EconomicIndex_release_2025_03_27

#8
Files changed (41) hide show
  1. .gitattributes +0 -3
  2. .gitignore +0 -1
  3. README.md +6 -42
  4. release_2025_09_15/README.md +0 -72
  5. release_2025_09_15/code/aei_analysis_functions_1p_api.py +0 -2339
  6. release_2025_09_15/code/aei_analysis_functions_claude_ai.py +0 -2926
  7. release_2025_09_15/code/aei_report_v3_analysis_1p_api.ipynb +0 -315
  8. release_2025_09_15/code/aei_report_v3_analysis_claude_ai.ipynb +0 -868
  9. release_2025_09_15/code/aei_report_v3_change_over_time_claude_ai.py +0 -564
  10. release_2025_09_15/code/aei_report_v3_preprocessing_claude_ai.ipynb +0 -1840
  11. release_2025_09_15/code/preprocess_gdp.py +0 -364
  12. release_2025_09_15/code/preprocess_iso_codes.py +0 -111
  13. release_2025_09_15/code/preprocess_onet.py +0 -179
  14. release_2025_09_15/code/preprocess_population.py +0 -407
  15. release_2025_09_15/data/input/BTOS_National.xlsx +0 -3
  16. release_2025_09_15/data/input/Population by single age _20250903072924.csv +0 -3
  17. release_2025_09_15/data/input/automation_vs_augmentation_v1.csv +0 -3
  18. release_2025_09_15/data/input/automation_vs_augmentation_v2.csv +0 -3
  19. release_2025_09_15/data/input/bea_us_state_gdp_2024.csv +0 -3
  20. release_2025_09_15/data/input/census_state_codes.txt +0 -58
  21. release_2025_09_15/data/input/geonames_countryInfo.txt +0 -302
  22. release_2025_09_15/data/input/imf_gdp_raw_2024.json +0 -3
  23. release_2025_09_15/data/input/onet_task_statements_raw.xlsx +0 -3
  24. release_2025_09_15/data/input/sc-est2024-agesex-civ.csv +0 -3
  25. release_2025_09_15/data/input/soc_structure_raw.csv +0 -3
  26. release_2025_09_15/data/input/task_pct_v1.csv +0 -3
  27. release_2025_09_15/data/input/task_pct_v2.csv +0 -3
  28. release_2025_09_15/data/input/working_age_pop_2024_country_raw.csv +0 -3
  29. release_2025_09_15/data/intermediate/aei_raw_1p_api_2025-08-04_to_2025-08-11.csv +0 -3
  30. release_2025_09_15/data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv +0 -3
  31. release_2025_09_15/data/intermediate/gdp_2024_country.csv +0 -3
  32. release_2025_09_15/data/intermediate/gdp_2024_us_state.csv +0 -3
  33. release_2025_09_15/data/intermediate/iso_country_codes.csv +0 -3
  34. release_2025_09_15/data/intermediate/onet_task_statements.csv +0 -3
  35. release_2025_09_15/data/intermediate/soc_structure.csv +0 -3
  36. release_2025_09_15/data/intermediate/working_age_pop_2024_country.csv +0 -3
  37. release_2025_09_15/data/intermediate/working_age_pop_2024_us_state.csv +0 -3
  38. release_2025_09_15/data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv +0 -3
  39. release_2025_09_15/data/output/request_hierarchy_tree_1p_api.json +0 -3
  40. release_2025_09_15/data/output/request_hierarchy_tree_claude_ai.json +0 -3
  41. release_2025_09_15/data_documentation.md +0 -373
.gitattributes CHANGED
@@ -57,6 +57,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
- release_2025_09_15/**/*.csv filter=lfs diff=lfs merge=lfs -text
61
- release_2025_09_15/**/*.xlsx filter=lfs diff=lfs merge=lfs -text
62
- release_2025_09_15/**/*.json filter=lfs diff=lfs merge=lfs -text
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
 
.gitignore DELETED
@@ -1 +0,0 @@
1
- .DS_Store
 
 
README.md CHANGED
@@ -9,14 +9,10 @@ tags:
9
  viewer: true
10
  license: mit
11
  configs:
12
- - config_name: release_2025_09_15
13
  data_files:
14
- - split: raw_claude_ai
15
- path: "release_2025_09_15/data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv"
16
- - split: raw_1p_api
17
- path: "release_2025_09_15/data/intermediate/aei_raw_1p_api_2025-08-04_to_2025-08-11.csv"
18
- - split: enriched_claude_ai
19
- path: "release_2025_09_15/data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv"
20
  ---
21
 
22
  # The Anthropic Economic Index
@@ -29,17 +25,13 @@ The Anthropic Economic Index provides insights into how AI is being incorporated
29
 
30
  This repository contains multiple data releases, each with its own documentation:
31
 
32
- - **[2025-09-15 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_09_15)**: Updated analysis with geographic and first-party API data using Sonnet 4
33
- - **[2025-03-27 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_03_27)**: Updated analysis with Claude 3.7 Sonnet data and cluster-level insights
34
  - **[2025-02-10 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_02_10)**: Initial release with O*NET task mappings, automation vs. augmentation data, and more
35
-
36
 
37
  ## Resources
38
 
39
  - [Index Home Page](https://www.anthropic.com/economic-index)
40
- - [3rd report](https://www.anthropic.com/research/anthropic-economic-index-september-2025-report)
41
- - [2nd report](https://www.anthropic.com/news/anthropic-economic-index-insights-from-claude-sonnet-3-7)
42
- - [1st report](https://www.anthropic.com/news/the-anthropic-economic-index)
43
 
44
 
45
  ## License
@@ -48,32 +40,4 @@ Data released under CC-BY, code released under MIT License
48
 
49
  ## Contact
50
 
51
- For inquiries, contact econ-research@anthropic.com.
52
-
53
- ## Citation
54
-
55
- ### Third release
56
-
57
- ```
58
- @online{appelmccrorytamkin2025geoapi,
59
- author = {Ruth Appel and Peter McCrory and Alex Tamkin and Michael Stern and Miles McCain and Tyler Neylon],
60
- title = {Anthropic Economic Index Report: Uneven Geographic and Enterprise AI Adoption},
61
- date = {2025-09-15},
62
-   year = {2025},
63
- url = {www.anthropic.com/research/anthropic-economic-index-september-2025-report},
64
- }
65
- ```
66
-
67
- ### Second release
68
-
69
- ```
70
- @misc{handa2025economictasksperformedai,
71
- title={Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations},
72
- author={Kunal Handa and Alex Tamkin and Miles McCain and Saffron Huang and Esin Durmus and Sarah Heck and Jared Mueller and Jerry Hong and Stuart Ritchie and Tim Belonax and Kevin K. Troy and Dario Amodei and Jared Kaplan and Jack Clark and Deep Ganguli},
73
- year={2025},
74
- eprint={2503.04761},
75
- archivePrefix={arXiv},
76
- primaryClass={cs.CY},
77
- url={https://arxiv.org/abs/2503.04761},
78
- }
79
- ```
 
9
  viewer: true
10
  license: mit
11
  configs:
12
+ - config_name: default
13
  data_files:
14
+ - split: train
15
+ path: "release_2025_03_27/automation_vs_augmentation_by_task.csv"
 
 
 
 
16
  ---
17
 
18
  # The Anthropic Economic Index
 
25
 
26
  This repository contains multiple data releases, each with its own documentation:
27
 
 
 
28
  - **[2025-02-10 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_02_10)**: Initial release with O*NET task mappings, automation vs. augmentation data, and more
29
+ - **[2025-03-27 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_03_27)**: Updated analysis with Claude 3.7 Sonnet data and cluster-level insights
30
 
31
  ## Resources
32
 
33
  - [Index Home Page](https://www.anthropic.com/economic-index)
34
+ - [Research Paper](https://assets.anthropic.com/m/2e23255f1e84ca97/original/Economic_Tasks_AI_Paper.pdf)
 
