Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
80
564
label
class label
105 classes
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
0pins_Adriana Lima
End of preview. Expand in Data Studio

πŸ“Έ Face Recognition Dataset (105 Classes)

A curated and cleaned celebrity face dataset used for training and evaluating:

  • Face Recognition Model (CNN Embeddings + SVM)
  • Face Recognition Demo App (Streamlit)

This dataset contains 105 identities and ~18,000 manually organized images, formatted for deep-learning–based face recognition pipelines.


πŸ“ Dataset Structure

The dataset follows a simple folder-based classification format:

face_recognition_dataset/
  β”œβ”€β”€ person_1/
  β”œβ”€β”€ person_2/
  β”œβ”€β”€ ...
  └── person_105/

Each folder contains multiple face images for that identity.
This structure is compatible with most ML frameworks and embedding-based models.


πŸ“¦ Contents

  • 18k+ images
  • 105 celebrity identities
  • Cleaned, resized, organized folder structure
  • Suitable for:
    • Embedding extraction (FaceNet, ArcFace, etc.)
    • Classification (SVM, kNN, cosine similarity)
    • Clustering
    • Evaluation & benchmarking

🧠 Model Trained on This Dataset

The official model trained on this dataset is available at:

Model Repository: AI-Solutions-KK/face_recognition
Contains:

  • svc_model.pkl
  • classes.npy
  • centroids.npy
  • Metadata + reproducible training pipeline

The model achieves ~99% accuracy on this dataset.


πŸš€ Demo App Using This Dataset

A complete interactive app using this dataset is available at:

App Repository: AI-Solutions-KK/face_recognition_model_demo_app

Features:

  • Image selection browser
  • Real-time prediction
  • Training report
  • Prediction report
  • Confusion matrix display

The app automatically downloads this dataset inside the Space using snapshot_download().


🧩 Recommended Usage

from huggingface_hub import snapshot_download

snapshot_download(
    repo_id="AI-Solutions-KK/face_recognition_dataset",
    repo_type="dataset",
    local_dir="my_dataset",
    local_dir_use_symlinks=False,
)

After download, the dataset will be available at:

my_dataset/face_recognition_dataset/<class>/<image>.jpg

πŸ”§ Suitable For

  • Face recognition research
  • Deep metric learning
  • Identity classification
  • Transfer learning experiments
  • Benchmarking models like:
    • FaceNet
    • ArcFace
    • MobileFaceNet
    • InsightFace

πŸ‘€ Author

Developed and organized by Karan (AI-Solutions-KK)
Please ⭐ the repo if you find it useful.

Downloads last month
127

Space using AI-Solutions-KK/face_recognition_dataset 1