Datasets:
image
imagewidth (px) 80
564
| label
class label 105
classes |
|---|---|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
|
0pins_Adriana Lima
|
πΈ Face Recognition Dataset (105 Classes)
A curated and cleaned celebrity face dataset used for training and evaluating:
- Face Recognition Model (CNN Embeddings + SVM)
- Face Recognition Demo App (Streamlit)
This dataset contains 105 identities and ~18,000 manually organized images, formatted for deep-learningβbased face recognition pipelines.
π Dataset Structure
The dataset follows a simple folder-based classification format:
face_recognition_dataset/
βββ person_1/
βββ person_2/
βββ ...
βββ person_105/
Each folder contains multiple face images for that identity.
This structure is compatible with most ML frameworks and embedding-based models.
π¦ Contents
- 18k+ images
- 105 celebrity identities
- Cleaned, resized, organized folder structure
- Suitable for:
- Embedding extraction (FaceNet, ArcFace, etc.)
- Classification (SVM, kNN, cosine similarity)
- Clustering
- Evaluation & benchmarking
π§ Model Trained on This Dataset
The official model trained on this dataset is available at:
Model Repository: AI-Solutions-KK/face_recognition
Contains:
svc_model.pklclasses.npycentroids.npy- Metadata + reproducible training pipeline
The model achieves ~99% accuracy on this dataset.
π Demo App Using This Dataset
A complete interactive app using this dataset is available at:
App Repository: AI-Solutions-KK/face_recognition_model_demo_app
Features:
- Image selection browser
- Real-time prediction
- Training report
- Prediction report
- Confusion matrix display
The app automatically downloads this dataset inside the Space using snapshot_download().
π§© Recommended Usage
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="AI-Solutions-KK/face_recognition_dataset",
repo_type="dataset",
local_dir="my_dataset",
local_dir_use_symlinks=False,
)
After download, the dataset will be available at:
my_dataset/face_recognition_dataset/<class>/<image>.jpg
π§ Suitable For
- Face recognition research
- Deep metric learning
- Identity classification
- Transfer learning experiments
- Benchmarking models like:
- FaceNet
- ArcFace
- MobileFaceNet
- InsightFace
π€ Author
Developed and organized by Karan (AI-Solutions-KK)
Please β the repo if you find it useful.
- Downloads last month
- 127