 
35
 
36
 
37
  ## License
 
40
 
41
  ## Contact
42
 
43
+ For inquiries, contact kunal@anthropic.com or atamkin@anthropic.com. We invite researchers to provide input on potential future data releases using [this form](https://docs.google.com/forms/d/e/1FAIpQLSfDEdY-mT5lcXPaDSv-0Ci1rSXGlbIJierxkUbNB7_07-kddw/viewform?usp=dialog).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/README.md DELETED
@@ -1,72 +0,0 @@
1
- # Anthropic Economic Index September 2025 Report Replication
2
-
3
- ## Folder Structure
4
-
5
- ```
6
- .
7
- ├── code/ # Analysis scripts
8
- ├── data/
9
- │ ├── input/ # Raw data files (from external sources or prior releases)
10
- │ ├── intermediate/ # Processed data files
11
- │ └── output/ # Final outputs (plots, tables, etc.)
12
- ├── data_documentation.md # Documentation of all data sources and datasets
13
- └── README.md
14
- ```
15
-
16
- ## Data Processing Pipeline
17
-
18
- **Note:** Since all preprocessed data files are provided, you can skip directly to the Analysis section (Section 2) if you want to replicate the results without re-running the preprocessing steps. Please refer to `data_documentation.md` for details on the different data used.
19
-
20
- Run the following scripts in order from the `code/` directory:
21
-
22
- ### 1. Data Preprocessing
23
-
24
- 1. **`preprocess_iso_codes.py`**
25
- - Processes ISO country codes
26
- - Creates standardized country code mappings
27
-
28
- 2. **`preprocess_population.py`**
29
- - Processes country-level population data
30
- - Processes US state-level population data
31
- - Outputs working age population statistics
32
-
33
- 3. **`preprocess_gdp.py`**
34
- - Downloads and processes IMF country GDP data
35
- - Processes BEA US state GDP data
36
- - Creates standardized GDP datasets
37
-
38
- 4. **`preprocess_onet.py`**
39
- - Processes O*NET occupation and task data
40
- - Creates SOC occupation mappings
41
-
42
- 5. **`aei_report_v3_preprocessing_1p_api.ipynb`**
43
- - Jupyter notebook for preprocessing API and Claude.ai usage data
44
- - Prepares data for analysis
45
-
46
- ### 2. Analysis
47
-
48
- #### Analysis Scripts
49
-
50
- 1. **`aei_report_v3_change_over_time_claude_ai.py`**
51
- - Analyzes automation trends across report versions (V1, V2, V3)
52
- - Generates comparison figures showing evolution of automation estimates
53
-
54
- 2. **`aei_report_v3_analysis_claude_ai.ipynb`**
55
- - Analysis notebook for Claude.ai usage patterns
56
- - Generates figures specific to Claude.ai usage
57
- - Uses functions from `aei_analysis_functions_claude_ai.py`
58
-
59
- 3. **`aei_report_v3_analysis_1p_api.ipynb`**
60
- - Main analysis notebook for API usage patterns
61
- - Generates figures for occupational usage, collaboration patterns, and regression analyses
62
- - Uses functions from `aei_analysis_functions_1p_api.py`
63
-
64
- #### Supporting Function Files
65
-
66
- - **`aei_analysis_functions_claude_ai.py`**
67
- - Core analysis functions for Claude.ai data
68
- - Platform-specific analysis and visualization functions
69
-
70
- - **`aei_analysis_functions_1p_api.py`**
71
- - Core analysis functions for API data
72
- - Includes regression models, plotting functions, and data transformations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/code/aei_analysis_functions_1p_api.py DELETED
@@ -1,2339 +0,0 @@
1
- # AEI 1P API Analysis Functions
2
- # This module contains the core analysis functions for the AEI report API chapter
3
-
4
- from pathlib import Path
5
- from textwrap import wrap
6
-
7
- import matplotlib.pyplot as plt
8
- import numpy as np
9
- import pandas as pd
10
- import plotly.graph_objects as go
11
- import statsmodels.api as sm
12
- from plotly.subplots import make_subplots
13
-
14
- # Define the tier colors
15
- CUSTOM_COLORS_LIST = ["#E6DBD0", "#E5C5AB", "#E4AF86", "#E39961", "#D97757"]
16
-
17
- # Define the color cycle for charts
18
- COLOR_CYCLE = [
19
- "#D97757",
20
- "#656565",
21
- "#40668C",
22
- "#E39961",
23
- "#E4AF86",
24
- "#C65A3F",
25
- "#8778AB",
26
- "#E5C5AB",
27
- "#B04F35",
28
- ]
29
-
30
-
31
- def setup_plot_style():
32
- """Configure matplotlib for publication-quality figures."""
33
- plt.style.use("default")
34
- plt.rcParams.update(
35
- {
36
- "figure.dpi": 100,
37
- "savefig.dpi": 300,
38
- "font.size": 10,
39
- "axes.labelsize": 11,
40
- "axes.titlesize": 12,
41
- "xtick.labelsize": 9,
42
- "ytick.labelsize": 9,
43
- "legend.fontsize": 9,
44
- "figure.facecolor": "white",
45
- "axes.facecolor": "white",
46
- "savefig.facecolor": "white",
47
- "axes.edgecolor": "#333333",
48
- "axes.linewidth": 0.8,
49
- "axes.grid": True,
50
- "grid.alpha": 0.3,
51
- "grid.linestyle": "-",
52
- "grid.linewidth": 0.5,
53
- "axes.axisbelow": True,
54
- "text.usetex": False,
55
- "mathtext.default": "regular",
56
- "axes.titlecolor": "#B86046",
57
- "figure.titlesize": 16,
58
- }
59
- )
60
-
61
-
62
- # Initialize style
63
- setup_plot_style()
64
-
65
-
66
- def load_preprocessed_data(input_file):
67
- """
68
- Load preprocessed API data from CSV or Parquet file.
69
-
70
- Args:
71
- input_file: Path to preprocessed data file
72
-
73
- Returns:
74
- DataFrame with preprocessed API data
75
- """
76
- input_path = Path(input_file)
77
-
78
- if not input_path.exists():
79
- raise FileNotFoundError(f"Input file not found: {input_path}")
80
-
81
- df = pd.read_csv(input_path)
82
- return df
83
-
84
-
85
- def create_top_requests_bar_chart(df, output_dir):
86
- """
87
- Create bar chart showing top 15 request categories (level 2) by count share.
88
-
89
- Args:
90
- df: Preprocessed data DataFrame
91
- output_dir: Directory to save the figure
92
- """
93
- # Get request data at level 2 (global only) using percentages
94
- request_data = df[
95
- (df["facet"] == "request")
96
- & (df["geo_id"] == "GLOBAL")
97
- & (df["level"] == 2)
98
- & (df["variable"] == "request_pct")
99
- ].copy()
100
-
101
- # Filter out not_classified (but don't renormalize)
102
- request_data = request_data[request_data["cluster_name"] != "not_classified"]
103
-
104
- # Use the percentage values directly (already calculated in preprocessing)
105
- request_data["request_pct"] = request_data["value"]
106
-
107
- # Get top 15 requests by percentage share
108
- top_requests = request_data.nlargest(15, "request_pct").sort_values(
109
- "request_pct", ascending=True
110
- )
111
-
112
- # Create figure
113
- fig, ax = plt.subplots(figsize=(14, 10))
114
-
115
- # Create horizontal bar chart with tier color gradient
116
- y_pos = np.arange(len(top_requests))
117
-
118
- # Use tier colors based on ranking (top categories get darker colors)
119
- colors = []
120
- for i in range(len(top_requests)):
121
- # Map position to tier color (top bars = darker, bottom bars = lighter)
122
- # Since bars are sorted ascending, higher index = higher value = darker color
123
- rank_position = i / (len(top_requests) - 1)
124
- tier_index = int(rank_position * (len(CUSTOM_COLORS_LIST) - 1))
125
- colors.append(CUSTOM_COLORS_LIST[tier_index])
126
-
127
- ax.barh(
128
- y_pos,
129
- top_requests["request_pct"],
130
- color=colors,
131
- alpha=0.9,
132
- edgecolor="#333333",
133
- linewidth=0.5,
134
- )
135
-
136
- # Add value labels on bars
137
- for i, (idx, row) in enumerate(top_requests.iterrows()):
138
- ax.text(
139
- row["request_pct"] + 0.1,
140
- i,
141
- f"{row['request_pct']:.1f}%",
142
- va="center",
143
- fontsize=11,
144
- fontweight="bold",
145
- )
146
-
147
- # Clean up request names for y-axis labels
148
- labels = []
149
- for name in top_requests["cluster_name"]:
150
- # Truncate long names and add line breaks
151
- if len(name) > 60:
152
- # Find good break point around middle
153
- mid = len(name) // 2
154
- break_point = name.find(" ", mid)
155
- if break_point == -1: # No space found, just break at middle
156
- break_point = mid
157
- clean_name = name[:break_point] + "\n" + name[break_point:].strip()
158
- else:
159
- clean_name = name
160
- labels.append(clean_name)
161
-
162
- ax.set_yticks(y_pos)
163
- ax.set_yticklabels(labels, fontsize=10)
164
-
165
- # Formatting
166
- ax.set_xlabel("Percentage of total request count", fontsize=14)
167
- ax.set_title(
168
- "Top use cases among 1P API transcripts by usage share \n (broad grouping, bottom-up classification)",
169
- fontsize=14,
170
- fontweight="bold",
171
- pad=20,
172
- )
173
-
174
- # Add grid
175
- ax.grid(True, alpha=0.3, axis="x")
176
- ax.set_axisbelow(True)
177
-
178
- # Remove top and right spines
179
- ax.spines["top"].set_visible(False)
180
- ax.spines["right"].set_visible(False)
181
-
182
- # Increase tick label font size
183
- ax.tick_params(axis="x", which="major", labelsize=12)
184
-
185
- plt.tight_layout()
186
-
187
- # Save plot
188
- output_path = Path(output_dir) / "top_requests_level2_bar_chart.png"
189
- plt.savefig(output_path, dpi=300, bbox_inches="tight")
190
- plt.show()
191
- return str(output_path)
192
-
193
-
194
- def load_onet_mappings():
195
- """
196
- Load ONET task statements and SOC structure for occupational category mapping.
197
-
198
- Returns:
199
- Tuple of (task_statements_df, soc_structure_df)
200
- """
201
- # Load from local files
202
- task_path = Path("../data/intermediate/onet_task_statements.csv")
203
- soc_path = Path("../data/intermediate/soc_structure.csv")
204
-
205
- # Load CSV files directly
206
- task_statements = pd.read_csv(task_path)
207
- soc_structure = pd.read_csv(soc_path)
208
-
209
- return task_statements, soc_structure
210
-
211
-
212
- def map_to_occupational_categories(df, task_statements, soc_structure):
213
- """
214
- Map ONET task data to major occupational categories.
215
-
216
- Args:
217
- df: Preprocessed data DataFrame
218
- task_statements: ONET task statements DataFrame
219
- soc_structure: SOC structure DataFrame
220
-
221
- Returns:
222
- DataFrame with occupational category mappings
223
- """
224
- # Filter for ONET task data
225
- onet_data = df[df["facet"] == "onet_task"].copy()
226
-
227
- # Handle not_classified and none tasks first
228
- not_classified_mask = onet_data["cluster_name"].isin(["not_classified", "none"])
229
- not_classified_data = onet_data[not_classified_mask].copy()
230
- not_classified_data["soc_major"] = "99"
231
- not_classified_data["occupational_category"] = "Not Classified"
232
-
233
- # Process regular tasks
234
- regular_data = onet_data[~not_classified_mask].copy()
235
-
236
- # Standardize task descriptions for matching
237
- # Create standardized task mapping from ONET statements
238
- task_statements["task_standardized"] = (
239
- task_statements["Task"].str.strip().str.lower()
240
- )
241
- regular_data["cluster_name_standardized"] = (
242
- regular_data["cluster_name"].str.strip().str.lower()
243
- )
244
-
245
- # Create mapping from standardized task to major groups (allowing multiple)
246
- task_to_major_groups = {}
247
- for _, row in task_statements.iterrows():
248
- if pd.notna(row["Task"]) and pd.notna(row["soc_major_group"]):
249
- std_task = row["task_standardized"]
250
- major_group = str(int(row["soc_major_group"]))
251
- if std_task not in task_to_major_groups:
252
- task_to_major_groups[std_task] = []
253
- if major_group not in task_to_major_groups[std_task]:
254
- task_to_major_groups[std_task].append(major_group)
255
-
256
- # Expand rows for tasks that belong to multiple groups
257
- expanded_rows = []
258
- for _, row in regular_data.iterrows():
259
- std_task = row["cluster_name_standardized"]
260
- if std_task in task_to_major_groups:
261
- groups = task_to_major_groups[std_task]
262
- # Assign full value to each group (creates duplicates)
263
- for group in groups:
264
- new_row = row.copy()
265
- new_row["soc_major"] = group
266
- new_row["value"] = row["value"] # Keep full value for each group
267
- expanded_rows.append(new_row)
268
-
269
- # Create new dataframe from expanded rows
270
- if expanded_rows:
271
- regular_data = pd.DataFrame(expanded_rows)
272
- else:
273
- regular_data["soc_major"] = None
274
-
275
- # Get major occupational groups from SOC structure
276
- # Filter for rows where 'Major Group' is not null (these are the major groups)
277
- major_groups = soc_structure[soc_structure["Major Group"].notna()].copy()
278
-
279
- # Extract major group code and title
280
- major_groups["soc_major"] = major_groups["Major Group"].astype(str).str[:2]
281
- major_groups["title"] = major_groups["SOC or O*NET-SOC 2019 Title"]
282
-
283
- # Create a clean mapping from major group code to title
284
- major_group_mapping = (
285
- major_groups[["soc_major", "title"]]
286
- .drop_duplicates()
287
- .set_index("soc_major")["title"]
288
- .to_dict()
289
- )
290
-
291
- # Map major group codes to titles for regular data
292
- regular_data["occupational_category"] = regular_data["soc_major"].map(
293
- major_group_mapping
294
- )
295
-
296
- # Keep only successfully mapped regular data
297
- regular_mapped = regular_data[regular_data["occupational_category"].notna()].copy()
298
-
299
- # Combine regular mapped data with not_classified data
300
- onet_mapped = pd.concat([regular_mapped, not_classified_data], ignore_index=True)
301
-
302
- # Renormalize percentages to sum to 100 since we may have created duplicates
303
- total = onet_mapped["value"].sum()
304
-
305
- onet_mapped["value"] = (onet_mapped["value"] / total) * 100
306
-
307
- return onet_mapped
308
-
309
-
310
- def create_platform_occupational_comparison(api_df, cai_df, output_dir):
311
- """
312
- Create horizontal bar chart comparing occupational categories between Claude.ai and 1P API.
313
-
314
- Args:
315
- api_df: API preprocessed data DataFrame
316
- cai_df: Claude.ai preprocessed data DataFrame
317
- output_dir: Directory to save the figure
318
- """
319
- # Load ONET mappings for occupational categories
320
- task_statements, soc_structure = load_onet_mappings()
321
-
322
- # Process both datasets to get occupational categories
323
- def get_occupational_data(df, platform_name):
324
- # Get ONET task percentage data (global level only)
325
- onet_data = df[
326
- (df["facet"] == "onet_task")
327
- & (df["geo_id"] == "GLOBAL")
328
- & (df["variable"] == "onet_task_pct")
329
- ].copy()
330
-
331
- # Map to occupational categories using existing function
332
- onet_mapped = map_to_occupational_categories(
333
- onet_data, task_statements, soc_structure
334
- )
335
-
336
- # Sum percentages by occupational category
337
- category_percentages = (
338
- onet_mapped.groupby("occupational_category")["value"].sum().reset_index()
339
- )
340
-
341
- # Exclude "Not Classified" category from visualization
342
- category_percentages = category_percentages[
343
- category_percentages["occupational_category"] != "Not Classified"
344
- ]
345
-
346
- category_percentages.columns = ["category", f"{platform_name.lower()}_pct"]
347
-
348
- return category_percentages
349
-
350
- # Get data for both platforms
351
- api_categories = get_occupational_data(api_df, "API")
352
- claude_categories = get_occupational_data(cai_df, "Claude")
353
-
354
- # Merge the datasets
355
- category_comparison = pd.merge(
356
- claude_categories, api_categories, on="category", how="outer"
357
- ).fillna(0)
358
-
359
- # Filter to substantial categories (>0.5% in either platform)
360
- category_comparison = category_comparison[
361
- (category_comparison["claude_pct"] > 0.5)
362
- | (category_comparison["api_pct"] > 0.5)
363
- ].copy()
364
-
365
- # Calculate difference and total
366
- category_comparison["difference"] = (
367
- category_comparison["api_pct"] - category_comparison["claude_pct"]
368
- )
369
- category_comparison["total_pct"] = (
370
- category_comparison["claude_pct"] + category_comparison["api_pct"]
371
- )
372
-
373
- # Get top 8 categories by total usage
374
- top_categories = category_comparison.nlargest(8, "total_pct").sort_values(
375
- "total_pct", ascending=True
376
- )
377
-
378
- # Create figure
379
- fig, ax = plt.subplots(figsize=(12, 8))
380
-
381
- y_pos = np.arange(len(top_categories))
382
- bar_height = 0.35
383
-
384
- # Create side-by-side bars
385
- ax.barh(
386
- y_pos - bar_height / 2,
387
- top_categories["claude_pct"],
388
- bar_height,
389
- label="Claude.ai",
390
- color=COLOR_CYCLE[2],
391
- alpha=0.8,
392
- )
393
- ax.barh(
394
- y_pos + bar_height / 2,
395
- top_categories["api_pct"],
396
- bar_height,
397
- label="1P API",
398
- color=COLOR_CYCLE[0],
399
- alpha=0.8,
400
- )
401
-
402
- # Add value labels with difference percentages
403
- for i, (idx, row) in enumerate(top_categories.iterrows()):
404
- # Claude.ai label
405
- if row["claude_pct"] > 0.1:
406
- ax.text(
407
- row["claude_pct"] + 0.2,
408
- i - bar_height / 2,
409
- f"{row['claude_pct']:.0f}%",
410
- va="center",
411
- fontsize=9,
412
- )
413
-
414
- # 1P API label with difference
415
- if row["api_pct"] > 0.1:
416
- ax.text(
417
- row["api_pct"] + 0.2,
418
- i + bar_height / 2,
419
- f"{row['api_pct']:.0f}%",
420
- va="center",
421
- fontsize=9,
422
- color=COLOR_CYCLE[0] if row["difference"] > 0 else COLOR_CYCLE[2],
423
- )
424
-
425
- # Clean up category labels
426
- labels = []
427
- for cat in top_categories["category"]:
428
- # Remove "Occupations" suffix and wrap long names
429
- clean_cat = cat.replace(" Occupations", "").replace(", and ", " & ")
430
- wrapped = "\n".join(wrap(clean_cat, 40))
431
- labels.append(wrapped)
432
-
433
- ax.set_yticks(y_pos)
434
- ax.set_yticklabels(labels, fontsize=10)
435
-
436
- ax.set_xlabel("Percentage of usage", fontsize=12)
437
- ax.set_title(
438
- "Usage shares across top occupational categories: Claude.ai vs 1P API",
439
- fontsize=14,
440
- fontweight="bold",
441
- pad=20,
442
- )
443
- ax.legend(loc="lower right", fontsize=11)
444
- ax.grid(True, alpha=0.3, axis="x")
445
- ax.set_axisbelow(True)
446
-
447
- # Remove top and right spines
448
- ax.spines["top"].set_visible(False)
449
- ax.spines["right"].set_visible(False)
450
-
451
- plt.tight_layout()
452
-
453
- # Save plot
454
- output_path = Path(output_dir) / "platform_occupational_comparison.png"
455
- plt.savefig(output_path, dpi=300, bbox_inches="tight")
456
- plt.show()
457
- return str(output_path)
458
-
459
-
460
- def create_platform_lorenz_curves(api_df, cai_df, output_dir):
461
- """
462
- Create Lorenz curves showing task usage concentration by platform.
463
-
464
- Args:
465
- api_df: API preprocessed data DataFrame
466
- cai_df: Claude.ai preprocessed data DataFrame
467
- output_dir: Directory to save the figure
468
- """
469
-
470
- def gini_coefficient(values):
471
- """Calculate Gini coefficient for a series of values."""
472
- sorted_values = np.sort(values)
473
- n = len(sorted_values)
474
- cumulative = np.cumsum(sorted_values)
475
- gini = (2 * np.sum(np.arange(1, n + 1) * sorted_values)) / (
476
- n * cumulative[-1]
477
- ) - (n + 1) / n
478
- return gini
479
-
480
- def get_task_usage_data(df, platform_name):
481
- # Get ONET task percentage data (global level only)
482
- onet_data = df[
483
- (df["facet"] == "onet_task")
484
- & (df["geo_id"] == "GLOBAL")
485
- & (df["variable"] == "onet_task_pct")
486
- ].copy()
487
-
488
- # Filter out none and not_classified
489
- onet_data = onet_data[
490
- ~onet_data["cluster_name"].isin(["none", "not_classified"])
491
- ]
492
-
493
- # Use the percentage values directly
494
- onet_data["percentage"] = onet_data["value"]
495
-
496
- return onet_data[["cluster_name", "percentage"]].copy()
497
-
498
- api_tasks = get_task_usage_data(api_df, "1P API")
499
- claude_tasks = get_task_usage_data(cai_df, "Claude.ai")
500
-
501
- # Sort by percentage for each platform
502
- api_tasks = api_tasks.sort_values("percentage")
503
- claude_tasks = claude_tasks.sort_values("percentage")
504
-
505
- # Calculate cumulative percentages of usage
506
- api_cumulative = np.cumsum(api_tasks["percentage"])
507
- claude_cumulative = np.cumsum(claude_tasks["percentage"])
508
-
509
- # Calculate cumulative percentage of tasks
510
- api_task_cumulative = np.arange(1, len(api_tasks) + 1) / len(api_tasks) * 100
511
- claude_task_cumulative = (
512
- np.arange(1, len(claude_tasks) + 1) / len(claude_tasks) * 100
513
- )
514
-
515
- # Interpolate to ensure curves reach 100%
516
- # Add final points to reach (100, 100)
517
- api_cumulative = np.append(api_cumulative, 100)
518
- claude_cumulative = np.append(claude_cumulative, 100)
519
- api_task_cumulative = np.append(api_task_cumulative, 100)
520
- claude_task_cumulative = np.append(claude_task_cumulative, 100)
521
-
522
- # Calculate Gini coefficients
523
- api_gini = gini_coefficient(api_tasks["percentage"].values)
524
- claude_gini = gini_coefficient(claude_tasks["percentage"].values)
525
-
526
- # Create panel figure
527
- fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8))
528
-
529
- # LEFT PANEL: Lorenz Curves
530
- # Plot Lorenz curves
531
- ax1.plot(
532
- api_task_cumulative,
533
- api_cumulative,
534
- color=COLOR_CYCLE[1],
535
- linewidth=2.5,
536
- label=f"1P API (Gini = {api_gini:.3f})",
537
- )
538
-
539
- ax1.plot(
540
- claude_task_cumulative,
541
- claude_cumulative,
542
- color=COLOR_CYCLE[0],
543
- linewidth=2.5,
544
- label=f"Claude.ai (Gini = {claude_gini:.3f})",
545
- )
546
-
547
- # Add perfect equality line (diagonal)
548
- ax1.plot(
549
- [0, 100],
550
- [0, 100],
551
- "k--",
552
- linewidth=1.5,
553
- alpha=0.7,
554
- label="Perfect Equality",
555
- )
556
-
557
- # Calculate 80th percentile values
558
- api_80th_usage = np.interp(80, api_task_cumulative, api_cumulative)
559
- claude_80th_usage = np.interp(80, claude_task_cumulative, claude_cumulative)
560
-
561
- # Add markers at 80th percentile
562
- ax1.scatter(
563
- 80,
564
- api_80th_usage,
565
- alpha=0.5,
566
- s=100,
567
- color=COLOR_CYCLE[1],
568
- edgecolors="white",
569
- linewidth=1,
570
- zorder=5,
571
- )
572
- ax1.scatter(
573
- 80,
574
- claude_80th_usage,
575
- alpha=0.5,
576
- s=100,
577
- color=COLOR_CYCLE[0],
578
- edgecolors="white",
579
- linewidth=1,
580
- zorder=5,
581
- )
582
-
583
- # Add annotations
584
- ax1.text(
585
- 82,
586
- api_80th_usage - 2,
587
- f"{api_80th_usage:.1f}% of usage",
588
- ha="left",
589
- va="center",
590
- fontsize=10,
591
- color=COLOR_CYCLE[1],
592
- )
593
-
594
- ax1.text(
595
- 78.5,
596
- claude_80th_usage + 1,
597
- f"{claude_80th_usage:.1f}% of usage",
598
- ha="right",
599
- va="center",
600
- fontsize=10,
601
- color=COLOR_CYCLE[0],
602
- )
603
-
604
- # Add text box
605
- ax1.text(
606
- 0.05,
607
- 0.95,
608
- f"The bottom 80% of tasks account for:\n• 1P API: {api_80th_usage:.1f}% of usage\n• Claude.ai: {claude_80th_usage:.1f}% of usage",
609
- transform=ax1.transAxes,
610
- va="top",
611
- ha="left",
612
- bbox=dict(
613
- boxstyle="round,pad=0.3",
614
- facecolor="white",
615
- alpha=0.8,
616
- edgecolor="black",
617
- linewidth=1,
618
- ),
619
- fontsize=10,
620
- )
621
-
622
- # Styling for Lorenz curves
623
- ax1.set_xlabel("Cumulative percentage of tasks", fontsize=12)
624
- ax1.set_ylabel("Cumulative percentage of usage", fontsize=12)
625
- ax1.set_title("Lorenz curves", fontsize=14, fontweight="bold", pad=20)
626
- ax1.set_xlim(0, 100)
627
- ax1.set_ylim(0, 100)
628
- ax1.grid(True, alpha=0.3, linestyle="--")
629
- ax1.set_axisbelow(True)
630
- ax1.legend(loc=(0.05, 0.65), fontsize=11, frameon=True, facecolor="white")
631
- ax1.spines["top"].set_visible(False)
632
- ax1.spines["right"].set_visible(False)
633
-
634
- # RIGHT PANEL: Zipf's Law Analysis
635
- min_share = 0.1
636
-
637
- # Filter for minimum share
638
- api_filtered = api_tasks[api_tasks["percentage"] > min_share]["percentage"].copy()
639
- claude_filtered = claude_tasks[claude_tasks["percentage"] > min_share][
640
- "percentage"
641
- ].copy()
642
-
643
- # Calculate ranks and log transforms
644
- ln_rank_api = np.log(api_filtered.rank(ascending=False))
645
- ln_share_api = np.log(api_filtered)
646
-
647
- ln_rank_claude = np.log(claude_filtered.rank(ascending=False))
648
- ln_share_claude = np.log(claude_filtered)
649
-
650
- # Fit regressions
651
- api_model = sm.OLS(ln_rank_api, sm.add_constant(ln_share_api)).fit()
652
- api_slope = api_model.params.iloc[1]
653
- api_intercept = api_model.params.iloc[0]
654
-
655
- claude_model = sm.OLS(ln_rank_claude, sm.add_constant(ln_share_claude)).fit()
656
- claude_slope = claude_model.params.iloc[1]
657
- claude_intercept = claude_model.params.iloc[0]
658
-
659
- # Plot scatter points
660
- ax2.scatter(
661
- ln_share_api,
662
- ln_rank_api,
663
- alpha=0.5,
664
- s=100,
665
- color=COLOR_CYCLE[1],
666
- label=f"1P API: y = {api_slope:.2f}x + {api_intercept:.2f}",
667
- )
668
-
669
- ax2.scatter(
670
- ln_share_claude,
671
- ln_rank_claude,
672
- alpha=0.5,
673
- s=100,
674
- color=COLOR_CYCLE[0],
675
- label=f"Claude.ai: y = {claude_slope:.2f}x + {claude_intercept:.2f}",
676
- )
677
-
678
- # Add Zipf's law reference line (slope = -1)
679
- x_range = np.linspace(
680
- min(ln_share_api.min(), ln_share_claude.min()),
681
- max(ln_share_api.max(), ln_share_claude.max()),
682
- 100,
683
- )
684
- avg_intercept = (api_intercept + claude_intercept) / 2
685
- y_line = -1 * x_range + avg_intercept
686
-
687
- ax2.plot(
688
- x_range,
689
- y_line,
690
- color="black",
691
- linestyle="--",
692
- linewidth=2,
693
- label=f"Zipf's Law: y = -1.00x + {avg_intercept:.2f}",
694
- zorder=0,
695
- )
696
-
697
- # Styling for Zipf's law plot
698
- ax2.set_xlabel("ln(Share of usage)", fontsize=12)
699
- ax2.set_ylabel("ln(Rank by usage)", fontsize=12)
700
- ax2.set_title(
701
- "Task rank versus usage share", fontsize=14, fontweight="bold", pad=20
702
- )
703
- ax2.grid(True, alpha=0.3, linestyle="--")
704
- ax2.set_axisbelow(True)
705
- ax2.legend(fontsize=11)
706
- ax2.spines["top"].set_visible(False)
707
- ax2.spines["right"].set_visible(False)
708
-
709
- # Overall title
710
- fig.suptitle(
711
- "Lorenz curves and power law analysis across tasks: 1P API vs Claude.ai",
712
- fontsize=16,
713
- fontweight="bold",
714
- y=0.95,
715
- color="#B86046",
716
- )
717
-
718
- plt.tight_layout()
719
- plt.subplots_adjust(top=0.85) # More room for suptitle
720
-
721
- # Save plot
722
- output_path = Path(output_dir) / "platform_lorenz_zipf_panel.png"
723
- plt.savefig(output_path, dpi=300, bbox_inches="tight")
724
- plt.show()
725
- return str(output_path)
726
-
727
-
728
- def create_collaboration_alluvial(api_df, cai_df, output_dir):
729
- """
730
- Create alluvial diagram showing collaboration pattern flows between platforms.
731
-
732
- Args:
733
- api_df: API preprocessed data DataFrame
734
- cai_df: Claude.ai preprocessed data DataFrame
735
- output_dir: Directory to save the figure
736
- """
737
-
738
- def get_collaboration_data(df, platform_name):
739
- # Get collaboration facet data (global level only)
740
- collab_data = df[
741
- (df["facet"] == "collaboration")
742
- & (df["geo_id"] == "GLOBAL")
743
- & (df["variable"] == "collaboration_pct")
744
- ].copy()
745
-
746
- # Use cluster_name directly as the collaboration pattern
747
- collab_data["pattern"] = collab_data["cluster_name"]
748
-
749
- # Filter out not_classified
750
- collab_data = collab_data[collab_data["pattern"] != "not_classified"]
751
-
752
- # Use the percentage values directly
753
- result = collab_data[["pattern", "value"]].copy()
754
- result.columns = ["pattern", "percentage"]
755
- result["platform"] = platform_name
756
-
757
- return result
758
-
759
- api_collab = get_collaboration_data(api_df, "1P API")
760
- claude_collab = get_collaboration_data(cai_df, "Claude.ai")
761
-
762
- # Combine collaboration data
763
- collab_df = pd.concat([claude_collab, api_collab], ignore_index=True)
764
-
765
