9231 |
| 0.0001 | 28.0 | 280 | 0.0697 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0 | 29.0 | 290 | 0.0645 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0003 | 30.0 | 300 | 0.3096 | 0.9516 | 0.9277 | 0.9667 | 0.9095 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.6 | 0.75 | 0.9 | 0.9474 | 0.9231 | 1.0 | 1.0 | 1.0 |
| 0.0003 | 31.0 | 310 | 0.2795 | 0.9516 | 0.9277 | 0.9667 | 0.9095 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.6 | 0.75 | 0.9 | 0.9474 | 0.9231 | 1.0 | 1.0 | 1.0 |
| 0.0 | 32.0 | 320 | 0.1708 | 0.9677 | 0.9638 | 0.9533 | 0.9789 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 0.8333 | 1.0 | 0.9091 | 1.0 | 0.8947 | 0.9444 | 1.0 | 1.0 | 1.0 |
| 0.0002 | 33.0 | 330 | 0.1291 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0 | 34.0 | 340 | 0.2383 | 0.9516 | 0.9277 | 0.9667 | 0.9095 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.6 | 0.75 | 0.9 | 0.9474 | 0.9231 | 1.0 | 1.0 | 1.0 |
| 0.0 | 35.0 | 350 | 0.2886 | 0.9516 | 0.9277 | 0.9667 | 0.9095 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.6 | 0.75 | 0.9 | 0.9474 | 0.9231 | 1.0 | 1.0 | 1.0 |
| 0.0006 | 36.0 | 360 | 0.0748 | 0.9839 | 0.9877 | 0.9867 | 0.9895 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9474 | 0.9730 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 37.0 | 370 | 0.1293 | 0.9677 | 0.9638 | 0.9533 | 0.9789 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 0.8333 | 1.0 | 0.9091 | 1.0 | 0.8947 | 0.9444 | 1.0 | 1.0 | 1.0 |
| 0.0 | 38.0 | 380 | 0.0945 | 0.9677 | 0.9638 | 0.9533 | 0.9789 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 0.8333 | 1.0 | 0.9091 | 1.0 | 0.8947 | 0.9444 | 1.0 | 1.0 | 1.0 |
| 0.0 | 39.0 | 390 | 0.0562 | 0.9677 | 0.9638 | 0.9533 | 0.9789 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 0.8333 | 1.0 | 0.9091 | 1.0 | 0.8947 | 0.9444 | 1.0 | 1.0 | 1.0 |
| 0.0 | 40.0 | 400 | 0.0382 | 0.9839 | 0.9877 | 0.9867 | 0.9895 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9474 | 0.9730 | 1.0 | 1.0 | 1.0 |
| 0.0 | 41.0 | 410 | 0.0368 | 0.9839 | 0.9877 | 0.9867 | 0.9895 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9474 | 0.9730 | 1.0 | 1.0 | 1.0 |
| 0.0 | 42.0 | 420 | 0.0566 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0 | 43.0 | 430 | 0.0815 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0 | 44.0 | 440 | 0.0899 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0 | 45.0 | 450 | 0.0921 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0 | 46.0 | 460 | 0.0914 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0 | 47.0 | 470 | 0.0896 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 48.0 | 480 | 0.0890 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0 | 49.0 | 490 | 0.0903 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
| 0.0001 | 50.0 | 500 | 0.0914 | 0.9677 | 0.9604 | 0.9761 | 0.9495 | 1.0 | 1.0 | 1.0 | 0.9333 | 1.0 | 0.9655 | 1.0 | 0.8 | 0.8889 | 0.9474 | 0.9474 | 0.9474 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 6
Model tree for dacunaq/swin-base-patch4-window12-384-finetuned-humid-classes-2
Base model
microsoft/swin-base-patch4-window12-384Evaluation results
- Accuracy on imagefoldervalidation set self-reported0.984