swin-base-patch4-window12-384-finetuned-humid-classes-2

This model is a fine-tuned version of microsoft/swin-base-patch4-window12-384 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1072
  • Accuracy: 0.9839
  • F1 Macro: 0.9726
  • Precision Macro: 0.99
  • Recall Macro: 0.96
  • Precision Dry: 1.0
  • Recall Dry: 1.0
  • F1 Dry: 1.0
  • Precision Firm: 1.0
  • Recall Firm: 1.0
  • F1 Firm: 1.0
  • Precision Humid: 1.0
  • Recall Humid: 0.8
  • F1 Humid: 0.8889
  • Precision Lump: 0.95
  • Recall Lump: 1.0
  • F1 Lump: 0.9744
  • Precision Rockies: 1.0
  • Recall Rockies: 1.0
  • F1 Rockies: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro Precision Macro Recall Macro Precision Dry Recall Dry F1 Dry Precision Firm Recall Firm F1 Firm Precision Humid Recall Humid F1 Humid Precision Lump Recall Lump F1 Lump Precision Rockies Recall Rockies F1 Rockies
1.4761 1.0 10 1.4416 0.3548 0.2 0.1690 0.2654 0.0 0.0 0.0 0.5625 0.6429 0.6 0.0 0.0 0.0 0.2826 0.6842 0.4 0.0 0.0 0.0
1.0624 2.0 20 0.8707 0.6613 0.5376 0.6525 0.5770 1.0 0.9 0.9474 0.7778 1.0 0.875 0.0 0.0 0.0 0.4848 0.8421 0.6154 1.0 0.1429 0.25
0.4852 3.0 30 0.3910 0.8548 0.7861 0.8978 0.7874 1.0 1.0 1.0 0.7778 1.0 0.875 1.0 0.2 0.3333 0.7778 0.7368 0.7568 0.9333 1.0 0.9655
0.3417 4.0 40 0.4915 0.8548 0.7875 0.9167 0.7761 1.0 1.0 1.0 0.875 1.0 0.9333 1.0 0.2 0.3333 0.7083 0.8947 0.7907 1.0 0.7857 0.88
0.175 5.0 50 0.1700 0.9355 0.9498 0.95 0.9579 1.0 1.0 1.0 0.875 1.0 0.9333 1.0 1.0 1.0 1.0 0.7895 0.8824 0.875 1.0 0.9333
0.161 6.0 60 0.1708 0.9194 0.9242 0.9431 0.9179 1.0 1.0 1.0 0.7778 1.0 0.875 1.0 0.8 0.8889 0.9375 0.7895 0.8571 1.0 1.0 1.0
0.2785 7.0 70 0.1375 0.9355 0.9381 0.9283 0.9579 1.0 1.0 1.0 0.875 1.0 0.9333 0.8333 1.0 0.9091 1.0 0.7895 0.8824 0.9333 1.0 0.9655
0.1098 8.0 80 0.1949 0.9194 0.9026 0.8980 0.9179 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8 0.7273 1.0 0.7895 0.8824 0.8235 1.0 0.9032
0.1128 9.0 90 0.0844 0.9355 0.9147 0.9133 0.9209 1.0 1.0 1.0 1.0 1.0 1.0 0.6667 0.8 0.7273 0.9 0.9474 0.9231 1.0 0.8571 0.9231
0.0714 10.0 100 0.1127 0.9677 0.9604 0.9810 0.9457 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8889 0.9048 1.0 0.95 1.0 0.9286 0.9630
0.0585 11.0 110 0.2509 0.9677 0.9400 0.9810 0.9200 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.75 0.9048 1.0 0.95 1.0 1.0 1.0
0.0565 12.0 120 0.0925 0.9677 0.9613 0.9567 0.9714 1.0 1.0 1.0 1.0 1.0 1.0 0.8333 1.0 0.9091 0.95 1.0 0.9744 1.0 0.8571 0.9231
0.0192 13.0 130 0.1702 0.9677 0.9552 0.9767 0.9400 1.0 0.9 0.9474 1.0 1.0 1.0 1.0 0.8 0.8889 0.95 1.0 0.9744 0.9333 1.0 0.9655
0.0738 14.0 140 0.3350 0.9194 0.9008 0.9 0.9398 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 0.6667 1.0 0.8421 0.9143 1.0 0.8571 0.9231
0.0447 15.0 150 0.2240 0.9355 0.9183 0.9111 0.9541 1.0 1.0 1.0 1.0 1.0 1.0 0.5556 1.0 0.7143 1.0 0.8421 0.9143 1.0 0.9286 0.9630
0.0189 16.0 160 0.1072 0.9839 0.9726 0.99 0.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8889 0.95 1.0 0.9744 1.0 1.0 1.0
0.0112 17.0 170 0.9942 0.8871 0.8116 0.9462 0.7971 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2 0.3333 0.7308 1.0 0.8444 1.0 0.7857 0.88
0.0921 18.0 180 0.2717 0.9516 0.9478 0.9727 0.9314 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8889 0.8636 1.0 0.9268 1.0 0.8571 0.9231
0.0042 19.0 190 0.0812 0.9677 0.9495 0.9495 0.9495 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0016 20.0 200 0.1383 0.9839 0.9726 0.99 0.96 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8889 0.95 1.0 0.9744 1.0 1.0 1.0