- # Define categories
766
- augmentation_types = ["learning", "task iteration", "validation"]
767
- automation_types = ["directive", "feedback loop"]
768
-
769
- # Colors matching the original
770
- pattern_colors = {
771
- "validation": "#2c3e67",
772
- "task iteration": "#4f76c7",
773
- "learning": "#79a7e0",
774
- "feedback loop": "#614980",
775
- "directive": "#8e6bb1",
776
- }
777
-
778
- # Extract flows
779
- flows_claude = {}
780
- flows_api = {}
781
-
782
- for pattern in augmentation_types + automation_types:
783
- claude_mask = (collab_df["pattern"] == pattern) & (
784
- collab_df["platform"] == "Claude.ai"
785
- )
786
- if claude_mask.any():
787
- flows_claude[pattern] = collab_df.loc[claude_mask, "percentage"].values[0]
788
-
789
- api_mask = (collab_df["pattern"] == pattern) & (
790
- collab_df["platform"] == "1P API"
791
- )
792
- if api_mask.any():
793
- flows_api[pattern] = collab_df.loc[api_mask, "percentage"].values[0]
794
-
795
- # Create figure with subplots
796
- fig = make_subplots(
797
- rows=2,
798
- cols=1,
799
- row_heights=[0.5, 0.5],
800
- vertical_spacing=0.15,
801
- subplot_titles=("<b>Augmentation Patterns</b>", "<b>Automation Patterns</b>"),
802
- )
803
-
804
- # Update subplot title colors and font
805
- for annotation in fig.layout.annotations:
806
- annotation.update(font=dict(color="#B86046", size=14, family="Styrene B LC"))
807
-
808
- def create_alluvial_traces(patterns, row):
809
- """Create traces for alluvial diagram"""
810
- # Sort by size on Claude.ai side
811
- patterns_sorted = sorted(
812
- [p for p in patterns if p in flows_claude],
813
- key=lambda p: flows_claude.get(p, 0),
814
- reverse=True,
815
- )
816
-
817
- # Calculate total heights first to determine centering
818
- total_claude = sum(
819
- flows_claude.get(p, 0) for p in patterns if p in flows_claude
820
- )
821
- total_api = sum(flows_api.get(p, 0) for p in patterns if p in flows_api)
822
- gap_count = max(
823
- len([p for p in patterns if p in flows_claude and flows_claude[p] > 0]) - 1,
824
- 0,
825
- )
826
- gap_count_api = max(
827
- len([p for p in patterns if p in flows_api and flows_api[p] > 0]) - 1, 0
828
- )
829
-
830
- total_height_claude = total_claude + (gap_count * 2)
831
- total_height_api = total_api + (gap_count_api * 2)
832
-
833
- # Calculate offset to center the smaller side
834
- offset_claude = 0
835
- offset_api = 0
836
- if total_height_claude < total_height_api:
837
- offset_claude = (total_height_api - total_height_claude) / 2
838
- else:
839
- offset_api = (total_height_claude - total_height_api) / 2
840
-
841
- # Calculate positions for Claude.ai (left side)
842
- y_pos_claude = offset_claude
843
- claude_positions = {}
844
- for pattern in patterns_sorted:
845
- if pattern in flows_claude and flows_claude[pattern] > 0:
846
- height = flows_claude[pattern]
847
- claude_positions[pattern] = {
848
- "bottom": y_pos_claude,
849
- "top": y_pos_claude + height,
850
- "center": y_pos_claude + height / 2,
851
- }
852
- y_pos_claude += height + 2 # Add gap
853
-
854
- # Calculate positions for 1P API (right side)
855
- patterns_sorted_api = sorted(
856
- [p for p in patterns if p in flows_api],
857
- key=lambda p: flows_api.get(p, 0),
858
- reverse=True,
859
- )
860
- y_pos_api = offset_api
861
- api_positions = {}
862
- for pattern in patterns_sorted_api:
863
- if pattern in flows_api and flows_api[pattern] > 0:
864
- height = flows_api[pattern]
865
- api_positions[pattern] = {
866
- "bottom": y_pos_api,
867
- "top": y_pos_api + height,
868
- "center": y_pos_api + height / 2,
869
- }
870
- y_pos_api += height + 2 # Add gap
871
-
872
- # Create shapes for flows
873
- shapes = []
874
- for pattern in patterns:
875
- if pattern in claude_positions and pattern in api_positions:
876
- # Create a quadrilateral connecting the two sides
877
- x_left = 0.2
878
- x_right = 0.8
879
-
880
- claude_bottom = claude_positions[pattern]["bottom"]
881
- claude_top = claude_positions[pattern]["top"]
882
- api_bottom = api_positions[pattern]["bottom"]
883
- api_top = api_positions[pattern]["top"]
884
-
885
- # Create path for the flow
886
- path = f"M {x_left} {claude_bottom} L {x_left} {claude_top} L {x_right} {api_top} L {x_right} {api_bottom} Z"
887
-
888
- hex_color = pattern_colors[pattern]
889
- r = int(hex_color[1:3], 16)
890
- g = int(hex_color[3:5], 16)
891
- b = int(hex_color[5:7], 16)
892
-
893
- shapes.append(
894
- dict(
895
- type="path",
896
- path=path,
897
- fillcolor=f"rgba({r},{g},{b},0.5)",
898
- line=dict(color=f"rgba({r},{g},{b},1)", width=1),
899
- )
900
- )
901
-
902
- # Create text annotations
903
- annotations = []
904
-
905
- # Claude.ai labels
906
- for pattern in patterns_sorted:
907
- if pattern in claude_positions:
908
- annotations.append(
909
- dict(
910
- x=x_left - 0.02,
911
- y=claude_positions[pattern]["center"],
912
- text=f"{pattern.replace('_', ' ').title()}<br>{flows_claude[pattern]:.1f}%",
913
- showarrow=False,
914
- xanchor="right",
915
- yanchor="middle",
916
- font=dict(size=10),
917
- )
918
- )
919
-
920
- # 1P API labels
921
- for pattern in patterns_sorted_api:
922
- if pattern in api_positions:
923
- annotations.append(
924
- dict(
925
- x=x_right + 0.02,
926
- y=api_positions[pattern]["center"],
927
- text=f"{pattern.replace('_', ' ').title()}<br>{flows_api[pattern]:.1f}%",
928
- showarrow=False,
929
- xanchor="left",
930
- yanchor="middle",
931
- font=dict(size=10),
932
- )
933
- )
934
-
935
- # Platform labels
936
- annotations.extend(
937
- [
938
- dict(
939
- x=x_left,
940
- y=max(y_pos_claude, y_pos_api) + 5,
941
- text="Claude.ai",
942
- showarrow=False,
943
- xanchor="center",
944
- font=dict(size=14, color="black"),
945
- ),
946
- dict(
947
- x=x_right,
948
- y=max(y_pos_claude, y_pos_api) + 5,
949
- text="1P API",
950
- showarrow=False,
951
- xanchor="center",
952
- font=dict(size=14, color="black"),
953
- ),
954
- ]
955
- )
956
-
957
- return shapes, annotations, max(y_pos_claude, y_pos_api)
958
-
959
- # Create augmentation diagram
960
- aug_shapes, aug_annotations, aug_height = create_alluvial_traces(
961
- augmentation_types, 1
962
- )
963
-
964
- # Create automation diagram
965
- auto_shapes, auto_annotations, auto_height = create_alluvial_traces(
966
- automation_types, 2
967
- )
968
-
969
- # Add invisible traces to create subplots
970
- fig.add_trace(
971
- go.Scatter(x=[0], y=[0], mode="markers", marker=dict(size=0)), row=1, col=1
972
- )
973
- fig.add_trace(
974
- go.Scatter(x=[0], y=[0], mode="markers", marker=dict(size=0)), row=2, col=1
975
- )
976
-
977
- # Update layout with shapes and annotations
978
- fig.update_layout(
979
- title=dict(
980
- text="<b>Collaboration Modes: Claude.ai Conversations vs 1P API Transcripts</b>",
981
- font=dict(size=16, family="Styrene B LC", color="#B86046"),
982
- x=0.5,
983
- xanchor="center",
984
- ),
985
- height=800,
986
- width=1200,
987
- paper_bgcolor="white",
988
- plot_bgcolor="white",
989
- showlegend=False,
990
- )
991
-
992
- # Ensure white background for both subplots
993
- fig.update_xaxes(showgrid=False, zeroline=False, showticklabels=False, row=1, col=1)
994
- fig.update_xaxes(showgrid=False, zeroline=False, showticklabels=False, row=2, col=1)
995
- fig.update_yaxes(showgrid=False, zeroline=False, showticklabels=False, row=1, col=1)
996
- fig.update_yaxes(showgrid=False, zeroline=False, showticklabels=False, row=2, col=1)
997
-
998
- # Add shapes and annotations to each subplot
999
- for shape in aug_shapes:
1000
- fig.add_shape(shape, row=1, col=1)
1001
- for shape in auto_shapes:
1002
- fig.add_shape(shape, row=2, col=1)
1003
-
1004
- for ann in aug_annotations:
1005
- fig.add_annotation(ann, row=1, col=1)
1006
- for ann in auto_annotations:
1007
- fig.add_annotation(ann, row=2, col=1)
1008
-
1009
- # Set axis ranges and ensure white background
1010
- fig.update_xaxes(
1011
- range=[0, 1],
1012
- showgrid=False,
1013
- zeroline=False,
1014
- showticklabels=False,
1015
- row=1,
1016
- col=1,
1017
- )
1018
- fig.update_xaxes(
1019
- range=[0, 1],
1020
- showgrid=False,
1021
- zeroline=False,
1022
- showticklabels=False,
1023
- row=2,
1024
- col=1,
1025
- )
1026
-
1027
- fig.update_yaxes(
1028
- range=[0, aug_height + 10],
1029
- showgrid=False,
1030
- zeroline=False,
1031
- showticklabels=False,
1032
- row=1,
1033
- col=1,
1034
- )
1035
- fig.update_yaxes(
1036
- range=[0, auto_height + 10],
1037
- showgrid=False,
1038
- zeroline=False,
1039
- showticklabels=False,
1040
- row=2,
1041
- col=1,
1042
- )
1043
-
1044
- # Save plot
1045
- output_path = Path(output_dir) / "collaboration_alluvial.png"
1046
- fig.write_image(str(output_path), width=1200, height=800, scale=2)
1047
- fig.show()
1048
- return str(output_path)
1049
-
1050
-
1051
- def get_collaboration_shares(df):
1052
- """
1053
- Extract collaboration mode shares for each ONET task from intersection data.
1054
-
1055
- Args:
1056
- df: Preprocessed data DataFrame
1057
-
1058
- Returns:
1059
- dict: {task_name: {mode: percentage}}
1060
- """
1061
- # Filter to GLOBAL data only and use pre-calculated percentages
1062
- collab_data = df[
1063
- (df["geo_id"] == "GLOBAL")
1064
- & (df["facet"] == "onet_task::collaboration")
1065
- & (df["variable"] == "onet_task_collaboration_pct")
1066
- ].copy()
1067
-
1068
- # Split the cluster_name into task and collaboration mode
1069
- collab_data[["task", "mode"]] = collab_data["cluster_name"].str.rsplit(
1070
- "::", n=1, expand=True
1071
- )
1072
-
1073
- # Filter out 'none' and 'not_classified' modes
1074
- collab_data = collab_data[~collab_data["mode"].isin(["none", "not_classified"])]
1075
-
1076
- # Use pre-calculated percentages directly
1077
- collaboration_modes = [
1078
- "directive",
1079
- "feedback loop",
1080
- "learning",
1081
- "task iteration",
1082
- "validation",
1083
- ]
1084
- result = {}
1085
-
1086
- for _, row in collab_data.iterrows():
1087
- task = row["task"]
1088
- mode = row["mode"]
1089
-
1090
- if mode in collaboration_modes:
1091
- if task not in result:
1092
- result[task] = {}
1093
- result[task][mode] = float(row["value"])
1094
-
1095
- return result
1096
-
1097
-
1098
- def create_automation_augmentation_panel(api_df, cai_df, output_dir):
1099
- """
1100
- Create combined panel figure showing automation vs augmentation for both platforms.
1101
-
1102
- Args:
1103
- api_df: API preprocessed data DataFrame
1104
- cai_df: Claude.ai preprocessed data DataFrame
1105
- output_dir: Directory to save the figure
1106
- """
1107
- # Create figure with subplots
1108
- fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8))
1109
-
1110
- def create_automation_augmentation_subplot(df, ax, title, platform_name):
1111
- """Helper function to create one automation vs augmentation subplot"""
1112
- # Get collaboration shares for each task
1113
- collab_shares = get_collaboration_shares(df)
1114
-
1115
- # Get task usage counts for bubble sizing
1116
- df_global = df[df["geo_id"] == "GLOBAL"]
1117
- task_counts = (
1118
- df_global[
1119
- (df_global["facet"] == "onet_task")
1120
- & (df_global["variable"] == "onet_task_count")
1121
- & (~df_global["cluster_name"].isin(["none", "not_classified"]))
1122
- ]
1123
- .set_index("cluster_name")["value"]
1124
- .to_dict()
1125
- )
1126
-
1127
- # Prepare data for plotting
1128
- tasks = []
1129
- automation_scores = []
1130
- augmentation_scores = []
1131
- bubble_sizes = []
1132
-
1133
- for task_name, shares in collab_shares.items():
1134
- if task_name in task_counts:
1135
- # Calculate automation score (directive + feedback loop)
1136
- automation = shares.get("directive", 0) + shares.get("feedback loop", 0)
1137
-
1138
- # Calculate augmentation score (learning + task iteration + validation)
1139
- augmentation = (
1140
- shares.get("learning", 0)
1141
- + shares.get("task iteration", 0)
1142
- + shares.get("validation", 0)
1143
- )
1144
-
1145
- # Only include tasks with some collaboration data
1146
- if automation + augmentation > 0:
1147
- tasks.append(task_name)
1148
- automation_scores.append(automation)
1149
- augmentation_scores.append(augmentation)
1150
- bubble_sizes.append(task_counts[task_name])
1151
-
1152
- # Convert to numpy arrays for plotting
1153
- automation_scores = np.array(automation_scores)
1154
- augmentation_scores = np.array(augmentation_scores)
1155
- bubble_sizes = np.array(bubble_sizes)
1156
-
1157
- # Scale bubble sizes
1158
- bubble_sizes_scaled = (bubble_sizes / bubble_sizes.max()) * 800 + 40
1159
-
1160
- # Color points based on whether automation or augmentation dominates
1161
- colors = []
1162
- for auto, aug in zip(automation_scores, augmentation_scores, strict=True):
1163
- if auto > aug:
1164
- colors.append("#8e6bb1") # Automation dominant
1165
- else:
1166
- colors.append("#4f76c7") # Augmentation dominant
1167
-
1168
- # Create scatter plot
1169
- ax.scatter(
1170
- automation_scores,
1171
- augmentation_scores,
1172
- s=bubble_sizes_scaled,
1173
- c=colors,
1174
- alpha=0.7,
1175
- edgecolors="black",
1176
- linewidth=0.5,
1177
- )
1178
-
1179
- # Add diagonal line (automation = augmentation)
1180
- max_val = max(automation_scores.max(), augmentation_scores.max())
1181
- ax.plot([0, max_val], [0, max_val], "--", color="gray", alpha=0.5, linewidth=2)
1182
-
1183
- # Labels and formatting (increased font sizes)
1184
- ax.set_xlabel("Automation Share (%)", fontsize=14)
1185
- ax.set_ylabel(
1186
- "Augmentation Score (%)",
1187
- fontsize=14,
1188
- )
1189
- ax.set_title(title, fontsize=14, fontweight="bold", pad=15)
1190
-
1191
- # Calculate percentages for legend
1192
- automation_dominant_count = sum(
1193
- 1
1194
- for auto, aug in zip(automation_scores, augmentation_scores, strict=True)
1195
- if auto > aug
1196
- )
1197
- augmentation_dominant_count = len(automation_scores) - automation_dominant_count
1198
- total_tasks = len(automation_scores)
1199
-
1200
- automation_pct = (automation_dominant_count / total_tasks) * 100
1201
- augmentation_pct = (augmentation_dominant_count / total_tasks) * 100
1202
-
1203
- # Add legend with percentages centered at top
1204
- automation_patch = plt.scatter(
1205
- [],
1206
- [],
1207
- c="#8e6bb1",
1208
- alpha=0.7,
1209
- s=100,
1210
- label=f"Automation dominant ({automation_pct:.1f}% of Tasks)",
1211
- )
1212
- augmentation_patch = plt.scatter(
1213
- [],
1214
- [],
1215
- c="#4f76c7",
1216
- alpha=0.7,
1217
- s=100,
1218
- label=f"Augmentation dominant ({augmentation_pct:.1f}% of Tasks)",
1219
- )
1220
- ax.legend(
1221
- handles=[automation_patch, augmentation_patch],
1222
- loc="upper center",
1223
- bbox_to_anchor=(0.5, 0.95),
1224
- fontsize=12,
1225
- frameon=True,
1226
- facecolor="white",
1227
- )
1228
-
1229
- # Grid and styling
1230
- ax.grid(True, alpha=0.3)
1231
- ax.set_axisbelow(True)
1232
- ax.tick_params(axis="both", which="major", labelsize=12)
1233
-
1234
- return len(tasks), automation_pct, augmentation_pct
1235
-
1236
- # Create API subplot
1237
- create_automation_augmentation_subplot(api_df, ax1, "1P API", "1P API")
1238
-
1239
- # Create Claude.ai subplot
1240
- create_automation_augmentation_subplot(cai_df, ax2, "Claude.ai", "Claude.ai")
1241
-
1242
- # Add overall title
1243
- fig.suptitle(
1244
- "Automation and augmentation dominance across tasks: Claude.ai vs. 1P API",
1245
- fontsize=16,
1246
- fontweight="bold",
1247
- y=0.95,
1248
- color="#B86046",
1249
- )
1250
-
1251
- plt.tight_layout()
1252
- plt.subplots_adjust(top=0.85) # More room for suptitle
1253
-
1254
- # Save plot
1255
- output_path = Path(output_dir) / "automation_vs_augmentation_panel.png"
1256
- plt.savefig(output_path, dpi=300, bbox_inches="tight")
1257
- plt.show()
1258
- return str(output_path)
1259
-
1260
-
1261
- def extract_token_metrics_from_intersections(df):
1262
- """
1263
- Extract token metrics from preprocessed intersection data.
1264
-
1265
- Args:
1266
- df: Preprocessed dataframe with intersection facets
1267
-
1268
- Returns:
1269
- DataFrame with token metrics for analysis
1270
- """
1271
- # Extract data using new variable names from mean value intersections
1272
- cost_data = df[
1273
- (df.facet == "onet_task::cost") & (df.variable == "cost_index")
1274
- ].copy()
1275
- cost_data["base_task"] = cost_data["cluster_name"].str.replace("::index", "")
1276
- onet_cost = cost_data.set_index("base_task")["value"].copy()
1277
-
1278
- prompt_data = df[
1279
- (df.facet == "onet_task::prompt_tokens")
1280
- & (df.variable == "prompt_tokens_index")
1281
- ].copy()
1282
- prompt_data["base_task"] = prompt_data["cluster_name"].str.replace("::index", "")
1283
- onet_prompt = prompt_data.set_index("base_task")["value"].copy()
1284
-
1285
- completion_data = df[
1286
- (df.facet == "onet_task::completion_tokens")
1287
- & (df.variable == "completion_tokens_index")
1288
- ].copy()
1289
- completion_data["base_task"] = completion_data["cluster_name"].str.replace(
1290
- "::index", ""
1291
- )
1292
- onet_completion = completion_data.set_index("base_task")["value"].copy()
1293
-
1294
- # Get API call counts for bubble sizing and WLS weights
1295
- api_records_data = df[
1296
- (df.facet == "onet_task::prompt_tokens")
1297
- & (df.variable == "prompt_tokens_count")
1298
- ].copy()
1299
- api_records_data["base_task"] = api_records_data["cluster_name"].str.replace(
1300
- "::count", ""
1301
- )
1302
- onet_api_records = api_records_data.set_index("base_task")["value"].copy()
1303
-
1304
- # Create metrics DataFrame - values are already re-indexed during preprocessing
1305
- metrics = pd.DataFrame(
1306
- {
1307
- "cluster_name": onet_cost.index,
1308
- "cost_per_record": onet_cost, # Already indexed (1.0 = average)
1309
- "avg_prompt_tokens": onet_prompt.reindex(
1310
- onet_cost.index
1311
- ), # Already indexed
1312
- "avg_completion_tokens": onet_completion.reindex(
1313
- onet_cost.index
1314
- ), # Already indexed
1315
- }
1316
- )
1317
-
1318
- # Get task usage percentages
1319
- usage_pct_data = df[
1320
- (df.facet == "onet_task") & (df.variable == "onet_task_pct")
1321
- ].copy()
1322
- usage_pct_data["base_task"] = usage_pct_data["cluster_name"]
1323
- onet_usage_pct = usage_pct_data.set_index("base_task")["value"].copy()
1324
-
1325
- # Add API records and usage percentages
1326
- metrics["api_records"] = onet_api_records.reindex(onet_cost.index)
1327
- metrics["usage_pct"] = onet_usage_pct.reindex(onet_cost.index)
1328
-
1329
- # Calculate derived metrics
1330
- metrics["output_input_ratio"] = (
1331
- metrics["avg_completion_tokens"] / metrics["avg_prompt_tokens"]
1332
- )
1333
- metrics["total_tokens"] = (
1334
- metrics["avg_prompt_tokens"] + metrics["avg_completion_tokens"]
1335
- )
1336
-
1337
- return metrics
1338
-
1339
-
1340
- def add_occupational_categories_to_metrics(
1341
- task_metrics, task_statements, soc_structure
1342
- ):
1343
- """
1344
- Add occupational categories to task metrics based on ONET mappings.
1345
-
1346
- Args:
1347
- task_metrics: DataFrame with task metrics
1348
- task_statements: ONET task statements DataFrame
1349
- soc_structure: SOC structure DataFrame
1350
-
1351
- Returns:
1352
- DataFrame with occupational categories added
1353
- """
1354
- # Standardize task descriptions for matching
1355
- task_statements["task_standardized"] = (
1356
- task_statements["Task"].str.strip().str.lower()
1357
- )
1358
- task_metrics["cluster_name_standardized"] = (
1359
- task_metrics["cluster_name"].str.strip().str.lower()
1360
- )
1361
-
1362
- # Create mapping from standardized task to major group
1363
- task_to_major_group = {}
1364
- for _, row in task_statements.iterrows():
1365
- if pd.notna(row["Task"]) and pd.notna(row["soc_major_group"]):
1366
- std_task = row["task_standardized"]
1367
- major_group = str(int(row["soc_major_group"]))
1368
- task_to_major_group[std_task] = major_group
1369
-
1370
- # Map cluster names to major groups
1371
- task_metrics["soc_major"] = task_metrics["cluster_name_standardized"].map(
1372
- task_to_major_group
1373
- )
1374
-
1375
- # Get major occupational groups from SOC structure
1376
- major_groups = soc_structure[soc_structure["Major Group"].notna()].copy()
1377
- major_groups["soc_major"] = major_groups["Major Group"].astype(str).str[:2]
1378
- major_groups["title"] = major_groups["SOC or O*NET-SOC 2019 Title"]
1379
-
1380
- # Create a clean mapping from major group code to title
1381
- major_group_mapping = (
1382
- major_groups[["soc_major", "title"]]
1383
- .drop_duplicates()
1384
- .set_index("soc_major")["title"]
1385
- .to_dict()
1386
- )
1387
-
1388
- # Map major group codes to titles
1389
- task_metrics["occupational_category"] = task_metrics["soc_major"].map(
1390
- major_group_mapping
1391
- )
1392
-
1393
- # Remove unmapped/not classified tasks from analysis
1394
- task_metrics = task_metrics[task_metrics["occupational_category"].notna()].copy()
1395
-
1396
- # Find top 6 categories by usage share (API calls) and group others as "All Other"
1397
- category_usage = (
1398
- task_metrics.groupby("occupational_category")["api_records"]
1399
- .sum()
1400
- .sort_values(ascending=False)
1401
- )
1402
- top_6_categories = list(category_usage.head(6).index)
1403
-
1404
- # Group smaller categories as "All Other"
1405
- task_metrics["occupational_category"] = task_metrics["occupational_category"].apply(
1406
- lambda x: x if x in top_6_categories else "All Other"
1407
- )
1408
-
1409
- return task_metrics
1410
-
1411
-
1412
- def create_token_output_bar_chart(df, output_dir):
1413
- """
1414
- Create bar chart showing average output (completion) tokens by occupational category.
1415
-
1416
- Args:
1417
- df: Preprocessed data DataFrame
1418
- output_dir: Directory to save the figure
1419
- """
1420
- # Load ONET mappings for occupational categories
1421
- task_statements, soc_structure = load_onet_mappings()
1422
-
1423
- # Use preprocessed intersection data
1424
- task_metrics = extract_token_metrics_from_intersections(df)
1425
-
1426
- # Add occupational categories
1427
- task_metrics = add_occupational_categories_to_metrics(
1428
- task_metrics, task_statements, soc_structure
1429
- )
1430
-
1431
- # Calculate average output tokens by occupational category
1432
- category_stats = (
1433
- task_metrics.groupby("occupational_category")
1434
- .agg(
1435
- {
1436
- "avg_completion_tokens": "mean", # Average across tasks
1437
- "api_records": "sum", # Total API calls for ranking
1438
- }
1439
- )
1440
- .reset_index()
1441
- )
1442
-
1443
- # Find top 6 categories by total API calls
1444
- top_6_categories = category_stats.nlargest(6, "api_records")[
1445
- "occupational_category"
1446
- ].tolist()
1447
-
1448
- # Group smaller categories as "All Other"
1449
- def categorize(cat):
1450
- return cat if cat in top_6_categories else "All Other"
1451
-
1452
- task_metrics["category_group"] = task_metrics["occupational_category"].apply(
1453
- categorize
1454
- )
1455
-
1456
- # Recalculate stats with grouped categories
1457
- final_stats = (
1458
- task_metrics.groupby("category_group")
1459
- .agg(
1460
- {
1461
- "avg_completion_tokens": "mean", # Average output tokens across tasks
1462
- "api_records": "sum", # Total usage for reference
1463
- }
1464
- )
1465
- .reset_index()
1466
- )
1467
-
1468
- # Sort by output tokens (descending)
1469
- final_stats = final_stats.sort_values("avg_completion_tokens", ascending=True)
1470
-
1471
- # Create figure
1472
- fig, ax = plt.subplots(figsize=(12, 8))
1473
-
1474
- # Create horizontal bar chart
1475
- y_pos = np.arange(len(final_stats))
1476
- colors = [COLOR_CYCLE[i % len(COLOR_CYCLE)] for i in range(len(final_stats))]
1477
-
1478
- ax.barh(
1479
- y_pos,
1480
- final_stats["avg_completion_tokens"],
1481
- color=colors,
1482
- alpha=0.8,
1483
- edgecolor="#333333",
1484
- linewidth=0.5,
1485
- )
1486
-
1487
- # Add value labels
1488
- for i, (idx, row) in enumerate(final_stats.iterrows()):
1489
- ax.text(
1490
- row["avg_completion_tokens"] + 0.02,
1491
- i,
1492
- f"{row['avg_completion_tokens']:.2f}",
1493
- va="center",
1494
- fontsize=11,
1495
- fontweight="bold",
1496
- )
1497
-
1498
- # Clean up category labels
1499
- labels = []
1500
- for cat in final_stats["category_group"]:
1501
- clean_cat = cat.replace(" Occupations", "").replace(", and ", " & ")
1502
- labels.append(clean_cat)
1503
-
1504
- ax.set_yticks(y_pos)
1505
- ax.set_yticklabels(labels, fontsize=10)
1506
-
1507
- # Formatting
1508
- ax.set_xlabel(
1509
- "Average output token index for observed tasks in a given category",
1510
- fontsize=12,
1511
- )
1512
- ax.set_title(
1513
- "Average output token index across leading occupational categories",
1514
- fontsize=14,
1515
- fontweight="bold",
1516
- pad=20,
1517
- )
1518
-
1519
- # Grid and styling
1520
- ax.grid(True, alpha=0.3, axis="x")
1521
- ax.set_axisbelow(True)
1522
- ax.spines["top"].set_visible(False)
1523
- ax.spines["right"].set_visible(False)
1524
- ax.tick_params(axis="x", which="major", labelsize=11)
1525
-
1526
- plt.tight_layout()
1527
-
1528
- # Save plot
1529
- output_path = Path(output_dir) / "token_output_bar_chart.png"
1530
- plt.savefig(output_path, dpi=300, bbox_inches="tight")
1531
- plt.show()
1532
- return str(output_path)
1533
-
1534
-
1535
- def create_completion_vs_input_tokens_scatter(df, output_dir):
1536
- """
1537
- Create scatter plot of ln(completion tokens) vs ln(input tokens) by occupational category.
1538
-
1539
- Args:
1540
- df: Preprocessed data DataFrame
1541
- output_dir: Directory to save the figure
1542
- """
1543
- # Use preprocessed intersection data
1544
- task_metrics = extract_token_metrics_from_intersections(df)
1545
-
1546
- # Create figure
1547
- fig, ax = plt.subplots(figsize=(12, 8))
1548
-
1549
- # Transform to natural log
1550
- ln_input = np.log(task_metrics["avg_prompt_tokens"])
1551
- ln_output = np.log(task_metrics["avg_completion_tokens"])
1552
-
1553
- # Load ONET mappings for occupational categories
1554
- task_statements, soc_structure = load_onet_mappings()
1555
-
1556
- # Add occupational categories
1557
- # Standardize task descriptions for matching
1558
- task_statements["task_standardized"] = (
1559
- task_statements["Task"].str.strip().str.lower()
1560
- )
1561
- task_metrics["cluster_name_standardized"] = (
1562
- task_metrics.index.str.strip().str.lower()
1563
- )
1564
-
1565
- # Create mapping from standardized task to major group
1566
- task_to_major_group = {}
1567
- for _, row in task_statements.iterrows():
1568
- if pd.notna(row["Task"]) and pd.notna(row["soc_major_group"]):
1569
- std_task = row["task_standardized"]
1570
- major_group = str(int(row["soc_major_group"]))[:2]
1571
- task_to_major_group[std_task] = major_group
1572
-
1573
- # Map cluster names to major groups
1574
- task_metrics["soc_major"] = task_metrics["cluster_name_standardized"].map(
1575
- task_to_major_group
1576
- )
1577
-
1578
- # Get major occupational groups from SOC structure
1579
- major_groups = soc_structure[soc_structure["Major Group"].notna()].copy()
1580
- major_groups["soc_major"] = major_groups["Major Group"].astype(str).str[:2]
1581
- major_groups["title"] = major_groups["SOC or O*NET-SOC 2019 Title"]
1582
-
1583
- # Create mapping from major group code to title
1584
- major_group_mapping = (
1585
- major_groups[["soc_major", "title"]]
1586
- .drop_duplicates()
1587
- .set_index("soc_major")["title"]
1588
- .to_dict()
1589
- )
1590
-
1591
- # Map major group codes to titles
1592
- task_metrics["occupational_category"] = task_metrics["soc_major"].map(
1593
- major_group_mapping
1594
- )
1595
-
1596
- # Remove unmapped tasks
1597
- task_metrics = task_metrics[task_metrics["occupational_category"].notna()].copy()
1598
-
1599
- # Find top 6 categories by total API calls and group others as "All Other"
1600
- category_usage = (
1601
- task_metrics.groupby("occupational_category")["api_records"]
1602
- .sum()
1603
- .sort_values(ascending=False)
1604
- )
1605
- top_6_categories = list(category_usage.head(6).index)
1606
-
1607
- # Group smaller categories as "All Other"
1608
- task_metrics["occupational_category"] = task_metrics["occupational_category"].apply(
1609
- lambda x: x if x in top_6_categories else "All Other"
1610
- )
1611
-
1612
- # Transform to natural log
1613
- ln_input = np.log(task_metrics["avg_prompt_tokens"])
1614
- ln_output = np.log(task_metrics["avg_completion_tokens"])
1615
-
1616
- # Create scatter plot with same color scheme as bar chart
1617
- # Use exact same logic as token output bar chart for consistent colors
1618
- category_stats = (
1619
- task_metrics.groupby("occupational_category")
1620
- .agg(
1621
- {
1622
- "avg_completion_tokens": "mean",
1623
- "api_records": "sum",
1624
- }
1625
- )
1626
- .reset_index()
1627
- )
1628
-
1629
- # Find top 6 categories by total API calls
1630
- top_6_categories = category_stats.nlargest(6, "api_records")[
1631
- "occupational_category"
1632
- ].tolist()
1633
-
1634
- # Group smaller categories as "All Other"
1635
- def categorize(cat):
1636
- return cat if cat in top_6_categories else "All Other"
1637
-
1638
- task_metrics["category_group"] = task_metrics["occupational_category"].apply(
1639
- categorize
1640
- )
1641
-
1642
- # Recalculate final stats with grouped categories
1643
- final_stats = (
1644
- task_metrics.groupby("category_group")
1645
- .agg({"avg_completion_tokens": "mean"})
1646
- .reset_index()
1647
- .sort_values("avg_completion_tokens", ascending=True)
1648
- )
1649
-
1650
- # Use exact same color assignment as bar chart
1651
- categories_ordered = final_stats["category_group"].tolist()
1652
- category_colors = {}
1653
- for i, category in enumerate(categories_ordered):
1654
- category_colors[category] = COLOR_CYCLE[i % len(COLOR_CYCLE)]
1655
-
1656
- for category in categories_ordered:
1657
- category_data = task_metrics[task_metrics["category_group"] == category]
1658
- if not category_data.empty:
1659
- ln_input_cat = np.log(category_data["avg_prompt_tokens"])
1660
- ln_output_cat = np.log(category_data["avg_completion_tokens"])
1661
- bubble_sizes_cat = np.sqrt(category_data["api_records"]) * 2
1662
-
1663
- # Clean up category name for legend
1664
- clean_name = category.replace(" Occupations", "").replace(", and ", " & ")
1665
-
1666
- ax.scatter(
1667
- ln_input_cat,
1668
- ln_output_cat,
1669
- s=bubble_sizes_cat,
1670
- alpha=0.8,
1671
- c=category_colors[category],
1672
- edgecolors="black",
1673
- linewidth=0.2,
1674
- )
1675
-
1676
- # Create uniform legend entries
1677
- legend_elements = []
1678
- for category in categories_ordered:
1679
- clean_name = category.replace(" Occupations", "").replace(", and ", " & ")
1680
- # Get count for this category
1681
- category_count = len(task_metrics[task_metrics["category_group"] == category])
1682
- legend_elements.append(
1683
- plt.scatter(
1684
- [],
1685
- [],
1686
- s=100,
1687
- alpha=0.8,
1688
- c=category_colors[category],
1689
- edgecolors="black",
1690
- linewidth=0.2,
1691
- label=f"{clean_name} (N={category_count})",
1692
- )
1693
- )
1694
-
1695
- # Add legend for occupational categories with uniform sizes
1696
- ax.legend(
1697
- bbox_to_anchor=(1.05, 1), loc="upper left", frameon=True, facecolor="white"
1698
- )
1699
-
1700
- # Add line of best fit
1701
- model = sm.OLS(ln_output, sm.add_constant(ln_input)).fit()
1702
- slope = model.params.iloc[1]
1703
- intercept = model.params.iloc[0]
1704
- r_squared = model.rsquared
1705
-
1706
- line_x = np.linspace(ln_input.min(), ln_input.max(), 100)
1707
- line_y = slope * line_x + intercept
1708
- ax.plot(
1709
- line_x,
1710
- line_y,
1711
- "k--",
1712
- alpha=0.7,
1713
- linewidth=2,
1714
- label=f"Best fit (R² = {r_squared:.3f}, $\\beta$ = {slope:.3f})",
1715
- )
1716
- ax.legend()
1717
-
1718
- # Customize plot
1719
- ax.set_xlabel("ln(Input Token Index)", fontsize=12)
1720
- ax.set_ylabel("ln(Output Token Index)", fontsize=12)
1721
- ax.set_title(
1722
- "Output Token Index vs Input Token Index across tasks",
1723
- fontsize=14,
1724
- fontweight="bold",
1725
- pad=20,
1726
- )
1727
- ax.grid(True, alpha=0.3)
1728
-
1729
- plt.tight_layout()
1730
-
1731
- # Save plot
1732
- output_path = Path(output_dir) / "completion_vs_input_tokens_scatter.png"
1733
- plt.savefig(output_path, dpi=300, bbox_inches="tight")
1734
- plt.show()
1735
- return str(output_path)
1736
-
1737
-
1738
- def create_occupational_usage_cost_scatter(df, output_dir):
1739
- """
1740
- Create aggregated scatter plot of usage share vs average cost per API call by occupational category.
1741
-
1742
- Args:
1743
- df: Preprocessed data DataFrame
1744
- output_dir: Directory to save the figure
1745
- """
1746
- # Load ONET mappings for occupational categories
1747
- task_statements, soc_structure = load_onet_mappings()
1748
-
1749
- # Use preprocessed intersection data
1750
- task_metrics = extract_token_metrics_from_intersections(df)
1751
-
1752
- # Add occupational categories without grouping into "All Other"
1753
- # Standardize task descriptions for matching
1754
- task_statements["task_standardized"] = (
1755
- task_statements["Task"].str.strip().str.lower()
1756
- )
1757
- task_metrics["cluster_name_standardized"] = (
1758
- task_metrics["cluster_name"].str.strip().str.lower()
1759
- )
1760
-
1761
- # Create mapping from standardized task to major group
1762
- task_to_major_group = {}
1763
- for _, row in task_statements.iterrows():
1764
- if pd.notna(row["Task"]) and pd.notna(row["soc_major_group"]):
1765
- std_task = row["task_standardized"]
1766
- major_group = str(int(row["soc_major_group"]))
1767
- task_to_major_group[std_task] = major_group
1768
-
1769
- # Map cluster names to major groups
1770
- task_metrics["soc_major"] = task_metrics["cluster_name_standardized"].map(
1771
- task_to_major_group
1772
- )
1773
-
1774
- # Get major occupational groups from SOC structure
1775
- major_groups = soc_structure[soc_structure["Major Group"].notna()].copy()
1776
- major_groups["soc_major"] = major_groups["Major Group"].astype(str).str[:2]
1777
- major_groups["title"] = major_groups["SOC or O*NET-SOC 2019 Title"]
1778
-
1779
- # Create a clean mapping from major group code to title
1780
- major_group_mapping = (
1781
- major_groups[["soc_major", "title"]]
1782
- .drop_duplicates()
1783
- .set_index("soc_major")["title"]
1784
- .to_dict()
1785
- )
1786
-
1787
- # Map major group codes to titles
1788
- task_metrics["occupational_category"] = task_metrics["soc_major"].map(
1789
- major_group_mapping
1790
- )
1791
-
1792
- # Remove unmapped/not classified tasks from analysis
1793
- task_metrics = task_metrics[task_metrics["occupational_category"].notna()].copy()
1794
-
1795
- # Aggregate by occupational category using pre-calculated percentages
1796
- category_aggregates = (
1797
- task_metrics.groupby("occupational_category")
1798
- .agg(
1799
- {
1800
- "usage_pct": "sum", # Sum of pre-calculated task percentages within category
1801
- "cost_per_record": "mean", # Average cost per API call for this category
1802
- }
1803
- )
1804
- .reset_index()
1805
- )
1806
-
1807
- # Usage share is already calculated from preprocessing
1808
- category_aggregates["usage_share"] = category_aggregates["usage_pct"]
1809
-
1810
- # Create figure
1811
- fig, ax = plt.subplots(figsize=(12, 8))
1812
-
1813
- # Transform variables to natural log
1814
- ln_cost = np.log(category_aggregates["cost_per_record"])
1815
- ln_usage = np.log(category_aggregates["usage_share"])
1816
-
1817
- # Get colors for each category - use same logic as token output bar chart
1818
- # Sort by a metric to ensure consistent ordering (using usage_share descending)
1819
- category_aggregates_sorted = category_aggregates.sort_values(
1820
- "usage_share", ascending=False
1821
- )
1822
-
1823
- category_colors = {}
1824
- for i, category in enumerate(category_aggregates_sorted["occupational_category"]):
1825
- category_colors[category] = COLOR_CYCLE[i % len(COLOR_CYCLE)]
1826
-
1827
- # Create invisible scatter plot to maintain axis limits
1828
- ax.scatter(
1829
- ln_cost,
1830
- ln_usage,
1831
- s=0, # Invisible markers
1832
- alpha=0,
1833
- )
1834
-
1835
- # Add line of best fit
1836
- model = sm.OLS(ln_usage, sm.add_constant(ln_cost)).fit()
1837
- slope = model.params.iloc[1]
1838
- intercept = model.params.iloc[0]
1839
- r_squared = model.rsquared
1840
-
1841
- # Generate line points
1842
- x_line = np.linspace(ln_cost.min(), ln_cost.max(), 50)
1843
- y_line = slope * x_line + intercept
1844
-
1845
- # Plot the line of best fit
1846
- ax.plot(
1847
- x_line,
1848
- y_line,
1849
- "--",
1850
- color="black",
1851
- linewidth=2,
1852
- alpha=0.8,
1853
- label=f"Best fit (R² = {r_squared:.3f}, $\\beta$ = {slope:.3f})",
1854
- )
1855
-
1856
- # Add legend
1857
- legend = ax.legend(loc="best", frameon=True, facecolor="white")
1858
- legend.get_frame().set_alpha(0.9)
1859
-
1860
- # Add category labels centered at data points with text wrapping
1861
- for i, row in category_aggregates.iterrows():
1862
- # Clean up and wrap category names
1863
- clean_name = (
1864
- row["occupational_category"]
1865
- .replace(" Occupations", "")
1866
- .replace(", and ", " & ")
1867
- )
1868
- # Wrap long category names to multiple lines
1869
- wrapped_name = "\n".join(wrap(clean_name, 20))
1870
-
1871
- ax.text(
1872
- ln_cost.iloc[i],
1873
- ln_usage.iloc[i],
1874
- wrapped_name,
1875
- ha="center",
1876
- va="center",
1877
- fontsize=8,
1878
- alpha=0.9,
1879
- )
1880
-
1881
- # Set labels and title
1882
- ax.set_xlabel("ln(Average API Cost Index across tasks)", fontsize=12)
1883
- ax.set_ylabel("ln(Usage share (%))", fontsize=12)
1884
- ax.set_title(
1885
- "Usage share and average API cost index by occupational category",
1886
- fontsize=14,
1887
- fontweight="bold",
1888
- pad=20,
1889
- )
1890
-
1891
- # Add grid
1892
- ax.grid(True, alpha=0.3)
1893
-
1894
- # Adjust layout and save
1895
- plt.tight_layout()
1896
-
1897
- output_path = Path(output_dir) / "occupational_usage_cost_scatter.png"
1898
- plt.savefig(output_path, dpi=300, bbox_inches="tight")
1899
- plt.show()
1900
- return str(output_path)
1901
-
1902
-
1903
- def get_merged_api_claude_task_data(api_df, cai_df):
1904
- """
1905
- Create merged dataset with API cost/usage data and Claude.ai collaboration modes.
1906
-
1907
- Args:
1908
- api_df: API preprocessed data DataFrame
1909
- cai_df: Claude.ai preprocessed data DataFrame
1910
-
1911
- Returns:
1912
- DataFrame with API cost data + Claude.ai collaboration patterns for common tasks
1913
- """
1914
- # Extract API token metrics
1915
- api_metrics = extract_token_metrics_from_intersections(api_df)
1916
-
1917
- # Get Claude.ai collaboration shares
1918
- claude_collab_shares = get_collaboration_shares(cai_df)
1919
-
1920
- # Find common tasks between both platforms
1921
- api_tasks = set(api_metrics.index)
1922
- claude_tasks = set(claude_collab_shares.keys())
1923
- common_tasks = api_tasks.intersection(claude_tasks)
1924
-
1925
- # Create merged dataset
1926
- merged_data = []
1927
-
1928
- for task_name in common_tasks:
1929
- # Get API metrics for this task
1930
- api_row = api_metrics.loc[task_name]
1931
-
1932
- # Get Claude.ai collaboration for this task
1933
- claude_collab = claude_collab_shares[task_name]
1934
-
1935
- # Create merged row
1936
- merged_row = {
1937
- "cluster_name": task_name,
1938
- "cost_per_record": api_row["cost_per_record"],
1939
- "avg_prompt_tokens": api_row["avg_prompt_tokens"],
1940
- "avg_completion_tokens": api_row["avg_completion_tokens"],
1941
- "api_records": api_row["api_records"],
1942
- "output_input_ratio": api_row["output_input_ratio"],
1943
- "total_tokens": api_row["total_tokens"],
1944
- # Claude.ai collaboration modes
1945
- "collab_directive": claude_collab.get("directive", 0),
1946
- "collab_feedback_loop": claude_collab.get("feedback loop", 0),
1947
- "collab_learning": claude_collab.get("learning", 0),
1948
- "collab_task_iteration": claude_collab.get("task iteration", 0),
1949
- "collab_validation": claude_collab.get("validation", 0),
1950
- }
1951
- merged_data.append(merged_row)
1952
-
1953
- merged_df = pd.DataFrame(merged_data)
1954
- merged_df.set_index("cluster_name", inplace=True)
1955
-
1956
- return merged_df
1957
-
1958
-
1959
- def reg_build_df(api_df, cai_df):
1960
- """
1961
- Build complete regression dataset for partial regression and full regression analysis.
1962
- Each row is an ONET task with all variables needed for figures and regression.
1963
-
1964
- Args:
1965
- api_df: API preprocessed data DataFrame
1966
- cai_df: Claude.ai preprocessed data DataFrame
1967
-
1968
- Returns:
1969
- DataFrame with complete regression dataset
1970
- """
1971
- # Load ONET mappings
1972
- task_statements, soc_structure = load_onet_mappings()
1973
-
1974
- # Use merged dataset with API metrics + Claude.ai collaboration
1975
- task_metrics = get_merged_api_claude_task_data(api_df, cai_df)
1976
-
1977
- # Add occupational categories (includes "All Other" grouping)
1978
- task_metrics_with_names = task_metrics.reset_index()
1979
- task_metrics_with_names = add_occupational_categories_to_metrics(
1980
- task_metrics_with_names, task_statements, soc_structure
1981
- )
1982
- task_metrics = task_metrics_with_names.set_index("cluster_name")
1983
-
1984
- # Add collaboration missing dummies
1985
- collaboration_modes = [
1986
- "directive",
1987
- "feedback_loop",
1988
- "learning",
1989
- "task_iteration",
1990
- "validation",
1991
- ]
1992
-
1993
- for mode in collaboration_modes:
1994
- collab_col = f"collab_{mode}"
1995
- missing_col = f"collab_{mode}_missing"
1996
- if collab_col in task_metrics.columns:
1997
- task_metrics[missing_col] = (task_metrics[collab_col] == 0).astype(int)
1998
- else:
1999
- task_metrics[missing_col] = 1
2000
-
2001
- # Calculate usage variables
2002
- total_api_records = task_metrics["api_records"].sum()
2003
- task_metrics["usage_share"] = (
2004
- task_metrics["api_records"] / total_api_records
2005
- ) * 100
2006
- task_metrics["ln_usage_share"] = np.log(task_metrics["usage_share"])
2007
- task_metrics["ln_cost_per_task"] = np.log(task_metrics["cost_per_record"])
2008
-
2009
- # Use all data
2010
- valid_data = task_metrics
2011
-
2012
- # Create occupational category dummies while preserving original column
2013
- valid_data = pd.get_dummies(
2014
- valid_data, columns=["occupational_category"], prefix="occ"
2015
- )
2016
-
2017
- # Restore the original occupational_category column for grouping operations
2018
- # Extract category name from the dummy columns that are 1
2019
- occ_cols = [col for col in valid_data.columns if col.startswith("occ_")]
2020
- valid_data["occupational_category"] = ""
2021
- for col in occ_cols:
2022
- category_name = col.replace("occ_", "")
2023
- mask = valid_data[col] == 1
2024
- valid_data.loc[mask, "occupational_category"] = category_name
2025
-
2026
- return valid_data
2027
-
2028
-
2029
- def create_partial_regression_plot(api_df, cai_df, output_dir):
2030
- """
2031
- Create partial regression scatter plot of usage share vs cost, controlling for occupational categories.
2032
-
2033
- Args:
2034
- api_df: API preprocessed data DataFrame
2035
- cai_df: Claude.ai preprocessed data DataFrame
2036
- output_dir: Directory to save the figure
2037
-
2038
- Returns:
2039
- Tuple of (output_path, regression_results_dict)
2040
- """
2041
- # Use centralized data preparation (includes occupational dummies)
2042
- valid_metrics = reg_build_df(api_df, cai_df)
2043
-
2044
- # Extract occupational dummies and collaboration variables
2045
- occ_cols = [col for col in valid_metrics.columns if col.startswith("occ_")]
2046
- collab_vars = [
2047
- "collab_directive",
2048
- "collab_feedback_loop",
2049
- "collab_learning",
2050
- "collab_task_iteration",
2051
- "collab_validation",
2052
- ]
2053
- collab_missing_vars = [
2054
- "collab_directive_missing",
2055
- "collab_feedback_loop_missing",
2056
- "collab_learning_missing",
2057
- "collab_task_iteration_missing",
2058
- "collab_validation_missing",
2059
- ]
2060
-
2061
- # Control variables (all occupational dummies + collaboration modes)
2062
- control_vars = valid_metrics[occ_cols + collab_vars + collab_missing_vars].astype(
2063
- float
2064
- )
2065
-
2066
- # Ensure dependent variables are float
2067
- y_usage = valid_metrics["ln_usage_share"].astype(float)
2068
- y_cost = valid_metrics["ln_cost_per_task"].astype(float)
2069
-
2070
- # Step 1: Regress ln(usage_share) on controls (no constant)
2071
- usage_model = sm.OLS(y_usage, control_vars).fit()
2072
- usage_residuals = usage_model.resid
2073
-
2074
- # Step 2: Regress ln(cost) on controls (no constant)
2075
- cost_model = sm.OLS(y_cost, control_vars).fit()
2076
- cost_residuals = cost_model.resid
2077
-
2078
- # Find top 6 categories by usage share for coloring
2079
- category_usage = (
2080
- valid_metrics.groupby("occupational_category")["api_records"]
2081
- .sum()
2082
- .sort_values(ascending=False)
2083
- )
2084
- top_6_categories = list(category_usage.head(6).index)
2085
-
2086
- # Create category grouping for coloring
2087
- valid_metrics["category_group"] = valid_metrics["occupational_category"].apply(
2088
- lambda x: x if x in top_6_categories else "All Other"
2089
- )
2090
-
2091
- # Create figure
2092
- fig, ax = plt.subplots(figsize=(14, 10))
2093
-
2094
- # Create color mapping for top 6 + "All Other"
2095
- unique_groups = valid_metrics["category_group"].unique()
2096
- group_colors = {}
2097
- color_idx = 0
2098
-
2099
- # Assign colors to top 6 categories first
2100
- for cat in top_6_categories:
2101
- if cat in unique_groups:
2102
- group_colors[cat] = COLOR_CYCLE[color_idx % len(COLOR_CYCLE)]
2103
- color_idx += 1
2104
-
2105
- # Assign color to "All Other"
2106
- if "All Other" in unique_groups:
2107
- group_colors["All Other"] = "#999999" # Gray for all other
2108
-
2109
- # Create single scatter plot (no color by group)
2110
- ax.scatter(
2111
- cost_residuals,
2112
- usage_residuals,
2113
- s=100,
2114
- alpha=0.8,
2115
- color=COLOR_CYCLE[0],
2116
- edgecolors="black",
2117
- linewidth=0.2,
2118
- )
2119
-
2120
- # Add overall trend line for residuals
2121
- model = sm.OLS(usage_residuals, sm.add_constant(cost_residuals)).fit()
2122
- slope = model.params.iloc[1]
2123
- intercept = model.params.iloc[0]
2124
- r_squared = model.rsquared
2125
-
2126
- line_x = np.linspace(cost_residuals.min(), cost_residuals.max(), 100)
2127
- line_y = slope * line_x + intercept
2128
- ax.plot(
2129
- line_x,
2130
- line_y,
2131
- "k--",
2132
- alpha=0.8,
2133
- linewidth=2,
2134
- label=f"Partial relationship (R² = {r_squared:.3f})",
2135
- )
2136
-
2137
- # Customize plot
2138
- ax.set_xlabel("Residual ln(API Cost Index)")
2139
- ax.set_ylabel("Residual ln(Usage share (%))")
2140
- ax.set_title(
2141
- "Task usage share vs API Cost Index \n(partial regression after controlling for task characteristics)",
2142
- fontsize=16,
2143
- fontweight="bold",
2144
- pad=20,
2145
- )
2146
- ax.grid(True, alpha=0.3)
2147
-
2148
- # Simple legend with just the trend line
2149
- ax.legend(loc="best", frameon=True, facecolor="white", framealpha=0.9, fontsize=11)
2150
-
2151
- plt.tight_layout()
2152
-
2153
- # Save plot
2154
- output_path = Path(output_dir) / "partial_regression_plot.png"
2155
- plt.savefig(output_path, dpi=300, bbox_inches="tight")
2156
- plt.show()
2157
-
2158
- # Save regression results
2159
- regression_results = {
2160
- "partial_correlation": np.sqrt(r_squared),
2161
- "partial_r_squared": r_squared,
2162
- "slope": slope,
2163
- "intercept": intercept,
2164
- "n_observations": len(valid_metrics),
2165
- "usage_model_summary": str(usage_model.summary()),
2166
- "cost_model_summary": str(cost_model.summary()),
2167
- }
2168
-
2169
- # Print regression results instead of saving to file
2170
- print("Partial Regression Analysis Results")
2171
- print("=" * 50)
2172
- print(f"Partial correlation: {np.sqrt(r_squared):.4f}")
2173
- print(f"Partial R-squared: {r_squared:.4f}")
2174
- print(f"Slope: {slope:.4f}")
2175
- print(f"Intercept: {intercept:.4f}")
2176
- print(f"Number of observations: {len(valid_metrics)}")
2177
- print("\nUsage Model Summary:")
2178
- print("-" * 30)
2179
- print(usage_model.summary())
2180
- print("\nCost Model Summary:")
2181
- print("-" * 30)
2182
- print(cost_model.summary())
2183
-
2184
- return str(output_path), regression_results
2185
-
2186
-
2187
- def perform_usage_share_regression_unweighted(api_df, cai_df, output_dir):
2188
- """
2189
- Perform unweighted usage share regression analysis using Claude.ai collaboration modes.
2190
-
2191
- Args:
2192
- api_df: API preprocessed data DataFrame
2193
- cai_df: Claude.ai preprocessed data DataFrame
2194
- output_dir: Directory to save regression results
2195
-
2196
- Returns:
2197
- OLS model results
2198
- """
2199
- # Use centralized data preparation (includes all dummies)
2200
- valid_data = reg_build_df(api_df, cai_df)
2201
-
2202
- # Extract all regression variables
2203
- X_cols = ["ln_cost_per_task"]
2204
- X_cols.extend(
2205
- [
2206
- f"collab_{mode}"
2207
- for mode in [
2208
- "directive",
2209
- "feedback_loop",
2210
- "learning",
2211
- "task_iteration",
2212
- "validation",
2213
- ]
2214
- ]
2215
- )
2216
- X_cols.extend(
2217
- [
2218
- f"collab_{mode}_missing"
2219
- for mode in [
2220
- "directive",
2221
- "feedback_loop",
2222
- "learning",
2223
- "task_iteration",
2224
- "validation",
2225
- ]
2226
- ]
2227
- )
2228
- X_cols.extend([col for col in valid_data.columns if col.startswith("occ_")])
2229
-
2230
- # Ensure all columns are numeric
2231
- X = valid_data[X_cols].astype(float)
2232
- y = valid_data["ln_usage_share"].astype(float)
2233
-
2234
- # Run unweighted OLS without constant (to include all occupational dummies)
2235
- model = sm.OLS(y, X).fit()
2236
-
2237
- # Get heteroskedasticity-robust standard errors (HC1)
2238
- model_robust = model.get_robustcov_results(cov_type="HC1")
2239
-
2240
- return model_robust
2241
-
2242
-
2243
- def create_btos_ai_adoption_chart(btos_df, ref_dates_df, output_dir):
2244
- """
2245
- Create BTOS AI adoption time series chart.
2246
-
2247
- Args:
2248
- btos_df: BTOS response estimates DataFrame
2249
- ref_dates_df: Collection and reference dates DataFrame
2250
- output_dir: Directory to save the figure
2251
- """
2252
- # Filter for Question ID 7, Answer ID 1 (Yes response to AI usage)
2253
- btos_filtered = btos_df[(btos_df["Question ID"] == 7) & (btos_df["Answer ID"] == 1)]
2254
-
2255
- # Get date columns (string columns that look like YYYYWW)
2256
- date_columns = [
2257
- col for col in btos_df.columns[4:] if str(col).isdigit() and len(str(col)) == 6
2258
- ]
2259
-
2260
- # Extract time series
2261
- btos_ts = btos_filtered[date_columns].T
2262
- btos_ts.columns = ["percentage"]
2263
-
2264
- # Map to reference end dates
2265
- ref_dates_df["Ref End"] = pd.to_datetime(ref_dates_df["Ref End"])
2266
- btos_ts = btos_ts.reset_index()
2267
- btos_ts["smpdt"] = btos_ts["index"].astype(int)
2268
- btos_ts = btos_ts.merge(
2269
- ref_dates_df[["Smpdt", "Ref End"]],
2270
- left_on="smpdt",
2271
- right_on="Smpdt",
2272
- how="left",
2273
- )
2274
- btos_ts = btos_ts.set_index("Ref End")[["percentage"]]
2275
-
2276
- # Convert percentage strings to numeric
2277
- btos_ts["percentage"] = btos_ts["percentage"].str.rstrip("%").astype(float)
2278
- btos_ts = btos_ts.sort_index().dropna()
2279
-
2280
- # Calculate 3-period moving average
2281
- btos_ts["moving_avg"] = btos_ts["percentage"].rolling(window=3).mean()
2282
-
2283
- # Create figure
2284
- fig, ax = plt.subplots(figsize=(14, 8))
2285
-
2286
- # Plot main line
2287
- ax.plot(
2288
- btos_ts.index,
2289
- btos_ts["percentage"],
2290
- linewidth=3,
2291
- marker="o",
2292
- markersize=6,
2293
- label="AI Adoption Rate Among US Businesses",
2294
- zorder=3,
2295
- )
2296
-
2297
- # Plot moving average
2298
- ax.plot(
2299
- btos_ts.index,
2300
- btos_ts["moving_avg"],
2301
- linewidth=2,
2302
- linestyle="--",
2303
- alpha=0.8,
2304
- label="3-Period Moving Average",
2305
- zorder=2,
2306
- )
2307
-
2308
- # Styling
2309
- ax.set_xlabel("Date", fontsize=14)
2310
- ax.set_ylabel("AI adoption rate (%)", fontsize=14)
2311
- ax.set_title(
2312
- "Census reported AI adoption rates among US businesses from the Business Trends and Outlook Survey",
2313
- fontsize=16,
2314
- fontweight="bold",
2315
- pad=20,
2316
- )
2317
-
2318
- # Format y-axis as percentage
2319
- ax.set_ylim(0, max(btos_ts["percentage"]) * 1.1)
2320
-
2321
- # Rotate x-axis labels
2322
- ax.tick_params(axis="x", rotation=45)
2323
-
2324
- # Grid and styling
2325
- ax.grid(True, alpha=0.3, linestyle="--")
2326
- ax.set_axisbelow(True)
2327
- ax.spines["top"].set_visible(False)
2328
- ax.spines["right"].set_visible(False)
2329
-
2330
- # Legend
2331
- ax.legend(loc="upper left", fontsize=11, frameon=True, facecolor="white")
2332
-
2333
- plt.tight_layout()
2334
-
2335
- # Save plot
2336
- output_path = Path(output_dir) / "btos_ai_adoption_chart.png"
2337
- plt.savefig(output_path, dpi=300, bbox_inches="tight")
2338
- plt.show()
2339
- return str(output_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/code/aei_analysis_functions_claude_ai.py DELETED
@@ -1,2926 +0,0 @@
1
- #!/usr/bin/env python3
2
- """
3
- Analysis functions for AEI Report v3 Claude.ai chapter
4
- """
5
-
6
- import textwrap
7
-
8
- import geopandas as gpd
9
- import matplotlib.colors as mcolors
10
- import matplotlib.patches as mpatches
11
- import matplotlib.pyplot as plt
12
- import numpy as np
13
- import pandas as pd
14
- import statsmodels.api as sm
15
- from matplotlib.colors import LinearSegmentedColormap, Normalize, TwoSlopeNorm
16
- from matplotlib.lines import Line2D
17
- from matplotlib.patches import FancyBboxPatch, Patch
18
- from mpl_toolkits.axes_grid1 import make_axes_locatable
19
-
20
- # global list of excluded countries (ISO-3 codes)
21
- EXCLUDED_COUNTRIES = [
22
- "AFG",
23
- "BLR",
24
- "COD",
25
- "CAF",
26
- "CHN",
27
- "CUB",
28
- "ERI",
29
- "ETH",
30
- "HKG",
31
- "IRN",
32
- "PRK",
33
- "LBY",
34
- "MLI",
35
- "MMR",
36
- "MAC",
37
- "NIC",
38
- "RUS",
39
- "SDN",
40
- "SOM",
41
- "SSD",
42
- "SYR",
43
- "VEN",
44
- "YEM",
45
- ]
46
-
47
- # Minimum observation thresholds
48
- MIN_OBSERVATIONS_COUNTRY = 200 # Threshold for countries
49
- MIN_OBSERVATIONS_US_STATE = 100 # Threshold for US states
50
-
51
- # Define the tier colors
52
- TIER_COLORS_LIST = ["#E6DBD0", "#E5C5AB", "#E4AF86", "#E39961", "#D97757"]
53
-
54
- # Anthropic brand color for borders
55
- ANTHROPIC_OAT = "#E3DACC"
56
- AUGMENTATION_COLOR = "#00A078"
57
- AUTOMATION_COLOR = "#FF9940"
58
-
59
- # Standard tier color mapping used throughout
60
- TIER_COLORS_DICT = {
61
- "Minimal": TIER_COLORS_LIST[0], # Lightest
62
- "Emerging (bottom 25%)": TIER_COLORS_LIST[1],
63
- "Lower middle (25-50%)": TIER_COLORS_LIST[2],
64
- "Upper middle (50-75%)": TIER_COLORS_LIST[3],
65
- "Leading (top 25%)": TIER_COLORS_LIST[4], # Darkest
66
- }
67
-
68
- # Standard tier ordering
69
- TIER_ORDER = [
70
- "Leading (top 25%)",
71
- "Upper middle (50-75%)",
72
- "Lower middle (25-50%)",
73
- "Emerging (bottom 25%)",
74
- "Minimal",
75
- ]
76
-
77
- # Numeric tier color mapping (for tier values 0-4)
78
- TIER_COLORS_NUMERIC = {i: color for i, color in enumerate(TIER_COLORS_LIST)}