0.0103 21.0 210 0.2240 0.9516 0.9277 0.9667 0.9095 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.6 0.75 0.9 0.9474 0.9231 1.0 1.0 1.0
0.0 22.0 220 0.1629 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0 23.0 230 0.1367 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0001 24.0 240 0.1385 0.9516 0.9352 0.9361 0.9352 1.0 1.0 1.0 0.9333 1.0 0.9655 0.8 0.8 0.8 0.9474 0.9474 0.9474 1.0 0.9286 0.9630
0.0003 25.0 250 0.1683 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0016 26.0 260 0.1597 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0001 27.0 270 0.2348 0.9516 0.9346 0.9410 0.9314 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.9048 1.0 0.95 1.0 0.8571 0.9231
0.0001 28.0 280 0.0697 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0 29.0 290 0.0645 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0003 30.0 300 0.3096 0.9516 0.9277 0.9667 0.9095 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.6 0.75 0.9 0.9474 0.9231 1.0 1.0 1.0
0.0003 31.0 310 0.2795 0.9516 0.9277 0.9667 0.9095 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.6 0.75 0.9 0.9474 0.9231 1.0 1.0 1.0
0.0 32.0 320 0.1708 0.9677 0.9638 0.9533 0.9789 1.0 1.0 1.0 0.9333 1.0 0.9655 0.8333 1.0 0.9091 1.0 0.8947 0.9444 1.0 1.0 1.0
0.0002 33.0 330 0.1291 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0 34.0 340 0.2383 0.9516 0.9277 0.9667 0.9095 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.6 0.75 0.9 0.9474 0.9231 1.0 1.0 1.0
0.0 35.0 350 0.2886 0.9516 0.9277 0.9667 0.9095 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.6 0.75 0.9 0.9474 0.9231 1.0 1.0 1.0
0.0006 36.0 360 0.0748 0.9839 0.9877 0.9867 0.9895 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 1.0 1.0 1.0 0.9474 0.9730 1.0 1.0 1.0
0.0001 37.0 370 0.1293 0.9677 0.9638 0.9533 0.9789 1.0 1.0 1.0 0.9333 1.0 0.9655 0.8333 1.0 0.9091 1.0 0.8947 0.9444 1.0 1.0 1.0
0.0 38.0 380 0.0945 0.9677 0.9638 0.9533 0.9789 1.0 1.0 1.0 0.9333 1.0 0.9655 0.8333 1.0 0.9091 1.0 0.8947 0.9444 1.0 1.0 1.0
0.0 39.0 390 0.0562 0.9677 0.9638 0.9533 0.9789 1.0 1.0 1.0 0.9333 1.0 0.9655 0.8333 1.0 0.9091 1.0 0.8947 0.9444 1.0 1.0 1.0
0.0 40.0 400 0.0382 0.9839 0.9877 0.9867 0.9895 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 1.0 1.0 1.0 0.9474 0.9730 1.0 1.0 1.0
0.0 41.0 410 0.0368 0.9839 0.9877 0.9867 0.9895 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 1.0 1.0 1.0 0.9474 0.9730 1.0 1.0 1.0
0.0 42.0 420 0.0566 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0 43.0 430 0.0815 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0 44.0 440 0.0899 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0 45.0 450 0.0921 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0 46.0 460 0.0914 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0 47.0 470 0.0896 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0001 48.0 480 0.0890 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0 49.0 490 0.0903 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0
0.0001 50.0 500 0.0914 0.9677 0.9604 0.9761 0.9495 1.0 1.0 1.0 0.9333 1.0 0.9655 1.0 0.8 0.8889 0.9474 0.9474 0.9474 1.0 1.0 1.0

Framework versions

  • Transformers 4.56.1
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
6
Safetensors
Model size
87.4M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for dacunaq/swin-base-patch4-window12-384-finetuned-humid-classes-2

Finetuned
(4)
this model

Evaluation results