79
-
80
- # Numeric tier name mapping (for tier values 1-4 in actual data)
81
- TIER_NAMES_NUMERIC = {
82
- 1: "Emerging (bottom 25%)",
83
- 2: "Lower middle (25-50%)",
84
- 3: "Upper middle (50-75%)",
85
- 4: "Leading (top 25%)",
86
- }
87
-
88
- # Create a custom colormap that can be used for continuous variables
89
- CUSTOM_CMAP = LinearSegmentedColormap.from_list("custom_tier", TIER_COLORS_LIST, N=256)
90
-
91
- # Map layout constants
92
- MAP_PADDING_X = 0.25 # Horizontal padding for legend space
93
- MAP_PADDING_Y = 0.05 # Vertical padding
94
- ALASKA_INSET_BOUNDS = [0.26, 0.18, 0.15, 0.15] # [left, bottom, width, height]
95
- HAWAII_INSET_BOUNDS = [0.40, 0.18, 0.11, 0.11] # [left, bottom, width, height]
96
-
97
-
98
- # Figure style and setup
99
- def setup_plot_style():
100
- """Configure matplotlib."""
101
- plt.style.use("default")
102
- plt.rcParams.update(
103
- {
104
- "figure.dpi": 150,
105
- "savefig.dpi": 150,
106
- "font.size": 10,
107
- "axes.labelsize": 11,
108
- "axes.titlesize": 12,
109
- "xtick.labelsize": 9,
110
- "ytick.labelsize": 9,
111
- "legend.fontsize": 9,
112
- "figure.facecolor": "white",
113
- "axes.facecolor": "white",
114
- "savefig.facecolor": "white",
115
- "axes.edgecolor": "#333333",
116
- "axes.linewidth": 0.8,
117
- "axes.grid": True,
118
- "grid.alpha": 0.3,
119
- "grid.linestyle": "-",
120
- "grid.linewidth": 0.5,
121
- "axes.axisbelow": True,
122
- }
123
- )
124
-
125
-
126
- def create_figure(figsize=(12, 8), tight_layout=True, nrows=1, ncols=1):
127
- """Create a figure with consistent settings.
128
-
129
- Args:
130
- figsize: Figure size tuple
131
- tight_layout: Whether to use tight layout
132
- nrows: Number of subplot rows
133
- ncols: Number of subplot columns
134
-
135
- Returns:
136
- fig, ax or fig, axes depending on subplot configuration
137
- """
138
- fig, ax = plt.subplots(nrows, ncols, figsize=figsize)
139
- if tight_layout:
140
- fig.tight_layout()
141
- else:
142
- # Explicitly disable the layout engine to prevent warnings
143
- fig.set_layout_engine(layout="none")
144
- return fig, ax
145
-
146
-
147
- def format_axis(
148
- ax,
149
- xlabel=None,
150
- ylabel=None,
151
- title=None,
152
- xlabel_size=11,
153
- ylabel_size=11,
154
- title_size=13,
155
- grid=True,
156
- grid_alpha=0.3,
157
- ):
158
- """Apply consistent axis formatting."""
159
- if xlabel:
160
- ax.set_xlabel(xlabel, fontsize=xlabel_size)
161
- if ylabel:
162
- ax.set_ylabel(ylabel, fontsize=ylabel_size)
163
- if title:
164
- ax.set_title(title, fontsize=title_size, fontweight="bold", pad=15)
165
- if grid:
166
- ax.grid(True, alpha=grid_alpha)
167
- return ax
168
-
169
-
170
- def get_color_normalizer(values, center_at_one=False, vmin=None, vmax=None):
171
- """Create appropriate color normalizer for data."""
172
- if center_at_one:
173
- # Use TwoSlopeNorm for diverging around 1.0
174
- if vmin is None:
175
- vmin = min(values.min(), 0.1)
176
- if vmax is None:
177
- vmax = max(values.max(), 2.0)
178
- return TwoSlopeNorm(vmin=vmin, vcenter=1.0, vmax=vmax)
179
- else:
180
- # Use regular normalization
181
- if vmin is None:
182
- vmin = values.min()
183
- if vmax is None:
184
- vmax = values.max()
185
- return Normalize(vmin=vmin, vmax=vmax)
186
-
187
-
188
- def create_tier_legend(
189
- ax,
190
- tier_colors,
191
- tiers_in_data,
192
- excluded_countries=False,
193
- no_data=False,
194
- loc="lower left",
195
- title="Anthropic AI Usage Index tier",
196
- ):
197
- """Create a consistent tier legend for maps."""
198
- legend_elements = []
199
- for tier in TIER_ORDER:
200
- if tier in tiers_in_data:
201
- legend_elements.append(
202
- mpatches.Patch(
203
- facecolor=tier_colors[tier], edgecolor="none", label=tier
204
- )
205
- )
206
-
207
- if excluded_countries:
208
- legend_elements.append(
209
- mpatches.Patch(
210
- facecolor="#c0c0c0", edgecolor="white", label="Claude not available"
211
- )
212
- )
213
-
214
- if no_data:
215
- legend_elements.append(
216
- mpatches.Patch(facecolor="#f0f0f0", edgecolor="white", label="No data")
217
- )
218
-
219
- if legend_elements:
220
- ax.legend(
221
- handles=legend_elements,
222
- loc=loc,
223
- fontsize=10,
224
- bbox_to_anchor=(0, 0) if loc == "lower left" else None,
225
- title=title,
226
- title_fontsize=11,
227
- frameon=True,
228
- fancybox=True,
229
- shadow=True,
230
- )
231
-
232
- return ax
233
-
234
-
235
- # Data wrangling helpers
236
-
237
-
238
- def filter_df(df, **kwargs):
239
- """Universal filter helper for dataframes.
240
-
241
- Args:
242
- df: DataFrame to filter
243
- **kwargs: Column-value pairs to filter on
244
- Lists are handled with .isin()
245
-
246
- Returns:
247
- Filtered DataFrame
248
- """
249
- mask = pd.Series([True] * len(df), index=df.index)
250
-
251
- for key, value in kwargs.items():
252
- if value is None:
253
- continue # Skip None values
254
- if key in df.columns:
255
- if isinstance(value, list):
256
- mask = mask & df[key].isin(value)
257
- else:
258
- mask = mask & (df[key] == value)
259
-
260
- return df[mask]
261
-
262
-
263
- def get_filtered_geographies(df, min_obs_country=None, min_obs_state=None):
264
- """
265
- Get lists of countries and states that meet MIN_OBSERVATIONS thresholds.
266
-
267
- This function does NOT filter the dataframe - it only identifies which
268
- geographies meet the thresholds. The full dataframe is preserved
269
- so we can still report statistics for all geographies.
270
-
271
- Args:
272
- df: Input dataframe
273
- min_obs_country: Minimum observations for countries (default: MIN_OBSERVATIONS_COUNTRY)
274
- min_obs_state: Minimum observations for states (default: MIN_OBSERVATIONS_US_STATE)
275
-
276
- Returns:
277
- Tuple of (filtered_countries list, filtered_states list)
278
- """
279
- # Use defaults if not specified
280
- if min_obs_country is None:
281
- min_obs_country = MIN_OBSERVATIONS_COUNTRY
282
- if min_obs_state is None:
283
- min_obs_state = MIN_OBSERVATIONS_US_STATE
284
-
285
- # Get country usage counts
286
- country_usage = filter_df(df, facet="country", variable="usage_count").set_index(
287
- "geo_id"
288
- )["value"]
289
-
290
- # Get state usage counts
291
- state_usage = filter_df(df, facet="state_us", variable="usage_count").set_index(
292
- "geo_id"
293
- )["value"]
294
-
295
- # Get countries that meet threshold (excluding not_classified)
296
- filtered_countries = country_usage[country_usage >= min_obs_country].index.tolist()
297
- filtered_countries = [c for c in filtered_countries if c != "not_classified"]
298
-
299
- # Get states that meet threshold (excluding not_classified)
300
- filtered_states = state_usage[state_usage >= min_obs_state].index.tolist()
301
- filtered_states = [s for s in filtered_states if s != "not_classified"]
302
-
303
- return filtered_countries, filtered_states
304
-
305
-
306
- def filter_requests_by_threshold(df, geography, geo_id, level=1, threshold=1.0):
307
- """
308
- Filter requests to only include requests at a specific level that meet threshold requirements.
309
-
310
- Args:
311
- df: Long format dataframe with request data
312
- geography: Current geography level ('country' or 'state_us')
313
- geo_id: Current geography ID (e.g., 'USA', 'CA')
314
- level: Request level to filter (default=1 for middle aggregated)
315
- threshold: Minimum percentage threshold (default=1.0%)
316
-
317
- Returns:
318
- List of valid cluster_names that:
319
- 1. Are at the specified level (default level 1)
320
- 2. Have >= threshold % in the current geography
321
- 3. Have >= threshold % in the parent geography (USA for states, GLOBAL for countries)
322
- """
323
- # Determine parent geography
324
- if geography == "state_us":
325
- parent_geo = "USA"
326
- parent_geography = "country"
327
- elif geography == "country":
328
- parent_geo = "GLOBAL"
329
- parent_geography = "global"
330
- else: # global
331
- # For global, no parent filtering needed
332
- df_local = filter_df(
333
- df,
334
- geography=geography,
335
- geo_id=geo_id,
336
- facet="request",
337
- level=level,
338
- variable="request_pct",
339
- )
340
- return df_local[df_local["value"] >= threshold]["cluster_name"].tolist()
341
-
342
- # Get local request percentages at specified level
343
- df_local = filter_df(
344
- df,
345
- geography=geography,
346
- geo_id=geo_id,
347
- facet="request",
348
- level=level,
349
- variable="request_pct",
350
- )
351
-
352
- # Get parent request percentages at same level
353
- df_parent = filter_df(
354
- df,
355
- geography=parent_geography,
356
- geo_id=parent_geo,
357
- facet="request",
358
- level=level,
359
- variable="request_pct",
360
- )
361
-
362
- # Filter by local threshold
363
- local_valid = set(df_local[df_local["value"] >= threshold]["cluster_name"])
364
-
365
- # Filter by parent threshold
366
- parent_valid = set(df_parent[df_parent["value"] >= threshold]["cluster_name"])
367
-
368
- # Return intersection (must meet both thresholds)
369
- return list(local_valid & parent_valid)
370
-
371
-
372
- # Data loading
373
-
374
-
375
- def load_world_shapefile():
376
- """Load and prepare world shapefile for mapping."""
377
- url = "https://naciscdn.org/naturalearth/10m/cultural/ne_10m_admin_0_countries_iso.zip"
378
- world = gpd.read_file(url)
379
-
380
- # Remove Antarctica from the dataset entirely
381
- world = world[world["ISO_A3_EH"] != "ATA"]
382
-
383
- # Use Robinson projection for better world map appearance
384
- world = world.to_crs("+proj=robin")
385
-
386
- # Mark excluded countries using global EXCLUDED_COUNTRIES
387
- world["is_excluded"] = world["ISO_A3_EH"].isin(EXCLUDED_COUNTRIES)
388
-
389
- return world
390
-
391
-
392
- def load_us_states_shapefile():
393
- """Load and prepare US states shapefile for mapping."""
394
- import ssl
395
-
396
- # Create unverified SSL context to handle Census Bureau cert issues
397
- ssl._create_default_https_context = ssl._create_unverified_context
398
-
399
- states_url = (
400
- "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_state_20m.zip"
401
- )
402
- states = gpd.read_file(states_url)
403
-
404
- # Filter out territories but keep all 50 states and DC
405
- states = states[~states["STUSPS"].isin(["PR", "VI", "MP", "GU", "AS"])]
406
-
407
- return states
408
-
409
-
410
- def merge_geo_data(shapefile, df_data, geo_column, columns_to_merge, is_tier=False):
411
- """Merge data with geographic shapefile.
412
-
413
- Args:
414
- shapefile: GeoDataFrame (world or states)
415
- df_data: DataFrame with data to merge
416
- geo_column: Column in shapefile to join on (e.g., 'ISO_A3_EH', 'STUSPS')
417
- columns_to_merge: List of columns to merge from df_data
418
- is_tier: Whether this is tier data (includes cluster_name)
419
-
420
- Returns:
421
- Merged GeoDataFrame
422
- """
423
- if is_tier and "cluster_name" not in columns_to_merge:
424
- columns_to_merge = columns_to_merge + ["cluster_name"]
425
-
426
- return shapefile.merge(
427
- df_data[columns_to_merge], left_on=geo_column, right_on="geo_id", how="left"
428
- )
429
-
430
-
431
- def prepare_map_data(
432
- geo_df,
433
- value_column="value",
434
- center_at_one=False,
435
- excluded_mask=None,
436
- ):
437
- """Prepare data and normalization for map plotting.
438
-
439
- Args:
440
- geo_df: GeoDataFrame with geographic data and values to plot
441
- value_column: Name of column containing values to plot (default: "value")
442
- center_at_one: If True, center color scale at 1.0 for diverging colormap (default: False)
443
- excluded_mask: Boolean Series indicating which rows to exclude from normalization
444
- (e.g., countries where service isn't available). If None, no exclusions.
445
-
446
- Returns:
447
- tuple: (plot_column_name, norm) where norm is the matplotlib Normalize object
448
- """
449
- if excluded_mask is None:
450
- excluded_mask = pd.Series([False] * len(geo_df), index=geo_df.index)
451
-
452
- valid_data = geo_df[geo_df[value_column].notna() & ~excluded_mask][value_column]
453
-
454
- vmin = valid_data.min() if len(valid_data) > 0 else 0
455
- vmax = valid_data.max() if len(valid_data) > 0 else 1
456
- norm = get_color_normalizer(
457
- valid_data, center_at_one=center_at_one, vmin=vmin, vmax=vmax
458
- )
459
-
460
- return value_column, norm
461
-
462
-
463
- # Main visualization functions
464
-
465
-
466
- def plot_world_map(
467
- ax, world, data_column="value", tier_colors=None, cmap=None, norm=None
468
- ):
469
- """Plot world map with data.
470
-
471
- Args:
472
- ax: matplotlib axis
473
- world: GeoDataFrame with world data (already merged with values)
474
- data_column: column name containing data to plot
475
- tier_colors: dict mapping tier names to colors (for categorical)
476
- cmap: colormap (for continuous)
477
- norm: normalization (for continuous)
478
- """
479
- if tier_colors:
480
- # Plot each tier with its color
481
- for tier, color in tier_colors.items():
482
- tier_countries = world[
483
- (world["cluster_name"] == tier) & (~world["is_excluded"])
484
- ]
485
- tier_countries.plot(ax=ax, color=color, edgecolor="white", linewidth=0.5)
486
- else:
487
- # Plot continuous data
488
- world_with_data = world[
489
- world[data_column].notna() & (world["is_excluded"] == False)
490
- ]
491
- world_with_data.plot(
492
- column=data_column, ax=ax, cmap=cmap, norm=norm, legend=False
493
- )
494
-
495
- # Plot excluded countries
496
- excluded = world[world["is_excluded"] == True]
497
- if not excluded.empty:
498
- excluded.plot(ax=ax, color="#c0c0c0", edgecolor="white", linewidth=0.5)
499
-
500
- # Plot no-data countries
501
- no_data = world[
502
- (world[data_column if not tier_colors else "cluster_name"].isna())
503
- & (~world["is_excluded"])
504
- ]
505
- if not no_data.empty:
506
- no_data.plot(ax=ax, color="#f0f0f0", edgecolor="white", linewidth=0.5)
507
-
508
- # Set appropriate bounds for Robinson projection
509
- ax.set_xlim(-17000000, 17000000)
510
- ax.set_ylim(-8500000, 8500000)
511
-
512
-
513
- def plot_us_states_map(
514
- fig, ax, states, data_column="value", tier_colors=None, cmap=None, norm=None
515
- ):
516
- """Plot US states map with Alaska and Hawaii insets.
517
-
518
- Args:
519
- fig: matplotlib figure
520
- ax: main axis for continental US
521
- states: GeoDataFrame with state data (already merged with values)
522
- data_column: column name containing data to plot
523
- tier_colors: dict mapping tier names to colors (for categorical)
524
- cmap: colormap (for continuous)
525
- norm: normalization (for continuous)
526
- """
527
- # Project to EPSG:2163 for US Albers Equal Area
528
- states = states.to_crs("EPSG:2163")
529
-
530
- # Plot continental US (everything except AK and HI)
531
- continental = states[~states["STUSPS"].isin(["AK", "HI"])]
532
-
533
- # First plot all continental states as no-data background
534
- continental.plot(ax=ax, color="#f0f0f0", edgecolor="white", linewidth=0.5)
535
-
536
- # Plot continental states with data
537
- if tier_colors:
538
- # Plot each tier with its color
539
- for tier, color in tier_colors.items():
540
- tier_states = continental[continental["cluster_name"] == tier]
541
- if not tier_states.empty:
542
- tier_states.plot(ax=ax, color=color, edgecolor="white", linewidth=0.5)
543
- else:
544
- # Plot continuous data
545
- continental_with_data = continental[continental[data_column].notna()]
546
- if not continental_with_data.empty:
547
- continental_with_data.plot(
548
- column=data_column, ax=ax, cmap=cmap, norm=norm, legend=False
549
- )
550
-
551
- # Set axis limits with padding for legend
552
- xlim = ax.get_xlim()
553
- ylim = ax.get_ylim()
554
- x_padding = (xlim[1] - xlim[0]) * MAP_PADDING_X
555
- y_padding = (ylim[1] - ylim[0]) * MAP_PADDING_Y
556
- ax.set_xlim(xlim[0] - x_padding, xlim[1] + x_padding)
557
- ax.set_ylim(ylim[0] - y_padding, ylim[1] + y_padding)
558
-
559
- # Add Alaska inset
560
- akax = fig.add_axes(ALASKA_INSET_BOUNDS)
561
- akax.axis("off")
562
-
563
- alaska = states[states["STUSPS"] == "AK"]
564
- if not alaska.empty:
565
- alaska.plot(ax=akax, color="#f0f0f0", edgecolor="white", linewidth=0.5)
566
-
567
- if tier_colors and alaska["cluster_name"].notna().any():
568
- tier_name = alaska["cluster_name"].iloc[0]
569
- if tier_name in tier_colors:
570
- alaska.plot(
571
- ax=akax,
572
- color=tier_colors[tier_name],
573
- edgecolor="white",
574
- linewidth=0.5,
575
- )
576
- elif not tier_colors and alaska[data_column].notna().any():
577
- alaska.plot(column=data_column, ax=akax, cmap=cmap, norm=norm, legend=False)
578
-
579
- # Add Hawaii inset
580
- hiax = fig.add_axes(HAWAII_INSET_BOUNDS)
581
- hiax.axis("off")
582
-
583
- hawaii = states[states["STUSPS"] == "HI"]
584
- if not hawaii.empty:
585
- hawaii.plot(ax=hiax, color="#f0f0f0", edgecolor="white", linewidth=0.5)
586
-
587
- if tier_colors and hawaii["cluster_name"].notna().any():
588
- tier_name = hawaii["cluster_name"].iloc[0]
589
- if tier_name in tier_colors:
590
- hawaii.plot(
591
- ax=hiax,
592
- color=tier_colors[tier_name],
593
- edgecolor="white",
594
- linewidth=0.5,
595
- )
596
- elif not tier_colors and hawaii[data_column].notna().any():
597
- hawaii.plot(column=data_column, ax=hiax, cmap=cmap, norm=norm, legend=False)
598
-
599
-
600
- def plot_usage_index_bars(
601
- df,
602
- geography="country",
603
- top_n=None,
604
- figsize=(12, 8),
605
- title=None,
606
- filtered_entities=None,
607
- show_usage_counts=True,
608
- cmap=CUSTOM_CMAP,
609
- ):
610
- """
611
- Create horizontal bar chart of Anthropic AI Usage Index.
612
-
613
- Args:
614
- df: Long format dataframe
615
- geography: 'country' or 'state_us'
616
- top_n: Number of top entities to show (None for all)
617
- figsize: Figure size
618
- title: Chart title
619
- filtered_entities: List of geo_id values to include (if None, include all)
620
- show_usage_counts: If True, show usage counts in labels (default: True)
621
- """
622
- # Get data
623
- df_metric = filter_df(
624
- df, geography=geography, facet=geography, variable="usage_per_capita_index"
625
- )
626
-
627
- # Apply entity filtering if provided
628
- if filtered_entities is not None:
629
- df_metric = df_metric[df_metric["geo_id"].isin(filtered_entities)]
630
-
631
- # Get usage counts for display if requested
632
- if show_usage_counts:
633
- df_usage = filter_df(
634
- df, geography=geography, facet=geography, variable="usage_count"
635
- )
636
- # Merge to get usage counts
637
- df_metric = df_metric.merge(
638
- df_usage[["geo_id", "value"]],
639
- on="geo_id",
640
- suffixes=("", "_usage"),
641
- how="left",
642
- )
643
-
644
- # Select entities to display
645
- if top_n is None or top_n >= len(df_metric):
646
- # Show all entities, sorted by lowest value first (will appear at bottom of chart)
647
- df_top = df_metric.sort_values("value", ascending=True)
648
- # Adjust figure height for many entities
649
- if len(df_top) > 20:
650
- figsize = (figsize[0], max(10, len(df_top) * 0.3))
651
- else:
652
- # Select top N entities, then sort ascending so highest values appear at top
653
- df_top = df_metric.nlargest(top_n, "value")
654
- df_top = df_top.sort_values("value", ascending=True)
655
-
656
- # Create figure
657
- fig, ax = create_figure(figsize=figsize)
658
-
659
- # Get colormap and create diverging colors centered at 1
660
- values = df_top["value"].values
661
- min_val = values.min()
662
- max_val = values.max()
663
-
664
- # Determine the range for symmetric color scaling around 1
665
- max_distance = max(abs(min_val - 1), abs(max_val - 1))
666
-
667
- # Normalize values for color mapping
668
- if max_distance > 0:
669
- # Normalize to 0-1 centered at 0.5 for value 1
670
- normalized = 0.5 + (values - 1) / (2 * max_distance)
671
- # Truncate colormap to avoid too light colors
672
- truncate_low = 0.2
673
- truncate_high = 0.8
674
- normalized = truncate_low + normalized * (truncate_high - truncate_low)
675
- normalized = np.clip(normalized, truncate_low, truncate_high)
676
- else:
677
- normalized = np.ones_like(values) * 0.5
678
-
679
- colors = cmap(normalized)
680
-
681
- # Create horizontal bars
682
- y_positions = range(len(df_top))
683
- bars = ax.barh(y_positions, values, color=colors, height=0.7)
684
-
685
- # Set y-tick labels
686
- ax.set_yticks(y_positions)
687
- ax.set_yticklabels(df_top["geo_name"].values)
688
-
689
- # Set y-axis limits to reduce white space
690
- ax.set_ylim(-0.5, len(df_top) - 0.5)
691
-
692
- # Add baseline reference line at 1.0
693
- ax.axvline(x=1.0, color="black", linestyle="--", alpha=0.5, linewidth=1)
694
-
695
- # Calculate and set x-axis limits with extra space for labels
696
- if max_val > 2:
697
- ax.set_xlim(0, max_val * 1.25)
698
- else:
699
- ax.set_xlim(0, max_val * 1.2)
700
-
701
- # Add value labels and usage counts
702
- for i, bar in enumerate(bars):
703
- width = bar.get_width()
704
- # Always use 2 decimal places for consistency
705
- label = f"{width:.2f}"
706
-
707
- # Get usage count
708
- usage_count = df_top.iloc[i]["value_usage"]
709
- if usage_count >= 1000:
710
- usage_str = f"{usage_count / 1000:.1f}k"
711
- else:
712
- usage_str = f"{int(usage_count)}"
713
-
714
- # For top_n > 20, combine label with usage count to avoid overlap
715
- if not top_n or top_n > 20:
716
- combined_label = f"{label} (N={usage_str})"
717
- ax.text(
718
- width + 0.03,
719
- bar.get_y() + bar.get_height() / 2.0,
720
- combined_label,
721
- ha="left",
722
- va="center",
723
- fontsize=8,
724
- )
725
- else:
726
- # Add value label to the right of the bar
727
- ax.text(
728
- width + 0.03,
729
- bar.get_y() + bar.get_height() / 2.0,
730
- label,
731
- ha="left",
732
- va="center",
733
- fontsize=9,
734
- )
735
-
736
- # Add usage count inside the bar
737
- usage_str_full = f"N = {usage_str}"
738
- ax.text(
739
- 0.05,
740
- bar.get_y() + bar.get_height() / 2.0,
741
- usage_str_full,
742
- ha="left",
743
- va="center",
744
- fontsize=8,
745
- color="white",
746
- )
747
-
748
- # Set labels and title
749
- if top_n:
750
- default_title = f"Top {top_n} {'countries' if geography == 'country' else 'US states'} by Anthropic AI Usage Index"
751
- else:
752
- default_title = f"Anthropic AI Usage Index by {'country' if geography == 'country' else 'US state'}"
753
-
754
- format_axis(
755
- ax,
756
- xlabel="Anthropic AI Usage Index (usage % / working-age population %)",
757
- title=title or default_title,
758
- grid=True,
759
- grid_alpha=0.3,
760
- )
761
-
762
- return fig
763
-
764
-
765
- def plot_variable_bars(
766
- df,
767
- variable,
768
- facet,
769
- geography="country",
770
- geo_id=None,
771
- top_n=None,
772
- figsize=(12, 8),
773
- title=None,
774
- xlabel=None,
775
- filtered_entities=None,
776
- cmap=CUSTOM_CMAP,
777
- normalize=False,
778
- exclude_not_classified=False,
779
- ):
780
- """
781
- Create horizontal bar chart for any variable.
782
-
783
- Args:
784
- df: Long format dataframe
785
- variable: Variable name to plot (e.g., 'soc_pct', 'gdp_per_capita')
786
- facet: Facet to use
787
- geography: 'country' or 'state_us'
788
- geo_id: Optional specific geo_id to filter (e.g., 'USA' for SOC data)
789
- top_n: Number of top entities to show (None for all)
790
- figsize: Figure size
791
- title: Chart title
792
- xlabel: x-axis label
793
- filtered_entities: List of cluster_name or geo_id values to include
794
- cmap: Colormap to use
795
- normalize: If True, rescale values to sum to 100% (useful for percentages)
796
- exclude_not_classified: If True, exclude 'not_classified' entries before normalizing
797
- """
798
- # Get data
799
- df_metric = filter_df(
800
- df, geography=geography, facet=facet, variable=variable, geo_id=geo_id
801
- )
802
-
803
- # Exclude not_classified if requested (before normalization)
804
- if exclude_not_classified:
805
- # Check both cluster_name and geo_id columns
806
- if "cluster_name" in df_metric.columns:
807
- df_metric = df_metric[
808
- ~df_metric["cluster_name"].isin(["not_classified", "none"])
809
- ]
810
- if "geo_id" in df_metric.columns:
811
- df_metric = df_metric[~df_metric["geo_id"].isin(["not_classified", "none"])]
812
-
813
- # Normalize if requested (after filtering not_classified)
814
- if normalize:
815
- total_sum = df_metric["value"].sum()
816
- if total_sum > 0:
817
- df_metric["value"] = (df_metric["value"] / total_sum) * 100
818
-
819
- # Apply entity filtering if provided
820
- if filtered_entities is not None:
821
- # Check if we're filtering by cluster_name or geo_id
822
- if "cluster_name" in df_metric.columns:
823
- df_metric = df_metric[df_metric["cluster_name"].isin(filtered_entities)]
824
- else:
825
- df_metric = df_metric[df_metric["geo_id"].isin(filtered_entities)]
826
-
827
- # Select entities to display
828
- if top_n is None or top_n >= len(df_metric):
829
- # Show all entities, sorted by lowest value first
830
- df_top = df_metric.sort_values("value", ascending=True)
831
- # Adjust figure height for many entities
832
- if len(df_top) > 20:
833
- figsize = (figsize[0], max(10, len(df_top) * 0.3))
834
- else:
835
- # Select top N entities
836
- df_top = df_metric.nlargest(top_n, "value")
837
- df_top = df_top.sort_values("value", ascending=True)
838
-
839
- # Create figure
840
- fig, ax = create_figure(figsize=figsize)
841
-
842
- # Get colormap and colors
843
- values = df_top["value"].values
844
- min_val = values.min()
845
- max_val = values.max()
846
-
847
- # Linear color mapping
848
- if max_val > min_val:
849
- normalized = (values - min_val) / (max_val - min_val)
850
- # Truncate to avoid extremes
851
- normalized = 0.2 + normalized * 0.6
852
- else:
853
- normalized = np.ones_like(values) * 0.5
854
-
855
- colors = cmap(normalized)
856
-
857
- # Create horizontal bars
858
- y_positions = range(len(df_top))
859
- bars = ax.barh(y_positions, values, color=colors, height=0.7)
860
-
861
- # Set y-tick labels
862
- ax.set_yticks(y_positions)
863
- # Use cluster_name or geo_name depending on what's available
864
- if "cluster_name" in df_top.columns:
865
- labels = df_top["cluster_name"].values
866
- elif "geo_name" in df_top.columns:
867
- labels = df_top["geo_name"].values
868
- else:
869
- labels = df_top["geo_id"].values
870
- ax.set_yticklabels(labels)
871
-
872
- # Set y-axis limits to reduce white space
873
- ax.set_ylim(-0.5, len(df_top) - 0.5)
874
-
875
- # Calculate and set x-axis limits
876
- x_range = max_val - min_val
877
- if min_val < 0:
878
- # Include negative values with some padding
879
- ax.set_xlim(min_val - x_range * 0.1, max_val + x_range * 0.2)
880
- else:
881
- # Positive values only
882
- ax.set_xlim(0, max_val * 1.2)
883
-
884
- # Add value labels
885
- for _, bar in enumerate(bars):
886
- width = bar.get_width()
887
- # Format based on value magnitude
888
- if abs(width) >= 1000:
889
- label = f"{width:.0f}"
890
- elif abs(width) >= 10:
891
- label = f"{width:.1f}"
892
- else:
893
- label = f"{width:.2f}"
894
-
895
- # Position label
896
- if width < 0:
897
- ha = "right"
898
- x_offset = -0.01 * (max_val - min_val)
899
- else:
900
- ha = "left"
901
- x_offset = 0.01 * (max_val - min_val)
902
-
903
- ax.text(
904
- width + x_offset,
905
- bar.get_y() + bar.get_height() / 2.0,
906
- label,
907
- ha=ha,
908
- va="center",
909
- fontsize=8 if len(df_top) > 20 else 9,
910
- )
911
-
912
- # Set labels and title
913
- if not title:
914
- if top_n:
915
- title = f"Top {top_n} by {variable}"
916
- else:
917
- title = f"{variable} distribution"
918
-
919
- format_axis(
920
- ax,
921
- xlabel=xlabel or variable,
922
- title=title,
923
- grid=True,
924
- grid_alpha=0.3,
925
- )
926
-
927
- return fig
928
-
929
-
930
- def plot_usage_share_bars(
931
- df,
932
- geography="country",
933
- top_n=20,
934
- figsize=(12, 8),
935
- title=None,
936
- filtered_entities=None,
937
- cmap=CUSTOM_CMAP,
938
- ):
939
- """
940
- Create bar chart showing share of global usage.
941
-
942
- Args:
943
- df: Long format dataframe
944
- geography: Geographic level
945
- top_n: Number of top entities
946
- figsize: Figure size
947
- title: Chart title
948
- filtered_entities: List of geo_id values to include (if None, include all)
949
-
950
- """
951
- # Get data
952
- df_metric = filter_df(
953
- df, geography=geography, facet=geography, variable="usage_pct"
954
- )
955
-
956
- # Exclude "not_classified" from the data
957
- df_metric = df_metric[df_metric["geo_id"] != "not_classified"]
958
-
959
- # Apply entity filtering if provided
960
- if filtered_entities is not None:
961
- df_metric = df_metric[df_metric["geo_id"].isin(filtered_entities)]
962
-
963
- # Get top n
964
- df_top = df_metric.nlargest(top_n, "value")
965
-
966
- # Create figure
967
- fig, ax = create_figure(figsize=figsize)
968
-
969
- # Create bars
970
- positions = range(len(df_top))
971
- values = df_top["value"].values
972
- names = df_top["geo_name"].values
973
-
974
- # Use custom colormap
975
- norm = get_color_normalizer(values, center_at_one=False)
976
- colors = [cmap(norm(val)) for val in values]
977
-
978
- bars = ax.bar(positions, values, color=colors, alpha=0.8)
979
-
980
- # Customize
981
- ax.set_xticks(positions)
982
- ax.set_xticklabels(names, rotation=45, ha="right")
983
- # Reduce horizontal margins to bring bars closer to plot borders
984
- ax.margins(x=0.01)
985
-
986
- default_title = f"Top {top_n} {'countries' if geography == 'country' else 'US states'} by share of global Claude usage"
987
- format_axis(
988
- ax, ylabel="Share of global usage (%)", title=title or default_title, grid=False
989
- )
990
-
991
- # Add value labels
992
- for bar, value in zip(bars, values, strict=True):
993
- label = f"{value:.1f}%"
994
-
995
- # Add value label above the bar
996
- ax.text(
997
- bar.get_x() + bar.get_width() / 2,
998
- value + 0.1,
999
- label,
1000
- ha="center",
1001
- fontsize=8,
1002
- )
1003
-
1004
- # Grid
1005
- ax.grid(True, axis="y", alpha=0.3)
1006
-
1007
- return fig
1008
-
1009
-
1010
- def plot_usage_index_histogram(
1011
- df, geography="country", bins=30, figsize=(10, 6), title=None, cmap=CUSTOM_CMAP
1012
- ):
1013
- """
1014
- Create histogram of Anthropic AI Usage Index distribution.
1015
-
1016
- Args:
1017
- df: Long format dataframe
1018
- geography: Geographic level
1019
- bins: Number of histogram bins
1020
- figsize: Figure size
1021
- title: Chart title
1022
- """
1023
- # Get data
1024
- df_metric = filter_df(
1025
- df, geography=geography, facet=geography, variable="usage_per_capita_index"
1026
- )
1027
-
1028
- # Create figure
1029
- fig, ax = create_figure(figsize=figsize)
1030
-
1031
- # Create histogram
1032
- values = df_metric["value"].values
1033
- _, bins_edges, patches = ax.hist(
1034
- values, bins=bins, edgecolor="white", linewidth=0.5
1035
- )
1036
-
1037
- # Color bars with custom gradient based on value
1038
- norm = get_color_normalizer(
1039
- values,
1040
- center_at_one=False,
1041
- vmin=min(bins_edges[0], 0),
1042
- vmax=max(bins_edges[-1], 2),
1043
- )
1044
-
1045
- for patch, left_edge, right_edge in zip(
1046
- patches, bins_edges[:-1], bins_edges[1:], strict=True
1047
- ):
1048
- # Use the midpoint of the bin for color
1049
- mid_val = (left_edge + right_edge) / 2
1050
- color = cmap(norm(mid_val))
1051
- patch.set_facecolor(color)
1052
-
1053
- # Add vertical line at 1.0 (where usage and population shares match)
1054
- ax.axvline(x=1.0, color="black", linestyle="--", alpha=0.5, linewidth=1)
1055
-
1056
- # Add statistics
1057
- mean_val = values.mean()
1058
- median_val = np.median(values)
1059
-
1060
- stats_text = f"Mean: {mean_val:.2f}\nMedian: {median_val:.2f}\nN = {len(values)}"
1061
- ax.text(
1062
- 0.98,
1063
- 0.97,
1064
- stats_text,
1065
- transform=ax.transAxes,
1066
- ha="right",
1067
- va="top",
1068
- fontsize=9,
1069
- bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
1070
- )
1071
-
1072
- # Customize
1073
- geo_label = "countries" if geography == "country" else "US states"
1074
- default_title = f"Distribution of Anthropic AI Usage Index ({geo_label})"
1075
-
1076
- format_axis(
1077
- ax,
1078
- xlabel="Anthropic AI Usage Index (usage % / working-age population %)",
1079
- ylabel=f"Number of {geo_label}",
1080
- title=title or default_title,
1081
- )
1082
-
1083
- return fig
1084
-
1085
-
1086
- def plot_gdp_scatter(
1087
- df,
1088
- geography="country",
1089
- figsize=(10, 8),
1090
- title=None,
1091
- cmap=CUSTOM_CMAP,
1092
- filtered_entities=None,
1093
- ):
1094
- """
1095
- Create log-log scatter plot of GDP vs Anthropic AI Usage Index.
1096
-
1097
- Args:
1098
- df: Long format dataframe
1099
- geography: Geographic level
1100
- figsize: Figure size
1101
- title: Chart title
1102
- cmap: Colormap to use
1103
- filtered_entities: List of geo_id values that meet MIN_OBSERVATIONS threshold (optional)
1104
- """
1105
- # Get usage data
1106
- df_usage = filter_df(
1107
- df, geography=geography, facet=geography, variable="usage_per_capita_index"
1108
- )
1109
-
1110
- # Apply filtering if provided
1111
- if filtered_entities is not None:
1112
- df_usage = df_usage[df_usage["geo_id"].isin(filtered_entities)]
1113
-
1114
- df_usage = df_usage[["geo_id", "cluster_name", "value"]].rename(
1115
- columns={"value": "usage_index"}
1116
- )
1117
-
1118
- # Get GDP data
1119
- df_gdp = filter_df(
1120
- df, geography=geography, facet=geography, variable="gdp_per_working_age_capita"
1121
- )
1122
-
1123
- # Apply same filtering to GDP data
1124
- if filtered_entities is not None:
1125
- df_gdp = df_gdp[df_gdp["geo_id"].isin(filtered_entities)]
1126
-
1127
- df_gdp = df_gdp[["geo_id", "value"]].rename(columns={"value": "gdp_per_capita"})
1128
-
1129
- # Merge
1130
- df_plot = df_usage.merge(df_gdp, on="geo_id", how="inner")
1131
-
1132
- # Filter out zeros and negative values for log scale
1133
- # Explicitly check both GDP and usage are positive (will be true for filtered geos)
1134
- mask = (df_plot["gdp_per_capita"] > 0) & (df_plot["usage_index"] > 0)
1135
- df_plot = df_plot[mask]
1136
-
1137
- # Create figure
1138
- fig, ax = create_figure(figsize=figsize)
1139
-
1140
- # Create scatter plot with geo_id values as labels
1141
- x = df_plot["gdp_per_capita"].values
1142
- y = df_plot["usage_index"].values
1143
-
1144
- # Transform to log space for plotting
1145
- log_x = np.log(x)
1146
- log_y = np.log(y)
1147
-
1148
- # Create norm for colorbar (using natural log)
1149
- norm = plt.Normalize(vmin=log_y.min(), vmax=log_y.max())
1150
-
1151
- # First, plot invisible points to ensure matplotlib's autoscaling includes all data points
1152
- ax.scatter(log_x, log_y, s=0, alpha=0) # Size 0, invisible points for autoscaling
1153
-
1154
- # Plot the geo_id values as text at the exact data points in log space
1155
- for ln_x, ln_y, geo_id in zip(log_x, log_y, df_plot["geo_id"].values, strict=True):
1156
- # Get color from colormap based on ln(usage_index)
1157
- color_val = norm(ln_y)
1158
- text_color = cmap(color_val)
1159
-
1160
- ax.text(
1161
- ln_x,
1162
- ln_y,
1163
- geo_id,
1164
- fontsize=7,
1165
- ha="center",
1166
- va="center",
1167
- color=text_color,
1168
- alpha=0.9,
1169
- weight="bold",
1170
- )
1171
-
1172
- # Add constant for intercept
1173
- X_with_const = sm.add_constant(log_x)
1174
-
1175
- # Fit OLS regression in log space
1176
- model = sm.OLS(log_y, X_with_const)
1177
- results = model.fit()
1178
-
1179
- # Extract statistics
1180
- intercept = results.params[0]
1181
- slope = results.params[1]
1182
- r_squared = results.rsquared
1183
- p_value = results.pvalues[1] # p-value for slope
1184
-
1185
- # Create fit line (we're already in log space)
1186
- x_fit = np.linspace(log_x.min(), log_x.max(), 100)
1187
- y_fit = intercept + slope * x_fit
1188
- ax.plot(
1189
- x_fit,
1190
- y_fit,
1191
- "gray",
1192
- linestyle="--",
1193
- alpha=0.7,
1194
- linewidth=2,
1195
- label=f"Power law: AUI ~ GDP^{slope:.2f}",
1196
- )
1197
-
1198
- # Add regression statistics
1199
- # Format p-value display
1200
- if p_value < 0.001:
1201
- p_str = "p < 0.001"
1202
- else:
1203
- p_str = f"p = {p_value:.3f}"
1204
-
1205
- ax.text(
1206
- 0.05,
1207
- 0.95,
1208
- f"$\\beta = {slope:.3f}\\ ({p_str})$\n$R^2 = {r_squared:.3f}$",
1209
- transform=ax.transAxes,
1210
- fontsize=10,
1211
- bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
1212
- verticalalignment="top",
1213
- )
1214
-
1215
- # Customize labels for log-transformed values
1216
- xlabel = "ln(GDP per working-age capita in USD)"
1217
- ylabel = "ln(Anthropic AI Usage Index)"
1218
- default_title = f"Income and Anthropic AI Usage Index by {'country' if geography == 'country' else 'US state'}"
1219
-
1220
- format_axis(
1221
- ax, xlabel=xlabel, ylabel=ylabel, title=title or default_title, grid=False
1222
- )
1223
-
1224
- # Grid for log scale
1225
- ax.grid(True, alpha=0.3, which="both", linestyle="-", linewidth=0.5)
1226
-
1227
- # Add legend
1228
- ax.legend(loc="best")
1229
-
1230
- # Create colorbar using ScalarMappable
1231
- scalar_mappable = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
1232
- scalar_mappable.set_array([])
1233
- cbar = plt.colorbar(scalar_mappable, ax=ax)
1234
- cbar.set_label(
1235
- "ln(Anthropic AI Usage Index)", fontsize=9, rotation=270, labelpad=15
1236
- )
1237
-
1238
- return fig
1239
-
1240
-
1241
- def plot_request_comparison_cards(
1242
- df,
1243
- geo_ids,
1244
- title,
1245
- geography,
1246
- top_n=5,
1247
- figsize=(10, 6),
1248
- exclude_not_classified=True,
1249
- request_level=1,
1250
- request_threshold=1.0,
1251
- ):
1252
- """
1253
- Create a condensed card visualization showing top overrepresented request categories
1254
- for multiple geographies (countries or states).
1255
-
1256
- Args:
1257
- df: Long format dataframe
1258
- geo_ids: List of geography IDs to compare (e.g., ['USA', 'BRA', 'VNM', 'IND'])
1259
- title: Title for the figure (required)
1260
- geography: Geographic level ('country' or 'state_us')
1261
- top_n: Number of top requests to show per geography (default 5)
1262
- figsize: Figure size as tuple
1263
- exclude_not_classified: Whether to exclude "not_classified" entries
1264
- request_level: Request hierarchy level to use (default 1)
1265
- request_threshold: Minimum percentage threshold for requests (default 1.0%)
1266
- """
1267
- # Get data for specified geography
1268
- data_subset = filter_df(df, facet="request", geo_id=geo_ids, geography=geography)
1269
-
1270
- # Filter for request_pct_index variable and specified level
1271
- data_subset = filter_df(
1272
- data_subset, variable="request_pct_index", level=request_level
1273
- )
1274
-
1275
- # Exclude not_classified if requested
1276
- if exclude_not_classified:
1277
- data_subset = data_subset[
1278
- ~data_subset["cluster_name"].str.contains("not_classified", na=False)
1279
- ]
1280
-
1281
- # Get tier and geo_name information
1282
- geo_info = filter_df(
1283
- df, geography=geography, variable="usage_tier", geo_id=geo_ids
1284
- )[["geo_id", "geo_name", "value"]].drop_duplicates()
1285
- tier_map = dict(zip(geo_info["geo_id"], geo_info["value"], strict=True))
1286
- name_map = dict(zip(geo_info["geo_id"], geo_info["geo_name"], strict=True))
1287
-
1288
- # Set up figure with 2x2 grid for 4 geographies
1289
- n_rows, n_cols = 2, 2
1290
- fig, axes = create_figure(figsize=figsize, nrows=n_rows, ncols=n_cols)
1291
- axes = axes.flatten()
1292
-
1293
- # Use global tier colors
1294
- tier_colors = TIER_COLORS_NUMERIC
1295
-
1296
- # Process each geography
1297
- for idx, geo_id in enumerate(geo_ids):
1298
- ax = axes[idx]
1299
-
1300
- # Apply request threshold filtering to get valid requests for this geography
1301
- valid_requests = filter_requests_by_threshold(
1302
- df, geography, geo_id, level=request_level, threshold=request_threshold
1303
- )
1304
-
1305
- # Get data for this geography, filtered by valid requests
1306
- geo_data = data_subset[
1307
- (data_subset["geo_id"] == geo_id)
1308
- & (data_subset["cluster_name"].isin(valid_requests))
1309
- & (data_subset["value"] > 1.0) # Only show overrepresented requests
1310
- ].copy()
1311
-
1312
- # Get top n from the filtered requests
1313
- geo_data = geo_data.nlargest(top_n, "value")
1314
-
1315
- # Get tier color
1316
- tier = tier_map[geo_id]
1317
- base_color = tier_colors[tier]
1318
-
1319
- # Create a lighter version of the tier color for the card background
1320
- rgb = mcolors.to_rgb(base_color)
1321
- # Mix with white (85% white, 15% color for very subtle background)
1322
- pastel_rgb = tuple(0.85 + 0.15 * c for c in rgb)
1323
- card_bg_color = mcolors.to_hex(pastel_rgb)
1324
-
1325
- # Fill entire axis with background color
1326
- ax.set_facecolor(card_bg_color)
1327
-
1328
- # Create card with requests
1329
- card_height = 0.9 # Fixed height for all cards
1330
- card_bottom = 0.965 - card_height # Consistent positioning
1331
-
1332
- card_rect = FancyBboxPatch(
1333
- (0.10, card_bottom),
1334
- 0.80,
1335
- card_height,
1336
- transform=ax.transAxes,
1337
- boxstyle="round,pad=0.02,rounding_size=0.035",
1338
- facecolor=card_bg_color,
1339
- edgecolor="none",
1340
- linewidth=2,
1341
- clip_on=False,
1342
- )
1343
- ax.add_patch(card_rect)
1344
-
1345
- # Header bar
1346
- header_top = 0.965 - 0.10
1347
- header_rect = FancyBboxPatch(
1348
- (0.14, header_top),
1349
- 0.72,
1350
- 0.08,
1351
- transform=ax.transAxes,
1352
- boxstyle="round,pad=0.01,rounding_size=0.03",
1353
- facecolor=base_color,
1354
- edgecolor="none",
1355
- alpha=0.7,
1356
- clip_on=False,
1357
- )
1358
- ax.add_patch(header_rect)
1359
-
1360
- # Add geography name
1361
- geo_name = name_map[geo_id]
1362
-
1363
- ax.text(
1364
- 0.5,
1365
- header_top + 0.04,
1366
- geo_name,
1367
- transform=ax.transAxes,
1368
- ha="center",
1369
- va="center",
1370
- fontsize=12,
1371
- fontweight="bold",
1372
- color="#1C1C1C",
1373
- )
1374
-
1375
- # Adjust start position below header upwards
1376
- y_pos = header_top - 0.05
1377
-
1378
- for _, row in geo_data.iterrows():
1379
- request = row["cluster_name"]
1380
- value = row["value"]
1381
-
1382
- # Format ratio
1383
- if value >= 10:
1384
- ratio_str = f"{value:.0f}x"
1385
- elif value >= 2:
1386
- ratio_str = f"{value:.1f}x"
1387
- else:
1388
- ratio_str = f"{value:.2f}x"
1389
-
1390
- # Wrap text
1391
- wrapped_text = textwrap.fill(request, width=46, break_long_words=False)
1392
- lines = wrapped_text.split("\n")
1393
-
1394
- # Display text lines with sufficient line spacing
1395
- line_spacing = 0.045
1396
- for j, line in enumerate(lines):
1397
- ax.text(
1398
- 0.13, # Adjust text position for wider card
1399
- y_pos - j * line_spacing,
1400
- line,
1401
- transform=ax.transAxes,
1402
- ha="left",
1403
- va="top",
1404
- fontsize=9,
1405
- color="#1C1C1C",
1406
- rasterized=False,
1407
- )
1408
-
1409
- # Position ratio with adjusted margin for wide card
1410
- text_height = len(lines) * line_spacing
1411
- ax.text(
1412
- 0.85,
1413
- y_pos - (text_height - line_spacing) / 2,
1414
- ratio_str,
1415
- transform=ax.transAxes,
1416
- ha="right",
1417
- va="center",
1418
- fontsize=10,
1419
- fontweight="bold",
1420
- color="#B85450",
1421
- rasterized=False,
1422
- )
1423
-
1424
- # Add space between different requests
1425
- y_pos -= text_height + 0.05
1426
-
1427
- # Remove axes
1428
- ax.axis("off")
1429
-
1430
- # Add title
1431
- fig.suptitle(title, fontsize=14, fontweight="bold", y=0.98)
1432
-
1433
- plt.tight_layout()
1434
- plt.subplots_adjust(
1435
- top=0.92, bottom=0.02, left=0.01, right=0.99, hspace=0.02, wspace=0.02
1436
- )
1437
-
1438
- return fig
1439
-
1440
-
1441
- def plot_dc_task_request_cards(
1442
- df,
1443
- title,
1444
- figsize=(10, 5),
1445
- ):
1446
- """
1447
- Create professional card visualizations showing top overrepresented O*NET tasks and requests for Washington, DC.
1448
-
1449
- Args:
1450
- df: Long format dataframe
1451
- figsize: Figure size as tuple
1452
- title: Optional title for the figure
1453
- """
1454
- # Fixed parameters for DC
1455
- geo_id = "DC"
1456
- geography = "state_us"
1457
- top_n = 5
1458
-
1459
- # Get tier for color
1460
- tier_data = filter_df(
1461
- df, geography=geography, variable="usage_tier", geo_id=[geo_id]
1462
- )
1463
- tier = tier_data["value"].iloc[0]
1464
-
1465
- # Use tier color
1466
- tier_colors = TIER_COLORS_NUMERIC
1467
- base_color = tier_colors[tier]
1468
-
1469
- # Create lighter version for card background
1470
- rgb = mcolors.to_rgb(base_color)
1471
- pastel_rgb = tuple(0.85 + 0.15 * c for c in rgb)
1472
- card_bg_color = mcolors.to_hex(pastel_rgb)
1473
-
1474
- # Create figure with 2 subplots (cards)
1475
- fig, axes = create_figure(figsize=figsize, ncols=2)
1476
-
1477
- # Card 1: Top O*NET Tasks
1478
- ax1 = axes[0]
1479
- ax1.set_facecolor(card_bg_color)
1480
-
1481
- # Get O*NET task data
1482
- df_tasks = filter_df(
1483
- df,
1484
- geography=geography,
1485
- geo_id=[geo_id],
1486
- facet="onet_task",
1487
- variable="onet_task_pct_index",
1488
- )
1489
-
1490
- # Exclude not_classified and none
1491
- df_tasks = df_tasks[~df_tasks["cluster_name"].isin(["not_classified", "none"])]
1492
-
1493
- # Get top n overrepresented tasks
1494
- df_tasks = df_tasks[df_tasks["value"] > 1.0].nlargest(top_n, "value")
1495
-
1496
- # Use fixed card heights
1497
- card_height_tasks = 0.955
1498
- card_bottom_tasks = 0.965 - card_height_tasks
1499
-
1500
- # Draw card for O*NET tasks
1501
- card_rect1 = FancyBboxPatch(
1502
- (0.10, card_bottom_tasks),
1503
- 0.80,
1504
- card_height_tasks,
1505
- transform=ax1.transAxes,
1506
- boxstyle="round,pad=0.02,rounding_size=0.035",
1507
- facecolor=card_bg_color,
1508
- edgecolor="none",
1509
- linewidth=2,
1510
- clip_on=False,
1511
- )
1512
- ax1.add_patch(card_rect1)
1513
-
1514
- # Header for O*NET tasks
1515
- header_top = 0.965 - 0.10
1516
- header_rect1 = FancyBboxPatch(
1517
- (0.12, header_top),
1518
- 0.76,
1519
- 0.08,
1520
- transform=ax1.transAxes,
1521
- boxstyle="round,pad=0.01,rounding_size=0.03",
1522
- facecolor=base_color,
1523
- edgecolor="none",
1524
- alpha=0.7,
1525
- clip_on=False,
1526
- )
1527
- ax1.add_patch(header_rect1)
1528
-
1529
- ax1.text(
1530
- 0.5,
1531
- header_top + 0.04,
1532
- "Top 5 overrepresented O*NET tasks in DC",
1533
- transform=ax1.transAxes,
1534
- ha="center",
1535
- va="center",
1536
- fontsize=11,
1537
- fontweight="bold",
1538
- color="#1C1C1C",
1539
- )
1540
-
1541
- # Add task items
1542
- y_pos = header_top - 0.05
1543
-
1544
- for _, row in df_tasks.iterrows():
1545
- task = row["cluster_name"]
1546
- value = row["value"]
1547
-
1548
- # Convert to sentence case and remove trailing period
1549
- task = task[0].upper() + task[1:].lower() if task else task
1550
- task = task.rstrip(".") # Remove trailing period
1551
-
1552
- # Format ratio - always with 2 decimal places
1553
- ratio_str = f"{value:.2f}x"
1554
-
1555
- # Wrap text
1556
- wrapped_text = textwrap.fill(task, width=46, break_long_words=False)
1557
- lines = wrapped_text.split("\n")
1558
-
1559
- # Display text lines
1560
- line_spacing = 0.045
1561
- for j, line in enumerate(lines):
1562
- ax1.text(
1563
- 0.13,
1564
- y_pos - j * line_spacing,
1565
- line,
1566
- transform=ax1.transAxes,
1567
- ha="left",
1568
- va="top",
1569
- fontsize=9,
1570
- color="#1C1C1C",
1571
- rasterized=False,
1572
- )
1573
-
1574
- # Add ratio at the right with consistent color
1575
- ax1.text(
1576
- 0.87,
1577
- y_pos - (len(lines) - 1) * line_spacing / 2,
1578
- ratio_str,
1579
- transform=ax1.transAxes,
1580
- ha="right",
1581
- va="center",
1582
- fontsize=10,
1583
- color="#B85450",
1584
- fontweight="bold",
1585
- )
1586
-
1587
- # Move to next item position
1588
- y_pos -= len(lines) * line_spacing + 0.025
1589
-
1590
- ax1.axis("off")
1591
-
1592
- # Card 2: Top Requests
1593
- ax2 = axes[1]
1594
- ax2.set_facecolor(card_bg_color)
1595
-
1596
- # Get valid requests using threshold
1597
- valid_requests = filter_requests_by_threshold(
1598
- df, geography, geo_id, level=1, threshold=1.0
1599
- )
1600
-
1601
- # Get request data
1602
- df_requests = filter_df(
1603
- df,
1604
- geography=geography,
1605
- geo_id=[geo_id],
1606
- facet="request",
1607
- variable="request_pct_index",
1608
- level=1,
1609
- )
1610
-
1611
- # Filter by valid requests and overrepresented
1612
- df_requests = df_requests[
1613
- (df_requests["cluster_name"].isin(valid_requests))
1614
- & (df_requests["value"] > 1.0)
1615
- & (~df_requests["cluster_name"].str.contains("not_classified", na=False))
1616
- ]
1617
-
1618
- # Get top n
1619
- df_requests = df_requests.nlargest(top_n, "value")
1620
-
1621
- # Draw card for requests with fixed height
1622
- card_height_requests = 0.72
1623
- card_bottom_requests = 0.965 - card_height_requests
1624
-
1625
- card_rect2 = FancyBboxPatch(
1626
- (0.10, card_bottom_requests),
1627
- 0.80,
1628
- card_height_requests,
1629
- transform=ax2.transAxes,
1630
- boxstyle="round,pad=0.02,rounding_size=0.035",
1631
- facecolor=card_bg_color,
1632
- edgecolor="none",
1633
- linewidth=2,
1634
- clip_on=False,
1635
- )
1636
- ax2.add_patch(card_rect2)
1637
-
1638
- # Header for requests
1639
- header_rect2 = FancyBboxPatch(
1640
- (0.12, header_top),
1641
- 0.76,
1642
- 0.08,
1643
- transform=ax2.transAxes,
1644
- boxstyle="round,pad=0.01,rounding_size=0.03",
1645
- facecolor=base_color,
1646
- edgecolor="none",
1647
- alpha=0.7,
1648
- clip_on=False,
1649
- )
1650
- ax2.add_patch(header_rect2)
1651
-
1652
- ax2.text(
1653
- 0.5,
1654
- header_top + 0.04,
1655
- "Top 5 overrepresented request clusters in DC",
1656
- transform=ax2.transAxes,
1657
- ha="center",
1658
- va="center",
1659
- fontsize=11,
1660
- fontweight="bold",
1661
- color="#1C1C1C",
1662
- )
1663
-
1664
- # Add request items
1665
- y_pos = header_top - 0.05
1666
-
1667
- for _, row in df_requests.iterrows():
1668
- request = row["cluster_name"]
1669
- value = row["value"]
1670
-
1671
- # Format ratio always with 2 decimal places
1672
- ratio_str = f"{value:.2f}x"
1673
-
1674
- # Wrap text
1675
- wrapped_text = textwrap.fill(request, width=46, break_long_words=False)
1676
- lines = wrapped_text.split("\n")
1677
-
1678
- # Display text lines
1679
- line_spacing = 0.045
1680
- for j, line in enumerate(lines):
1681
- ax2.text(
1682
- 0.13,
1683
- y_pos - j * line_spacing,
1684
- line,
1685
- transform=ax2.transAxes,
1686
- ha="left",
1687
- va="top",
1688
- fontsize=9,
1689
- color="#1C1C1C",
1690
- rasterized=False,
1691
- )
1692
-
1693
- # Add ratio at the right with consistent color
1694
- ax2.text(
1695
- 0.87,
1696
- y_pos - (len(lines) - 1) * line_spacing / 2,
1697
- ratio_str,
1698
- transform=ax2.transAxes,
1699
- ha="right",
1700
- va="center",
1701
- fontsize=10,
1702
- color="#B85450",
1703
- fontweight="bold",
1704
- )
1705
-
1706
- # Move to next item position
1707
- y_pos -= len(lines) * line_spacing + 0.025
1708
-
1709
- ax2.axis("off")
1710
-
1711
- # Add subtle title if provided
1712
- fig.suptitle(title, fontsize=13, fontweight="bold", y=0.98)
1713
-
1714
- plt.tight_layout()
1715
- return fig
1716
-
1717
-
1718
- # Summary statistics function
1719
- def plot_tier_summary_table(df, geography="country", figsize=(12, 6)):
1720
- """
1721
- Create a visual table showing entities per tier and example members.
1722
-
1723
- Args:
1724
- df: Long format dataframe
1725
- geography: 'country' or 'state_us'
1726
- figsize: Figure size
1727
- """
1728
- # Get tier data
1729
- df_tier = filter_df(df, geography=geography, variable="usage_tier")
1730
-
1731
- # Exclude US territories that appear as countries (may be confusing to readers)
1732
- if geography == "country":
1733
- us_territories_as_countries = [
1734
- "PRI",
1735
- "VIR",
1736
- "GUM",
1737
- "ASM",
1738
- "MNP",
1739
- ] # Puerto Rico, Virgin Islands, Guam, American Samoa, Northern Mariana Islands
1740
- df_tier = df_tier[~df_tier["geo_id"].isin(us_territories_as_countries)]
1741
-
1742
- # Get usage per capita index for sorting entities within tiers
1743
- df_usage_index = filter_df(
1744
- df, geography=geography, variable="usage_per_capita_index"
1745
- )
1746
-
1747
- # Apply same territory filter to usage index data
1748
- if geography == "country":
1749
- df_usage_index = df_usage_index[
1750
- ~df_usage_index["geo_id"].isin(us_territories_as_countries)
1751
- ]
1752
-
1753
- # Merge tier with usage index
1754
- df_tier_full = df_tier[["geo_id", "geo_name", "cluster_name"]].merge(
1755
- df_usage_index[["geo_id", "value"]],
1756
- on="geo_id",
1757
- how="left",
1758
- suffixes=("", "_index"),
1759
- )
1760
-
1761
- # Use global tier colors
1762
- tier_colors = TIER_COLORS_DICT
1763
-
1764
- # Calculate appropriate figure height based on number of tiers
1765
- n_tiers = sum(
1766
- 1 for tier in TIER_ORDER if tier in df_tier_full["cluster_name"].values
1767
- )
1768
- # Adjust height: minimal padding for compact display
1769
- fig_height = 0.5 + n_tiers * 0.3 # Much more compact
1770
-
1771
- # Create figure with calculated size
1772
- fig, ax = create_figure(figsize=(figsize[0], fig_height))
1773
- ax.axis("tight")
1774
- ax.axis("off")
1775
-
1776
- # Make background transparent
1777
- fig.patch.set_alpha(0.0)
1778
- ax.patch.set_alpha(0.0)
1779
-
1780
- # Prepare table data
1781
- table_data = []
1782
- entity_type = "countries" if geography == "country" else "states"
1783
- col_labels = [
1784
- "Tier",
1785
- "AUI range",
1786
- f"# of {entity_type}",
1787
- f"Example {entity_type}",
1788
- ]
1789
-
1790
- for tier in TIER_ORDER:
1791
- if tier in df_tier_full["cluster_name"].values:
1792
- # Get entities in this tier
1793
- tier_entities = filter_df(df_tier_full, cluster_name=tier)
1794
- count = len(tier_entities)
1795
-
1796
- # Calculate usage index range for this tier
1797
- min_index = tier_entities["value"].min()
1798
- max_index = tier_entities["value"].max()
1799
- index_range = f"{min_index:.2f} - {max_index:.2f}"
1800
-
1801
- # For Minimal tier where all have 0 index, pick shortest names
1802
- if tier == "Minimal" and tier_entities["value"].max() == 0:
1803
- tier_entities = tier_entities.copy()
1804
- tier_entities["name_length"] = tier_entities["geo_name"].str.len()
1805
- top_entities = tier_entities.nsmallest(5, "name_length")[
1806
- "geo_name"
1807
- ].tolist()
1808
- else:
1809
- # Get top 5 entities by usage index in this tier
1810
- top_entities = tier_entities.nlargest(5, "value")["geo_name"].tolist()
1811
-
1812
- # Format the example entities as a comma-separated string
1813
- examples = ", ".join(top_entities[:5])
1814
-
1815
- table_data.append([tier, index_range, str(count), examples])
1816
-
1817
- # Create table with better column widths
1818
- table = ax.table(
1819
- cellText=table_data,
1820
- colLabels=col_labels,
1821
- cellLoc="left",
1822
- loc="center",
1823
- colWidths=[0.20, 0.18, 0.12, 0.50],
1824
- colColours=[ANTHROPIC_OAT] * 4,
1825
- )
1826
-
1827
- # Style the table
1828
- table.auto_set_font_size(False)
1829
- table.set_fontsize(11)
1830
- table.scale(1, 2.2)
1831
-
1832
- # Set all cell edges to Anthropic oat color
1833
- for _, cell in table.get_celld().items():
1834
- cell.set_edgecolor(ANTHROPIC_OAT)
1835
- cell.set_linewidth(1.5)
1836
-
1837
- # Color code the rows with consistent black text
1838
- for i, row_data in enumerate(table_data):
1839
- tier_name = row_data[0]
1840
- if tier_name in tier_colors:
1841
- # Color the tier name cell with full opacity
1842
- table[(i + 1, 0)].set_facecolor(tier_colors[tier_name])
1843
- table[(i + 1, 0)].set_text_props(color="black", weight="bold")
1844
-
1845
- # Light background for usage index range column
1846
- table[(i + 1, 1)].set_facecolor(tier_colors[tier_name])
1847
- table[(i + 1, 1)].set_alpha(0.3)
1848
- table[(i + 1, 1)].set_text_props(ha="center", color="black")
1849
-
1850
- # Light background for count column
1851
- table[(i + 1, 2)].set_facecolor(tier_colors[tier_name])
1852
- table[(i + 1, 2)].set_alpha(0.2)
1853
- table[(i + 1, 2)].set_text_props(ha="center", color="black")
1854
-
1855
- # Even lighter background for examples column
1856
- table[(i + 1, 3)].set_facecolor(tier_colors[tier_name])
1857
- table[(i + 1, 3)].set_alpha(0.1)
1858
- table[(i + 1, 3)].set_text_props(color="black")
1859
-
1860
- # Style header row with Anthropic oat and black text
1861
- for j in range(4):
1862
- table[(0, j)].set_facecolor(ANTHROPIC_OAT)
1863
- table[(0, j)].set_text_props(color="black", weight="bold")
1864
-
1865
- # Center the count column
1866
- for i in range(len(table_data)):
1867
- table[(i + 1, 1)].set_text_props(ha="center")
1868
-
1869
- return fig
1870
-
1871
-
1872
- def plot_tier_map(
1873
- df,
1874
- title,
1875
- geography,
1876
- figsize=(16, 10),
1877
- show_labels=True,
1878
- ):
1879
- """
1880
- Create a map showing per Anthropic AI Usage Tiers.
1881
-
1882
- Args:
1883
- df: Long format dataframe with usage_tier variable
1884
- geography: 'country' or 'state_us'
1885
- figsize: Figure size
1886
- title: Map title
1887
- show_labels: whether to show title and legend (False for clean export)
1888
- """
1889
- # Filter for tier data
1890
- df_tier = filter_df(df, geography=geography, variable="usage_tier").copy()
1891
-
1892
- # Use global tier colors definition
1893
- tier_colors = TIER_COLORS_DICT
1894
-
1895
- # Map tiers to colors
1896
- df_tier["color"] = df_tier["cluster_name"].map(tier_colors)
1897
-
1898
- # Set up figure
1899
- # Create figure with tight_layout disabled
1900
- fig, ax = create_figure(figsize=figsize, tight_layout=False)
1901
-
1902
- if geography == "country":
1903
- # Load world shapefile function
1904
- world = load_world_shapefile()
1905
-
1906
- # Merge with world data using geo_id (which contains ISO-3 codes)
1907
- # Use ISO_A3_EH for merging as it's complete (ISO_A3 has -99 for France)
1908
- world = merge_geo_data(
1909
- world,
1910
- df_tier,
1911
- "ISO_A3_EH",
1912
- ["geo_id", "color", "cluster_name"],
1913
- is_tier=True,
1914
- )
1915
-
1916
- # Plot world map
1917
- plot_world_map(ax, world, data_column="cluster_name", tier_colors=tier_colors)
1918
-
1919
- else: # state_us
1920
- # Load US states shapefile function
1921
- states = load_us_states_shapefile()
1922
-
1923
- # Merge with tier data BEFORE projection
1924
- states = merge_geo_data(
1925
- states, df_tier, "STUSPS", ["geo_id", "color", "cluster_name"], is_tier=True
1926
- )
1927
-
1928
- # Pot states with insets
1929
- plot_us_states_map(
1930
- fig, ax, states, data_column="cluster_name", tier_colors=tier_colors
1931
- )
1932
-
1933
- # Remove axes
1934
- ax.set_axis_off()
1935
-
1936
- # Add title only if show_labels=True
1937
- if show_labels:
1938
- format_axis(ax, title=title, title_size=14, grid=False)
1939
-
1940
- # Check which tiers actually appear in the data
1941
- tiers_in_data = df_tier["cluster_name"].unique()
1942
-
1943
- # Add legend only if show_labels=True
1944
- if show_labels:
1945
- # Check for excluded countries and no data
1946
- excluded = False
1947
- no_data = False
1948
- if geography == "country":
1949
- if "world" in locals() and "is_excluded" in world.columns:
1950
- excluded = world["is_excluded"].any()
1951
- if "world" in locals():
1952
- no_data = world["cluster_name"].isna().any()
1953
- else: # state_us
1954
- if "states" in locals():
1955
- no_data = states["cluster_name"].isna().any()
1956
-
1957
- create_tier_legend(
1958
- ax, tier_colors, tiers_in_data, excluded_countries=excluded, no_data=no_data
1959
- )
1960
-
1961
- return fig
1962
-
1963
-
1964
- def plot_variable_map(
1965
- df,
1966
- variable,
1967
- geography="country",
1968
- figsize=(16, 10),
1969
- title=None,
1970
- cmap=CUSTOM_CMAP,
1971
- center_at_one=None,
1972
- ):
1973
- """
1974
- Create static map for any variable.
1975
-
1976
- Args:
1977
- df: Long format dataframe
1978
- variable: Variable to plot (e.g., 'usage_pct')
1979
- geography: 'country' or 'state_us'
1980
- figsize: Figure size (width, height) in inches
1981
- title: Map title
1982
- cmap: Matplotlib colormap or name (default uses custom colormap)
1983
- center_at_one: Whether to center the color scale at 1.0 (default True for usage_per_capita_index)
1984
- """
1985
- # Get data for the specified variable
1986
- df_data = filter_df(df, geography=geography, facet=geography, variable=variable)
1987
-
1988
- # Create figure
1989
- fig = plt.figure(figsize=figsize, dpi=150)
1990
- fig.set_layout_engine(layout="none") # Disable layout engine for custom axes
1991
- ax = fig.add_subplot(111)
1992
-
1993
- if geography == "country":
1994
- # Load world shapefile function (automatically marks excluded countries)
1995
- world = load_world_shapefile()
1996
-
1997
- # Merge using geo_id (which contains ISO-3 codes)
1998
- world = merge_geo_data(
1999
- world, df_data, "ISO_A3_EH", ["geo_id", "value"], is_tier=False
2000
- )
2001
-
2002
- # Prepare data and normalization
2003
- plot_column, norm = prepare_map_data(
2004
- world, "value", center_at_one, world["is_excluded"]
2005
- )
2006
-
2007
- # Plot world map
2008
- plot_world_map(ax, world, data_column=plot_column, cmap=cmap, norm=norm)
2009
-
2010
- else: # state_us
2011
- # Load US states shapefile function
2012
- states = load_us_states_shapefile()
2013
-
2014
- # Merge our data with the states shapefile
2015
- states = merge_geo_data(
2016
- states, df_data, "STUSPS", ["geo_id", "value"], is_tier=False
2017
- )
2018
-
2019
- # Prepare data and normalization
2020
- plot_column, norm = prepare_map_data(states, "value", center_at_one)
2021
-
2022
- # Plot states with insets
2023
- plot_us_states_map(
2024
- fig, ax, states, data_column=plot_column, cmap=cmap, norm=norm
2025
- )
2026
-
2027
- # Remove axes
2028
- ax.set_axis_off()
2029
-
2030
- # Add colorbar with proper size and positioning
2031
- divider = make_axes_locatable(ax)
2032
- cax = divider.append_axes("right", size="3%", pad=0.1)
2033
-
2034
- # Create colorbar
2035
- scalar_mappable = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
2036
- scalar_mappable.set_array([])
2037
- cbar = plt.colorbar(scalar_mappable, cax=cax)
2038
-
2039
- # Set colorbar label based on variable
2040
- if variable == "usage_pct":
2041
- cbar.set_label("Usage share (%)", fontsize=10, rotation=270, labelpad=15)
2042
- elif variable == "usage_per_capita_index":
2043
- cbar.set_label(
2044
- "Anthropic AI Usage Index", fontsize=10, rotation=270, labelpad=15
2045
- )
2046
- else:
2047
- cbar.set_label(variable, fontsize=10, rotation=270, labelpad=15)
2048
-
2049
- # Set title
2050
- if variable == "usage_pct":
2051
- default_title = "Share of Claude usage by " + (
2052
- "country" if geography == "country" else "US state"
2053
- )
2054
- else:
2055
- default_title = f"{variable} by " + (
2056
- "country" if geography == "country" else "US state"
2057
- )
2058
-
2059
- format_axis(ax, title=title or default_title, title_size=14, grid=False)
2060
-
2061
- # Add legend for excluded countries and no data
2062
- legend_elements = []
2063
-
2064
- # Check if we have excluded countries or no data regions
2065
- if geography == "country":
2066
- # Check for excluded countries (world['is_excluded'] == True)
2067
- if "is_excluded" in world.columns:
2068
- excluded_countries = world[world["is_excluded"] == True]
2069
- if not excluded_countries.empty:
2070
- legend_elements.append(
2071
- Patch(
2072
- facecolor="#c0c0c0",
2073
- edgecolor="white",
2074
- label="Claude not available",
2075
- )
2076
- )
2077
-
2078
- # Check for countries with no data
2079
- no_data_countries = world[
2080
- (world["value"].isna()) & (world["is_excluded"] != True)
2081
- ]
2082
- if not no_data_countries.empty:
2083
- legend_elements.append(
2084
- Patch(facecolor="#f0f0f0", edgecolor="white", label="No data")
2085
- )
2086
-
2087
- if legend_elements:
2088
- ax.legend(
2089
- handles=legend_elements,
2090
- loc="lower left",
2091
- fontsize=9,
2092
- frameon=True,
2093
- fancybox=True,
2094
- shadow=True,
2095
- bbox_to_anchor=(0, 0),
2096
- )
2097
-
2098
- return fig
2099
-
2100
-
2101
- def plot_soc_usage_scatter(
2102
- df,
2103
- geography,
2104
- filtered_entities=None,
2105
- ):
2106
- """
2107
- Create faceted scatterplot of SOC percentages vs Anthropic AI Usage Index.
2108
- Always creates a 2x2 grid of square subplots showing the top 4 SOC groups.
2109
-
2110
- Args:
2111
- df: Long format dataframe with enriched data
2112
- geography: 'country' or 'state_us'
2113
- filtered_entities: List of geo_id values that meet MIN_OBSERVATIONS threshold
2114
- """
2115
- # Fixed configuration for 2x2 grid
2116
- n_cols = 2
2117
- n_rows = 2
2118
- n_top_groups = 4
2119
-
2120
- # Apply MIN_OBSERVATIONS filtering if not provided
2121
- if filtered_entities is None:
2122
- filtered_countries, filtered_states = get_filtered_geographies(df)
2123
- filtered_entities = (
2124
- filtered_countries if geography == "country" else filtered_states
2125
- )
2126
-
2127
- # Get Anthropic AI Usage Index data
2128
- df_usage_index = filter_df(
2129
- df,
2130
- geography=geography,
2131
- variable="usage_per_capita_index",
2132
- geo_id=filtered_entities,
2133
- )[["geo_id", "value"]].rename(columns={"value": "ai_usage_index"})
2134
-
2135
- # Get usage counts for bubble sizes
2136
- df_usage = filter_df(
2137
- df, geography=geography, variable="usage_count", geo_id=filtered_entities
2138
- )[["geo_id", "value"]].rename(columns={"value": "usage_count"})
2139
-
2140
- # Get tier data for colors
2141
- df_tier = filter_df(
2142
- df, geography=geography, variable="usage_tier", geo_id=filtered_entities
2143
- )[["geo_id", "cluster_name", "value"]].rename(
2144
- columns={"cluster_name": "tier_name", "value": "tier_value"}
2145
- )
2146
-
2147
- # Get SOC percentages
2148
- df_soc = filter_df(
2149
- df,
2150
- geography=geography,
2151
- facet="soc_occupation",
2152
- variable="soc_pct",
2153
- geo_id=filtered_entities,
2154
- )[["geo_id", "cluster_name", "value"]].rename(
2155
- columns={"cluster_name": "soc_group", "value": "soc_pct"}
2156
- )
2157
-
2158
- # Merge all data
2159
- df_plot = df_soc.merge(
2160
- df_usage_index, on="geo_id", how="inner"
2161
- ) # inner join because some geographies don't have data for all SOC groups
2162
- df_plot = df_plot.merge(df_usage, on="geo_id", how="left")
2163
- df_plot = df_plot.merge(
2164
- df_tier[["geo_id", "tier_name", "tier_value"]], on="geo_id", how="left"
2165
- )
2166
-
2167
- # Use parent geography reference for consistent SOC selection
2168
- if geography == "country":
2169
- # Use global reference for countries
2170
- reference_soc = filter_df(
2171
- df,
2172
- geography="global",
2173
- geo_id="GLOBAL",
2174
- facet="soc_occupation",
2175
- variable="soc_pct",
2176
- )
2177
- else: # state_us
2178
- # Use US reference for states
2179
- reference_soc = filter_df(
2180
- df,
2181
- geography="country",
2182
- geo_id="USA",
2183
- facet="soc_occupation",
2184
- variable="soc_pct",
2185
- )
2186
-
2187
- # Get top SOC groups from reference (excluding not_classified)
2188
- reference_filtered = reference_soc[
2189
- ~reference_soc["cluster_name"].str.contains("not_classified", na=False)
2190
- ]
2191
- plot_soc_groups = reference_filtered.nlargest(n_top_groups, "value")[
2192
- "cluster_name"
2193
- ].tolist()
2194
-
2195
- # Filter to selected SOC groups
2196
- df_plot = df_plot[df_plot["soc_group"].isin(plot_soc_groups)]
2197
-
2198
- tier_colors = TIER_COLORS_DICT
2199
-
2200
- # Fixed square subplot size for 2x2 grid
2201
- subplot_size = 6 # Each subplot is 6x6 inches
2202
- figsize = (subplot_size * n_cols, subplot_size * n_rows)
2203
-
2204
- # Create figure
2205
- fig, axes = create_figure(figsize=figsize, nrows=n_rows, ncols=n_cols)
2206
- fig.suptitle(
2207
- "Occupation group shares vs Anthropic AI Usage Index",
2208
- fontsize=16,
2209
- fontweight="bold",
2210
- y=0.98,
2211
- )
2212
-
2213
- # Flatten axes for easier iteration (always 2x2 grid)
2214
- axes_flat = axes.flatten()
2215
-
2216
- # Plot each SOC group
2217
- for idx, soc_group in enumerate(plot_soc_groups):
2218
- ax = axes_flat[idx]
2219
-
2220
- # Get data for this SOC group
2221
- soc_data = filter_df(df_plot, soc_group=soc_group)
2222
-
2223
- # Create scatter plot for each tier
2224
- for tier_name in tier_colors.keys():
2225
- tier_data = filter_df(soc_data, tier_name=tier_name)
2226
-
2227
- # Scale bubble sizes using sqrt for better visibility
2228
- sizes = np.sqrt(tier_data["usage_count"]) * 2
2229
-
2230
- ax.scatter(
2231
- tier_data["ai_usage_index"],
2232
- tier_data["soc_pct"],
2233
- s=sizes,
2234
- c=tier_colors[tier_name],
2235
- alpha=0.6,
2236
- edgecolors="black",
2237
- linewidth=0.5,
2238
- label=tier_name,
2239
- )
2240
-
2241
- # Add trend line and regression statistics
2242
- X = sm.add_constant(soc_data["ai_usage_index"].values)
2243
- y = soc_data["soc_pct"].values
2244
-
2245
- model = sm.OLS(y, X)
2246
- results = model.fit()
2247
-
2248
- intercept = results.params[0]
2249
- slope = results.params[1]
2250
- r_squared = results.rsquared
2251
- p_value = results.pvalues[1] # p-value for slope
2252
-
2253
- # Plot trend line
2254
- x_line = np.linspace(
2255
- soc_data["ai_usage_index"].min(), soc_data["ai_usage_index"].max(), 100
2256
- )
2257
- y_line = intercept + slope * x_line
2258
- ax.plot(x_line, y_line, "--", color="gray", alpha=0.5, linewidth=1)
2259
-
2260
- # Format p-value display
2261
- if p_value < 0.001:
2262
- p_str = "p < 0.001"
2263
- else:
2264
- p_str = f"p = {p_value:.3f}"
2265
-
2266
- # Add regression statistics
2267
- ax.text(
2268
- 0.95,
2269
- 0.95,
2270
- f"$\\beta = {slope:.3f}\\ ({p_str})$\n$R^2 = {r_squared:.3f}$",
2271
- transform=ax.transAxes,
2272
- ha="right",
2273
- va="top",
2274
- fontsize=9,
2275
- bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
2276
- )
2277
-
2278
- # Format axes
2279
- format_axis(
2280
- ax,
2281
- xlabel="Anthropic AI Usage Index (usage % / working-age population %)",
2282
- ylabel="Occupation group share (%)",
2283
- title=soc_group,
2284
- xlabel_size=10,
2285
- ylabel_size=10,
2286
- grid=False,
2287
- )
2288
- ax.grid(True, alpha=0.3)
2289
-
2290
- # Add legend
2291
- handles, labels = axes_flat[0].get_legend_handles_labels()
2292
- if handles:
2293
- # Create new handles with consistent size for legend only
2294
- # This doesn't modify the actual plot markers
2295
- legend_handles = []
2296
- for handle in handles:
2297
- # Get the color from the original handle
2298
- color = (
2299
- handle.get_facecolor()[0]
2300
- if hasattr(handle, "get_facecolor")
2301
- else "gray"
2302
- )
2303
- # Create a Line2D object with circle marker for legend
2304
- new_handle = Line2D(
2305
- [0],
2306
- [0],
2307
- marker="o",
2308
- color="w",
2309
- markerfacecolor=color,
2310
- markersize=8,
2311
- markeredgecolor="black",
2312
- markeredgewidth=0.5,
2313
- alpha=0.6,
2314
- )
2315
- legend_handles.append(new_handle)
2316
-
2317
- # Position tier legend centered under the left column with vertical layout
2318
- fig.legend(
2319
- legend_handles,
2320
- labels,
2321
- title="Anthropic AI Usage Index tier",
2322
- loc="upper center",
2323
- bbox_to_anchor=(0.25, -0.03),
2324
- frameon=True,
2325
- fancybox=True,
2326
- shadow=True,
2327
- ncol=2,
2328
- borderpad=0.6,
2329
- )
2330
-
2331
- # Add size legend using actual scatter points for perfect matching
2332
- reference_counts = [100, 1000, 10000]
2333
-
2334
- # Create invisible scatter points with the exact same size formula as the plot
2335
- size_legend_elements = []
2336
- for count in reference_counts:
2337
- # Use exact same formula as in the plot
2338
- size = np.sqrt(count) * 2
2339
- # Create scatter on first axis (will be invisible) just for legend
2340
- scatter = axes_flat[0].scatter(
2341
- [],
2342
- [], # Empty data
2343
- s=size,
2344
- c="gray",
2345
- alpha=0.6,
2346
- edgecolors="black",
2347
- linewidth=0.5,
2348
- label=f"{count:,}",
2349
- )
2350
- size_legend_elements.append(scatter)
2351
-
2352
- # Add size legend centered under the right column with vertical layout
2353
- fig.legend(
2354
- handles=size_legend_elements,
2355
- title="Claude usage count",
2356
- loc="upper center",
2357
- bbox_to_anchor=(0.75, -0.03),
2358
- frameon=True,
2359
- fancybox=True,
2360
- shadow=True,
2361
- ncol=1,
2362
- borderpad=0.6,
2363
- )
2364
-
2365
- plt.tight_layout(rect=[0, -0.03, 1, 0.98])
2366
- return fig
2367
-
2368
-
2369
- def collaboration_task_regression(df, geography="country"):
2370
- """
2371
- Analyze automation vs augmentation patterns controlling for task mix for
2372
- geographies that meet the minimum observation threshold.
2373
-
2374
- Uses global task weights to calculate expected automation for each geography,
2375
- then compares actual vs expected automation.
2376
-
2377
- Note: Includes "none" tasks in calculations since they have automation/augmentation
2378
- patterns in the data. Excludes "not_classified" tasks which lack collaboration data.
2379
-
2380
- Args:
2381
- df: Input dataframe
2382
- geography: "country" or "state_us"
2383
- """
2384
- # Filter to geographies that meet min observation threshold
2385
- filtered_countries, filtered_states = get_filtered_geographies(df)
2386
- filtered_geos = filtered_countries if geography == "country" else filtered_states
2387
-
2388
- # Get collaboration automation data
2389
- df_automation = filter_df(
2390
- df,
2391
- facet="collaboration_automation_augmentation",
2392
- geography=geography,
2393
- variable="automation_pct",
2394
- geo_id=filtered_geos,
2395
- )[["geo_id", "value"]].rename(columns={"value": "automation_pct"})
2396
-
2397
- # Get Anthropic AI Usage Index data
2398
- df_usage = filter_df(
2399
- df,
2400
- geography=geography,
2401
- facet=geography,
2402
- variable="usage_per_capita_index",
2403
- geo_id=filtered_geos,
2404
- )[["geo_id", "geo_name", "value"]].copy()
2405
- df_usage.rename(columns={"value": "usage_per_capita_index"}, inplace=True)
2406
-
2407
- # Get geography-specific task weights (percentages)
2408
- df_geo_tasks = filter_df(
2409
- df,
2410
- facet="onet_task",
2411
- geography=geography,
2412
- variable="onet_task_pct",
2413
- geo_id=filtered_geos,
2414
- ).copy()
2415
-
2416
- # Exclude not_classified and none tasks
2417
- df_geo_tasks = df_geo_tasks[
2418
- ~df_geo_tasks["cluster_name"].isin(["not_classified", "none"])
2419
- ]
2420
-
2421
- # Get global task-specific collaboration patterns (only available at global level)
2422
- df_task_collab = filter_df(
2423
- df,
2424
- facet="onet_task::collaboration",
2425
- geography="global",
2426
- geo_id="GLOBAL",
2427
- variable="onet_task_collaboration_pct",
2428
- ).copy()
2429
-
2430
- # Parse task name and collaboration type from cluster_name
2431
- df_task_collab["task_name"] = df_task_collab["cluster_name"].str.split("::").str[0]
2432
- df_task_collab["collab_type"] = (
2433
- df_task_collab["cluster_name"].str.split("::").str[1]
2434
- )
2435
-
2436
- # Map collaboration types to automation/augmentation
2437
- # Automation: directive, feedback loop
2438
- # Augmentation: validation, task iteration, learning
2439
- # Excluded: none, not_classified
2440
- def is_automation(collab_type):
2441
- if collab_type in ["directive", "feedback loop"]:
2442
- return True
2443
- elif collab_type in [
2444
- "validation",
2445
- "task iteration",
2446
- "learning",
2447
- ]:
2448
- return False
2449
- else: # none, not_classified
2450
- return None
2451
-
2452
- df_task_collab["is_automation"] = df_task_collab["collab_type"].apply(is_automation)
2453
-
2454
- # Exclude not_classified tasks upfront
2455
- df_task_collab_valid = df_task_collab[
2456
- df_task_collab["task_name"] != "not_classified"
2457
- ]
2458
-
2459
- # Calculate automation percentage for each task
2460
- task_automation_rates = {}
2461
- for task_name in df_task_collab_valid["task_name"].unique():
2462
- task_data = df_task_collab_valid[
2463
- (df_task_collab_valid["task_name"] == task_name)
2464
- & (df_task_collab_valid["is_automation"].notna())
2465
- ]
2466
-
2467
- # Skip tasks that only have "not_classified" collaboration types
2468
- if task_data.empty or task_data["value"].sum() == 0:
2469
- continue
2470
-
2471
- automation_sum = task_data[task_data["is_automation"]]["value"].sum()
2472
- total_sum = task_data["value"].sum()
2473
- task_automation_rates[task_name] = (automation_sum / total_sum) * 100
2474
-
2475
- # Calculate expected automation for each country using its own task weights
2476
- expected_automation = []
2477
- geo_ids = []
2478
-
2479
- for geo_id in filtered_geos:
2480
- # Get this geography's task distribution (excluding not_classified)
2481
- geo_tasks = df_geo_tasks[
2482
- (df_geo_tasks["geo_id"] == geo_id)
2483
- & (df_geo_tasks["cluster_name"] != "not_classified")
2484
- ]
2485
-
2486
- # Skip geographies with no task data
2487
- if geo_tasks.empty:
2488
- continue
2489
-
2490
- # Calculate weighted automation using geography's task weights
2491
- weighted_auto = 0.0
2492
- total_weight = 0.0
2493
-
2494
- for _, row in geo_tasks.iterrows():
2495
- task = row["cluster_name"]
2496
- weight = row["value"] # Already in percentage
2497
-
2498
- # Get automation rate for this task (from global data)
2499
- if task in task_automation_rates:
2500
- auto_rate = task_automation_rates[task]
2501
- weighted_auto += weight * auto_rate
2502
- total_weight += weight
2503
-
2504
- # Calculate expected automation
2505
- expected_auto = weighted_auto / total_weight
2506
- expected_automation.append(expected_auto)
2507
- geo_ids.append(geo_id)
2508
-
2509
- # Create dataframe with expected automation
2510
- df_expected = pd.DataFrame(
2511
- {"geo_id": geo_ids, "expected_automation_pct": expected_automation}
2512
- )
2513
-
2514
- # Merge all data
2515
- df_regression = df_automation.merge(df_expected, on="geo_id", how="inner")
2516
- df_regression = df_regression.merge(df_usage, on="geo_id", how="inner")
2517
-
2518
- # Count unique tasks for reporting
2519
- n_tasks = len(task_automation_rates)
2520
-
2521
- # Calculate residuals from regressions for proper partial correlation
2522
- # For automation, regress actual on expected to get residuals
2523
- X_expected = sm.add_constant(df_regression["expected_automation_pct"])
2524
- model_automation = sm.OLS(df_regression["automation_pct"], X_expected)
2525
- results_automation = model_automation.fit()
2526
- df_regression["automation_residuals"] = results_automation.resid
2527
-
2528
- # For usage, regress on expected automation to get residuals
2529
- model_usage = sm.OLS(df_regression["usage_per_capita_index"], X_expected)
2530
- results_usage = model_usage.fit()
2531
- df_regression["usage_residuals"] = results_usage.resid
2532
-
2533
- # Partial regression is regression of residuals
2534
- # We want usage (X) to explain automation (Y)
2535
- X_partial = sm.add_constant(df_regression["usage_residuals"])
2536
- model_partial = sm.OLS(df_regression["automation_residuals"], X_partial)
2537
- results_partial = model_partial.fit()
2538
- partial_slope = results_partial.params.iloc[1]
2539
- partial_r2 = results_partial.rsquared
2540
- partial_p = results_partial.pvalues.iloc[1]
2541
-
2542
- # Create visualization - only show partial correlation
2543
- fig, ax = create_figure(figsize=(10, 8))
2544
-
2545
- # Define colormap for automation residuals
2546
- colors_automation = [AUGMENTATION_COLOR, AUTOMATION_COLOR]
2547
- cmap_automation = LinearSegmentedColormap.from_list(
2548
- "automation", colors_automation, N=100
2549
- )
2550
-
2551
- # Plot partial correlation
2552
- # Create colormap normalization for automation residuals
2553
- norm = plt.Normalize(
2554
- vmin=df_regression["automation_residuals"].min(),
2555
- vmax=df_regression["automation_residuals"].max(),
2556
- )
2557
-
2558
- # Plot invisible points to ensure matplotlib's autoscaling includes all data points
2559
- ax.scatter(
2560
- df_regression["usage_residuals"],
2561
- df_regression["automation_residuals"],
2562
- s=0, # invisible points for autoscaling
2563
- alpha=0,
2564
- )
2565
-
2566
- # Plot country geo_id values as text instead of scatter points
2567
- for _, row in df_regression.iterrows():
2568
- color_val = norm(row["automation_residuals"])
2569
- text_color = cmap_automation(color_val)
2570
-
2571
- ax.text(
2572
- row["usage_residuals"],
2573
- row["automation_residuals"],
2574
- row["geo_id"],
2575
- fontsize=7,
2576
- ha="center",
2577
- va="center",
2578
- color=text_color,
2579
- alpha=0.9,
2580
- weight="bold",
2581
- )
2582
-
2583
- # Create a ScalarMappable for the colorbar
2584
- scalar_mappable = plt.cm.ScalarMappable(cmap=cmap_automation, norm=norm)
2585
- scalar_mappable.set_array([])
2586
-
2587
- # Add regression line using actual regression results
2588
- # OLS model: automation_residuals = intercept + slope * usage_residuals
2589
- x_resid_line = np.linspace(
2590
- df_regression["usage_residuals"].min(),
2591
- df_regression["usage_residuals"].max(),
2592
- 100,
2593
- )
2594
- intercept = results_partial.params.iloc[0]
2595
- y_resid_line = intercept + partial_slope * x_resid_line
2596
- ax.plot(
2597
- x_resid_line,
2598
- y_resid_line,
2599
- "grey",
2600
- linestyle="--",
2601
- linewidth=2,
2602
- alpha=0.7,
2603
- )
2604
-
2605
- # Set axis labels and title
2606
- format_axis(
2607
- ax,
2608
- xlabel="Anthropic AI Usage Index residuals\n(per capita usage not explained by task mix)",
2609
- ylabel="Automation % residuals\n(automation not explained by task mix)",
2610
- title="Relationship between Anthropic AI Usage Index and automation",
2611
- grid=False,
2612
- )
2613
-
2614
- # Add correlation info inside the plot
2615
- if partial_p < 0.001:
2616
- p_str = "p < 0.001"
2617
- else:
2618
- p_str = f"p = {partial_p:.3f}"
2619
-
2620
- ax.text(
2621
- 0.08,
2622
- 0.975,
2623
- f"Partial regression (controlling for task mix): $\\beta = {partial_slope:.3f}, R^2 = {partial_r2:.3f}\\ ({p_str})$",
2624
- transform=ax.transAxes,
2625
- fontsize=10,
2626
- bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
2627
- verticalalignment="top",
2628
- )
2629
-
2630
- ax.axhline(y=0, color="gray", linestyle=":", linewidth=1, alpha=0.3)
2631
- ax.axvline(x=0, color="gray", linestyle=":", linewidth=1, alpha=0.3)
2632
- ax.grid(True, alpha=0.3, linestyle="--")
2633
-
2634
- # Add colorbar
2635
- fig.subplots_adjust(right=0.92)
2636
- cbar_ax = fig.add_axes([0.94, 0.2, 0.02, 0.6])
2637
- cbar = plt.colorbar(scalar_mappable, cax=cbar_ax)
2638
- cbar.set_label("Automation % residuals", fontsize=10, rotation=270, labelpad=15)
2639
-
2640
- # Adjust plot to make room for titles and ensure all data is visible
2641
- plt.subplots_adjust(top=0.92, right=0.92, left=0.12, bottom=0.12)
2642
-
2643
- # Return results
2644
- return {
2645
- "figure": fig,
2646
- "partial_slope": partial_slope,
2647
- "partial_r2": partial_r2,
2648
- "partial_pvalue": partial_p,
2649
- "n_countries": len(df_regression),
2650
- "n_tasks": n_tasks,
2651
- "df_residuals": df_regression,
2652
- }
2653
-
2654
-
2655
- def plot_automation_preference_residuals(df, geography="country", figsize=(14, 12)):
2656
- """Plot automation vs augmentation preference after controlling for task mix.
2657
-
2658
- For geographies meeting minimum observation threshold only.
2659
-
2660
- Args:
2661
- df: Input dataframe
2662
- geography: "country" or "state_us"
2663
- figsize: Figure size
2664
- """
2665
- # First run the collaboration analysis to get residuals
2666
- results = collaboration_task_regression(df, geography=geography)
2667
-
2668
- # Suppress figure created by collaboration_task_regression
2669
- plt.close(results["figure"])
2670
-
2671
- # Get the dataframe with residuals
2672
- df_residuals = results["df_residuals"]
2673
-
2674
- # Sort by automation residuals (most augmentation to most automation)
2675
- df_plot = df_residuals.sort_values("automation_residuals", ascending=True)
2676
-
2677
- # Adjust figure size based on number of geographies
2678
- n_geos = len(df_plot)
2679
- fig_height = max(8, n_geos * 0.25)
2680
- fig, ax = create_figure(figsize=(figsize[0], fig_height))
2681
-
2682
- # Create color map
2683
- colors = [
2684
- AUGMENTATION_COLOR if x < 0 else AUTOMATION_COLOR
2685
- for x in df_plot["automation_residuals"]
2686
- ]
2687
-
2688
- # Create horizontal bar chart
2689
- ax.barh(
2690
- range(len(df_plot)),
2691
- df_plot["automation_residuals"].values,
2692
- color=colors,
2693
- alpha=0.8,
2694
- )
2695
-
2696
- # Set y-axis labels with geography names only
2697
- y_labels = [row["geo_name"] for _, row in df_plot.iterrows()]
2698
- ax.set_yticks(range(len(df_plot)))
2699
- ax.set_yticklabels(y_labels, fontsize=7)
2700
-
2701
- # Reduce white space at top and bottom
2702
- ax.set_ylim(-0.5, len(df_plot) - 0.5)
2703
-
2704
- # Add vertical line at zero
2705
- ax.axvline(x=0, color="black", linestyle="-", linewidth=1, alpha=0.7)
2706
-
2707
- # Labels and title
2708
- geo_label = "Countries'" if geography == "country" else "States'"
2709
- format_axis(
2710
- ax,
2711
- xlabel="Automation % residual (after controlling for task mix)",
2712
- ylabel="",
2713
- title=f"{geo_label} automation vs augmentation preference\n(after controlling for task composition)",
2714
- grid=False,
2715
- )
2716
-
2717
- # Add grid
2718
- ax.grid(True, axis="x", alpha=0.3, linestyle="--")
2719
-
2720
- # Add value labels on the bars
2721
- for i, (_, row) in enumerate(df_plot.iterrows()):
2722
- value = row["automation_residuals"]
2723
- x_offset = 0.2 if abs(value) < 5 else 0.3
2724
- x_pos = value + (x_offset if value > 0 else -x_offset)
2725
- ax.text(
2726
- x_pos,
2727
- i,
2728
- f"{value:.1f}",
2729
- ha="left" if value > 0 else "right",
2730
- va="center",
2731
- fontsize=8,
2732
- )
2733
-
2734
- # Add annotations
2735
- y_range = ax.get_ylim()
2736
- annotation_y = y_range[1] * 0.85
2737
-
2738
- # Left annotation for augmentation
2739
- ax.text(
2740
- ax.get_xlim()[0] * 0.7,
2741
- annotation_y,
2742
- "Prefer augmentation",
2743
- fontsize=9,
2744
- color=AUGMENTATION_COLOR,
2745
- fontweight="bold",
2746
- ha="left",
2747
- va="center",
2748
- )
2749
-
2750
- # Right annotation for automation
2751
- ax.text(
2752
- ax.get_xlim()[1] * 0.7,
2753
- annotation_y,
2754
- "Prefer automation",
2755
- fontsize=9,
2756
- color=AUTOMATION_COLOR,
2757
- fontweight="bold",
2758
- ha="right",
2759
- va="center",
2760
- )
2761
-
2762
- plt.tight_layout()
2763
-
2764
- return fig
2765
-
2766
-
2767
- def plot_soc_distribution(
2768
- df, geo_list, geography, figsize=(14, 10), title=None, exclude_not_classified=True
2769
- ):
2770
- """
2771
- Plot SOC occupation distribution for multiple geographies (countries or states) with horizontal bars, colored by tier.
2772
-
2773
- Args:
2774
- df: Long format dataframe
2775
- geo_list: List of geo_id values to compare (e.g., ['USA', 'BRA'] for countries or ['CA', 'TX'] for states)
2776
- geography: Geographic level ('country' or 'state_us')
2777
- figsize: Figure size
2778
- title: Chart title
2779
- exclude_not_classified: If True, excludes 'not_classified' from the chart
2780
- """
2781
- # Use global tier colors and names
2782
- tier_colors = TIER_COLORS_NUMERIC
2783
- tier_names = TIER_NAMES_NUMERIC
2784
-
2785
- # Get usage tier and geo_name for each geography
2786
- tier_data = filter_df(
2787
- df, geography=geography, variable="usage_tier", facet=geography, geo_id=geo_list
2788
- )[["geo_id", "geo_name", "value"]].rename(columns={"value": "tier"})
2789
-
2790
- # Collect SOC data for all geographies first to determine consistent ordering
2791
- all_soc_data = []
2792
- for geo_id in geo_list:
2793
- geo_soc = filter_df(
2794
- df,
2795
- geography=geography,
2796
- geo_id=geo_id,
2797
- facet="soc_occupation",
2798
- variable="soc_pct",
2799
- ).copy()
2800
-
2801
- if not geo_soc.empty:
2802
- # Optionally filter out not_classified
2803
- if exclude_not_classified:
2804
- geo_soc = geo_soc[geo_soc["cluster_name"] != "not_classified"].copy()
2805
-
2806
- geo_soc["geo"] = geo_id
2807
- all_soc_data.append(geo_soc)
2808
-
2809
- combined_data = pd.concat(all_soc_data)
2810
-
2811
- # Use global SOC distribution for countries, USA distribution for states
2812
- if geography == "country":
2813
- reference_data = filter_df(
2814
- df,
2815
- geography="global",
2816
- geo_id="GLOBAL",
2817
- facet="soc_occupation",
2818
- variable="soc_pct",
2819
- )
2820
- else: # state_us
2821
- reference_data = filter_df(
2822
- df,
2823
- geography="country",
2824
- geo_id="USA",
2825
- facet="soc_occupation",
2826
- variable="soc_pct",
2827
- )
2828
-
2829
- # Filter out not_classified from reference data if needed
2830
- if exclude_not_classified:
2831
- reference_data = reference_data[
2832
- reference_data["cluster_name"] != "not_classified"
2833
- ]
2834
-
2835
- # Sort by reference values ascending so highest appears at top when plotted
2836
- soc_order = reference_data.sort_values("value", ascending=True)[
2837
- "cluster_name"
2838
- ].tolist()
2839
-
2840
- # Create figure
2841
- fig, ax = create_figure(figsize=figsize)
2842
-
2843
- # Width of bars and positions
2844
- n_geos = len(geo_list)
2845
- bar_width = 0.95 / n_geos # Wider bars, less spacing within groups
2846
- y_positions = (
2847
- np.arange(len(soc_order)) * 1.05
2848
- ) # Reduce spacing between SOC groups to 5%
2849
-
2850
- # Sort geo_list to ensure highest tier appears at top within each group
2851
- # Reverse the order so tier 4 is plotted first and appears on top
2852
- geo_tier_map = dict(zip(tier_data["geo_id"], tier_data["tier"], strict=True))
2853
- geo_list_sorted = sorted(geo_list, key=lambda x: geo_tier_map[x])
2854
-
2855
- # Plot bars for each geography
2856
- for i, geo_id in enumerate(geo_list_sorted):
2857
- geo_data = filter_df(combined_data, geo=geo_id)
2858
- geo_name = filter_df(tier_data, geo_id=geo_id)["geo_name"].iloc[0]
2859
- geo_tier = filter_df(tier_data, geo_id=geo_id)["tier"].iloc[0]
2860
-
2861
- # Get values in the right order
2862
- values = []
2863
- for soc in soc_order:
2864
- val_data = filter_df(geo_data, cluster_name=soc)["value"]
2865
- # Use NaN for missing data
2866
- values.append(val_data.iloc[0] if not val_data.empty else float("nan"))
2867
-
2868
- # Determine color based on tier
2869
- color = tier_colors[int(geo_tier)]
2870
-
2871
- # Create bars with offset for multiple geographies
2872
- # Reverse the offset calculation so first geo (lowest tier) goes to bottom
2873
- offset = ((n_geos - 1 - i) - n_geos / 2 + 0.5) * bar_width
2874
-
2875
- # Get tier name for label
2876
- tier_label = tier_names[int(geo_tier)]
2877
- label_text = f"{geo_name} ({tier_label})"
2878
-
2879
- bars = ax.barh(
2880
- y_positions + offset,
2881
- values,
2882
- bar_width,
2883
- label=label_text,
2884
- color=color,
2885
- alpha=0.8,
2886
- )
2887
-
2888
- # Add value labels for bars with data
2889
- for bar, value in zip(bars, values, strict=True):
2890
- if not pd.isna(value):
2891
- ax.text(
2892
- value + 0.1,
2893
- bar.get_y() + bar.get_height() / 2,
2894
- f"{value:.1f}%",
2895
- va="center",
2896
- fontsize=5,
2897
- )
2898
-
2899
- # Set y-axis labels - position them at the center of each SOC group
2900
- ax.set_yticks(y_positions)
2901
- ax.set_yticklabels(soc_order, fontsize=9, va="center")
2902
-
2903
- # Reduce white space at top and bottom
2904
- ax.set_ylim(y_positions[0] - 0.5, y_positions[-1] + 0.5)
2905
-
2906
- # Customize plot
2907
- format_axis(
2908
- ax,
2909
- xlabel="Share of Claude task usage (%)",
2910
- ylabel="Standard Occupation Classification group",
2911
- grid=False,
2912
- )
2913
-
2914
- if title is None:
2915
- title = "Claude task usage by occupation: Comparison by AI usage tier"
2916
- format_axis(ax, title=title, title_size=14, grid=False)
2917
-
2918
- # Add legend
2919
- ax.legend(loc="lower right", fontsize=10, framealpha=0.95)
2920
-
2921
- # Grid
2922
- ax.grid(True, axis="x", alpha=0.3, linestyle="--")
2923
- ax.set_xlim(0, max(combined_data["value"]) * 1.15)
2924
-
2925
- plt.tight_layout()
2926
- return fig
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/code/aei_report_v3_analysis_1p_api.ipynb DELETED
@@ -1,315 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {},
6
- "source": [
7
- "# AEI Report v3 API Analysis\n",
8
- "This notebook produces the streamlined analysis for the AEI report API chapter"
9
- ]
10
- },
11
- {
12
- "cell_type": "code",
13
- "execution_count": null,
14
- "metadata": {
15
- "vscode": {
16
- "languageId": "python"
17
- }
18
- },
19
- "outputs": [],
20
- "source": [
21
- "from pathlib import Path\n",
22
- "import pandas as pd"
23
- ]
24
- },
25
- {
26
- "cell_type": "code",
27
- "execution_count": null,
28
- "metadata": {
29
- "vscode": {
30
- "languageId": "python"
31
- }
32
- },
33
- "outputs": [],
34
- "source": [
35
- "# Import the analysis functions\n",
36
- "from aei_analysis_functions_1p_api import (\n",
37
- " setup_plot_style,\n",
38
- " load_preprocessed_data,\n",
39
- " create_top_requests_bar_chart,\n",
40
- " create_platform_occupational_comparison,\n",
41
- " create_platform_lorenz_curves,\n",
42
- " create_collaboration_alluvial,\n",
43
- " create_automation_augmentation_panel,\n",
44
- " create_token_output_bar_chart,\n",
45
- " create_completion_vs_input_tokens_scatter,\n",
46
- " create_occupational_usage_cost_scatter,\n",
47
- " create_partial_regression_plot,\n",
48
- " perform_usage_share_regression_unweighted,\n",
49
- " create_btos_ai_adoption_chart,\n",
50
- ")"
51
- ]
52
- },
53
- {
54
- "cell_type": "code",
55
- "execution_count": null,
56
- "metadata": {
57
- "vscode": {
58
- "languageId": "python"
59
- }
60
- },
61
- "outputs": [],
62
- "source": [
63
- "# Set matplotlib to use the correct backend and style\n",
64
- "setup_plot_style()"
65
- ]
66
- },
67
- {
68
- "cell_type": "code",
69
- "execution_count": null,
70
- "metadata": {
71
- "vscode": {
72
- "languageId": "python"
73
- }
74
- },
75
- "outputs": [],
76
- "source": [
77
- "# Set up output directory for saving figures\n",
78
- "output_dir = Path(\"../data/output/figures/\")\n",
79
- "btos_data_path = Path(\"../data/input/BTOS_National.xlsx\")\n",
80
- "api_data_path = Path(\"../data/intermediate/aei_raw_1p_api_2025-08-04_to_2025-08-11.csv\")\n",
81
- "cai_data_path = Path(\n",
82
- " \"../data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv\"\n",
83
- ")\n",
84
- "\n",
85
- "# Create output directory\n",
86
- "output_dir.mkdir(parents=True, exist_ok=True)"
87
- ]
88
- },
89
- {
90
- "cell_type": "code",
91
- "execution_count": null,
92
- "metadata": {
93
- "vscode": {
94
- "languageId": "python"
95
- }
96
- },
97
- "outputs": [],
98
- "source": [
99
- "# Load BTOS Data\n",
100
- "print(\"Loading BTOS data...\")\n",
101
- "btos_df = pd.read_excel(btos_data_path, sheet_name=\"Response Estimates\")\n",
102
- "btos_df_ref_dates_df = pd.read_excel(\n",
103
- " btos_data_path, sheet_name=\"Collection and Reference Dates\"\n",
104
- ")\n",
105
- "\n",
106
- "# Load the API data\n",
107
- "print(\"Loading API data...\")\n",
108
- "api_df = load_preprocessed_data(api_data_path)\n",
109
- "\n",
110
- "# Load the Claude.ai data\n",
111
- "print(\"Loading Claude.ai data...\")\n",
112
- "cai_df = load_preprocessed_data(cai_data_path)"
113
- ]
114
- },
115
- {
116
- "cell_type": "code",
117
- "execution_count": null,
118
- "metadata": {
119
- "vscode": {
120
- "languageId": "python"
121
- }
122
- },
123
- "outputs": [],
124
- "source": [
125
- "create_btos_ai_adoption_chart(btos_df, btos_df_ref_dates_df, output_dir)"
126
- ]
127
- },
128
- {
129
- "cell_type": "code",
130
- "execution_count": null,
131
- "metadata": {
132
- "vscode": {
133
- "languageId": "python"
134
- }
135
- },
136
- "outputs": [],
137
- "source": [
138
- "# Create the top requests bar chart\n",
139
- "print(\"Creating top requests bar chart...\")\n",
140
- "top_requests_chart = create_top_requests_bar_chart(api_df, output_dir)\n",
141
- "print(f\"Chart saved to: {top_requests_chart}\")"
142
- ]
143
- },
144
- {
145
- "cell_type": "code",
146
- "execution_count": null,
147
- "metadata": {
148
- "vscode": {
149
- "languageId": "python"
150
- }
151
- },
152
- "outputs": [],
153
- "source": [
154
- "# Create the platform occupational comparison chart\n",
155
- "print(\"Creating platform occupational comparison chart...\")\n",
156
- "occupational_comparison_chart = create_platform_occupational_comparison(\n",
157
- " api_df, cai_df, output_dir\n",
158
- ")\n",
159
- "print(f\"Chart saved to: {occupational_comparison_chart}\")"
160
- ]
161
- },
162
- {
163
- "cell_type": "code",
164
- "execution_count": null,
165
- "metadata": {
166
- "vscode": {
167
- "languageId": "python"
168
- }
169
- },
170
- "outputs": [],
171
- "source": [
172
- "# Create the platform Lorenz curves\n",
173
- "print(\"Creating platform Lorenz curves...\")\n",
174
- "lorenz_curves_chart = create_platform_lorenz_curves(api_df, cai_df, output_dir)\n",
175
- "print(f\"Chart saved to: {lorenz_curves_chart}\")"
176
- ]
177
- },
178
- {
179
- "cell_type": "code",
180
- "execution_count": null,
181
- "metadata": {
182
- "vscode": {
183
- "languageId": "python"
184
- }
185
- },
186
- "outputs": [],
187
- "source": [
188
- "# Create the collaboration alluvial diagram\n",
189
- "print(\"Creating collaboration alluvial diagram...\")\n",
190
- "alluvial_chart = create_collaboration_alluvial(api_df, cai_df, output_dir)\n",
191
- "print(f\"Chart saved to: {alluvial_chart}\")"
192
- ]
193
- },
194
- {
195
- "cell_type": "code",
196
- "execution_count": null,
197
- "metadata": {
198
- "vscode": {
199
- "languageId": "python"
200
- }
201
- },
202
- "outputs": [],
203
- "source": [
204
- "# Create the automation vs augmentation panel\n",
205
- "print(\"Creating automation vs augmentation panel...\")\n",
206
- "automation_panel_chart = create_automation_augmentation_panel(\n",
207
- " api_df, cai_df, output_dir\n",
208
- ")\n",
209
- "print(f\"Chart saved to: {automation_panel_chart}\")"
210
- ]
211
- },
212
- {
213
- "cell_type": "code",
214
- "execution_count": null,
215
- "metadata": {
216
- "vscode": {
217
- "languageId": "python"
218
- }
219
- },
220
- "outputs": [],
221
- "source": [
222
- "# Create the token output bar chart\n",
223
- "print(\"Creating token output bar chart...\")\n",
224
- "token_output_chart = create_token_output_bar_chart(api_df, output_dir)\n",
225
- "print(f\"Chart saved to: {token_output_chart}\")"
226
- ]
227
- },
228
- {
229
- "cell_type": "code",
230
- "execution_count": null,
231
- "metadata": {
232
- "vscode": {
233
- "languageId": "python"
234
- }
235
- },
236
- "outputs": [],
237
- "source": [
238
- "# Create the completion vs input tokens scatter plot\n",
239
- "print(\"Creating completion vs input tokens scatter plot...\")\n",
240
- "completion_input_scatter = create_completion_vs_input_tokens_scatter(api_df, output_dir)\n",
241
- "print(f\"Chart saved to: {completion_input_scatter}\")"
242
- ]
243
- },
244
- {
245
- "cell_type": "code",
246
- "execution_count": null,
247
- "metadata": {
248
- "vscode": {
249
- "languageId": "python"
250
- }
251
- },
252
- "outputs": [],
253
- "source": [
254
- "# Create the occupational usage vs cost scatter plot\n",
255
- "print(\"Creating occupational usage vs cost scatter plot...\")\n",
256
- "usage_cost_scatter = create_occupational_usage_cost_scatter(api_df, output_dir)\n",
257
- "print(f\"Chart saved to: {usage_cost_scatter}\")"
258
- ]
259
- },
260
- {
261
- "cell_type": "code",
262
- "execution_count": null,
263
- "metadata": {
264
- "vscode": {
265
- "languageId": "python"
266
- }
267
- },
268
- "outputs": [],
269
- "source": [
270
- "# Create the partial regression plot\n",
271
- "print(\"Creating partial regression plot...\")\n",
272
- "partial_plot, regression_results = create_partial_regression_plot(\n",
273
- " api_df, cai_df, output_dir\n",
274
- ")\n",
275
- "print(f\"Chart saved to: {partial_plot}\")"
276
- ]
277
- },
278
- {
279
- "cell_type": "code",
280
- "execution_count": null,
281
- "metadata": {
282
- "vscode": {
283
- "languageId": "python"
284
- }
285
- },
286
- "outputs": [],
287
- "source": [
288
- "# Perform the unweighted usage share regression analysis\n",
289
- "print(\"Performing unweighted usage share regression analysis...\")\n",
290
- "regression_model = perform_usage_share_regression_unweighted(api_df, cai_df, output_dir)\n",
291
- "regression_model.summary()"
292
- ]
293
- }
294
- ],
295
- "metadata": {
296
- "kernelspec": {
297
- "display_name": "Coconut",
298
- "language": "coconut",
299
- "name": "coconut"
300
- },
301
- "language_info": {
302
- "codemirror_mode": {
303
- "name": "python",
304
- "version": 3
305
- },
306
- "file_extension": ".coco",
307
- "mimetype": "text/x-python3",
308
- "name": "coconut",
309
- "pygments_lexer": "coconut",
310
- "version": "3.0.2"
311
- }
312
- },
313
- "nbformat": 4,
314
- "nbformat_minor": 4
315
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/code/aei_report_v3_analysis_claude_ai.ipynb DELETED
@@ -1,868 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {},
6
- "source": [
7
- "# AEI Report v3 Claude.ai Analysis\n",
8
- "\n",
9
- "This notebook performs statistical analysis and creates visualizations from enriched Clio data.\n",
10
- "It works directly with long format data from the preprocessing pipeline.\n",
11
- "\n",
12
- "**Input**: `aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv`\n",
13
- "\n",
14
- "**Output**: Visualizations"
15
- ]
16
- },
17
- {
18
- "cell_type": "markdown",
19
- "metadata": {},
20
- "source": [
21
- "## 1. Setup and Data Loading"
22
- ]
23
- },
24
- {
25
- "cell_type": "code",
26
- "execution_count": null,
27
- "metadata": {
28
- "vscode": {
29
- "languageId": "python"
30
- }
31
- },
32
- "outputs": [],
33
- "source": [
34
- "from pathlib import Path\n",
35
- "import pandas as pd\n",
36
- "import matplotlib.pyplot as plt\n",
37
- "\n",
38
- "# Import all analysis functions\n",
39
- "from aei_analysis_functions_claude_ai import (\n",
40
- " setup_plot_style,\n",
41
- " get_filtered_geographies,\n",
42
- " plot_usage_index_bars,\n",
43
- " plot_tier_map,\n",
44
- " plot_usage_share_bars,\n",
45
- " plot_tier_summary_table,\n",
46
- " plot_gdp_scatter,\n",
47
- " plot_request_comparison_cards,\n",
48
- " plot_soc_usage_scatter,\n",
49
- " plot_dc_task_request_cards,\n",
50
- " collaboration_task_regression,\n",
51
- " plot_usage_index_histogram,\n",
52
- " plot_variable_map,\n",
53
- " plot_soc_distribution,\n",
54
- " plot_automation_preference_residuals,\n",
55
- " plot_variable_bars,\n",
56
- ")"
57
- ]
58
- },
59
- {
60
- "cell_type": "code",
61
- "execution_count": null,
62
- "metadata": {
63
- "vscode": {
64
- "languageId": "python"
65
- }
66
- },
67
- "outputs": [],
68
- "source": [
69
- "# Set matplotlib to use the correct backend and style\n",
70
- "setup_plot_style()"
71
- ]
72
- },
73
- {
74
- "cell_type": "code",
75
- "execution_count": null,
76
- "metadata": {
77
- "vscode": {
78
- "languageId": "python"
79
- }
80
- },
81
- "outputs": [],
82
- "source": [
83
- "# Set up output directory for saving figures\n",
84
- "output_dir = Path(\"../data/output/figures/\")\n",
85
- "output_dir.mkdir(parents=True, exist_ok=True)\n",
86
- "output_dir_app = Path(\"../data/output/figures/appendix/\")\n",
87
- "output_dir_app.mkdir(parents=True, exist_ok=True)\n",
88
- "\n",
89
- "# Load enriched data\n",
90
- "data_path = \"../data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv\"\n",
91
- "\n",
92
- "# Load the data - use keep_default_na=False to preserve \"NA\" (Namibia) as string\n",
93
- "df = pd.read_csv(data_path, keep_default_na=False, na_values=[\"\"])"
94
- ]
95
- },
96
- {
97
- "cell_type": "code",
98
- "execution_count": null,
99
- "metadata": {
100
- "vscode": {
101
- "languageId": "python"
102
- }
103
- },
104
- "outputs": [],
105
- "source": [
106
- "# Filter countries to those with at least 200 observations\n",
107
- "# Filter US states to those with at least 100 observations\n",
108
- "filtered_countries, filtered_states = get_filtered_geographies(df)"
109
- ]
110
- },
111
- {
112
- "cell_type": "markdown",
113
- "metadata": {},
114
- "source": [
115
- "## 2.2 Global"
116
- ]
117
- },
118
- {
119
- "cell_type": "code",
120
- "execution_count": null,
121
- "metadata": {
122
- "vscode": {
123
- "languageId": "python"
124
- }
125
- },
126
- "outputs": [],
127
- "source": [
128
- "# Top countries by share of global usage\n",
129
- "plot_usage_share_bars(\n",
130
- " df,\n",
131
- " geography=\"country\",\n",
132
- " top_n=30,\n",
133
- ")\n",
134
- "plt.savefig(\n",
135
- " output_dir / \"usage_pct_bar_country_top30.png\", dpi=300, bbox_inches=\"tight\"\n",
136
- ")"
137
- ]
138
- },
139
- {
140
- "cell_type": "code",
141
- "execution_count": null,
142
- "metadata": {
143
- "vscode": {
144
- "languageId": "python"
145
- }
146
- },
147
- "outputs": [],
148
- "source": [
149
- "# Create world map showing usage tiers\n",
150
- "plot_tier_map(\n",
151
- " df,\n",
152
- " geography=\"country\",\n",
153
- " title=\"Anthropic AI Usage Index tiers by country\",\n",
154
- " figsize=(16, 10),\n",
155
- ")\n",
156
- "plt.savefig(\n",
157
- " output_dir / \"ai_usage_index_tier_map_country_all.png\", dpi=300, bbox_inches=\"tight\"\n",
158
- ")"
159
- ]
160
- },
161
- {
162
- "cell_type": "code",
163
- "execution_count": null,
164
- "metadata": {
165
- "vscode": {
166
- "languageId": "python"
167
- }
168
- },
169
- "outputs": [],
170
- "source": [
171
- "# Create tier summary table for countries\n",
172
- "plot_tier_summary_table(df, geography=\"country\")\n",
173
- "plt.savefig(\n",
174
- " output_dir / \"tier_summary_table_country.png\",\n",
175
- " dpi=300,\n",
176
- " bbox_inches=\"tight\",\n",
177
- " transparent=True,\n",
178
- ")"
179
- ]
180
- },
181
- {
182
- "cell_type": "code",
183
- "execution_count": null,
184
- "metadata": {
185
- "vscode": {
186
- "languageId": "python"
187
- }
188
- },
189
- "outputs": [],
190
- "source": [
191
- "# Top countries by usage per capita\n",
192
- "plot_usage_index_bars(\n",
193
- " df, geography=\"country\", top_n=20, filtered_entities=filtered_countries\n",
194
- ")\n",
195
- "plt.savefig(\n",
196
- " output_dir / \"ai_usage_index_bar_country_top20.png\", dpi=300, bbox_inches=\"tight\"\n",
197
- ")"
198
- ]
199
- },
200
- {
201
- "cell_type": "code",
202
- "execution_count": null,
203
- "metadata": {
204
- "vscode": {
205
- "languageId": "python"
206
- }
207
- },
208
- "outputs": [],
209
- "source": [
210
- "# GDP vs usage regression for countries\n",
211
- "plot_gdp_scatter(df, geography=\"country\", filtered_entities=filtered_countries)\n",
212
- "plt.savefig(\n",
213
- " output_dir / \"ai_usage_index_gdp_reg_country_min_obs.png\",\n",
214
- " dpi=300,\n",
215
- " bbox_inches=\"tight\",\n",
216
- ")"
217
- ]
218
- },
219
- {
220
- "cell_type": "code",
221
- "execution_count": null,
222
- "metadata": {
223
- "vscode": {
224
- "languageId": "python"
225
- }
226
- },
227
- "outputs": [],
228
- "source": [
229
- "# GDP vs usage regression for countries\n",
230
- "plot_gdp_scatter(\n",
231
- " df, geography=\"country\", filtered_entities=filtered_countries, figsize=(13.2, 8.25)\n",
232
- ")\n",
233
- "plt.savefig(\n",
234
- " output_dir / \"ai_usage_index_gdp_reg_country_min_obs_wide.png\",\n",
235
- " dpi=300,\n",
236
- " bbox_inches=\"tight\",\n",
237
- ")"
238
- ]
239
- },
240
- {
241
- "cell_type": "code",
242
- "execution_count": null,
243
- "metadata": {
244
- "vscode": {
245
- "languageId": "python"
246
- }
247
- },
248
- "outputs": [],
249
- "source": [
250
- "# Create SOC diffusion scatter plot with top 4 classified SOC groups (2x2 grid)\n",
251
- "plot_soc_usage_scatter(df, geography=\"country\")\n",
252
- "plt.savefig(\n",
253
- " output_dir / \"soc_usage_scatter_top4_country_min.png\", dpi=300, bbox_inches=\"tight\"\n",
254
- ")"
255
- ]
256
- },
257
- {
258
- "cell_type": "code",
259
- "execution_count": null,
260
- "metadata": {
261
- "vscode": {
262
- "languageId": "python"
263
- }
264
- },
265
- "outputs": [],
266
- "source": [
267
- "# Find the highest usage country in each tier (1-4)\n",
268
- "\n",
269
- "# Get usage tier and usage count data for all countries\n",
270
- "tier_data = df[\n",
271
- " (df[\"geography\"] == \"country\")\n",
272
- " & (df[\"variable\"] == \"usage_tier\")\n",
273
- " & (df[\"facet\"] == \"country\")\n",
274
- "][[\"geo_id\", \"value\"]].rename(columns={\"value\": \"tier\"})\n",
275
- "\n",
276
- "usage_data = df[\n",
277
- " (df[\"geography\"] == \"country\")\n",
278
- " & (df[\"variable\"] == \"usage_count\")\n",
279
- " & (df[\"facet\"] == \"country\")\n",
280
- "][[\"geo_id\", \"geo_name\", \"value\"]].rename(columns={\"value\": \"usage_count\"})\n",
281
- "\n",
282
- "# Merge tier and usage data\n",
283
- "country_data = usage_data.merge(tier_data, on=\"geo_id\")\n",
284
- "\n",
285
- "selected_countries = [\n",
286
- " country_data[country_data[\"tier\"] == tier]\n",
287
- " .sort_values(\"usage_count\", ascending=False)\n",
288
- " .iloc[0][\"geo_id\"]\n",
289
- " for tier in [4, 3, 2, 1]\n",
290
- "]"
291
- ]
292
- },
293
- {
294
- "cell_type": "code",
295
- "execution_count": null,
296
- "metadata": {
297
- "vscode": {
298
- "languageId": "python"
299
- }
300
- },
301
- "outputs": [],
302
- "source": [
303
- "# Compare top overrepresented requests for 4 highest usage countries in each tier\n",
304
- "plot_request_comparison_cards(\n",
305
- " df,\n",
306
- " geo_ids=selected_countries,\n",
307
- " top_n=5,\n",
308
- " title=\"Top overrepresented requests for the United States, Brazil, Vietnam and India\",\n",
309
- " geography=\"country\",\n",
310
- ")\n",
311
- "\n",
312
- "plt.savefig(\n",
313
- " output_dir / \"request_comparison_cards_by_tier_country_selected4.png\",\n",
314
- " dpi=300,\n",
315
- " bbox_inches=\"tight\",\n",
316
- ")"
317
- ]
318
- },
319
- {
320
- "cell_type": "markdown",
321
- "metadata": {},
322
- "source": [
323
- "## 3. United States"
324
- ]
325
- },
326
- {
327
- "cell_type": "code",
328
- "execution_count": null,
329
- "metadata": {
330
- "vscode": {
331
- "languageId": "python"
332
- }
333
- },
334
- "outputs": [],
335
- "source": [
336
- "# State tier map\n",
337
- "plot_tier_map(\n",
338
- " df, geography=\"state_us\", title=\"Anthropic AI Usage Index tier by US state\"\n",
339
- ")\n",
340
- "plt.savefig(\n",
341
- " output_dir / \"ai_usage_index_tier_map_state_all.png\", dpi=300, bbox_inches=\"tight\"\n",
342
- ")"
343
- ]
344
- },
345
- {
346
- "cell_type": "code",
347
- "execution_count": null,
348
- "metadata": {
349
- "vscode": {
350
- "languageId": "python"
351
- }
352
- },
353
- "outputs": [],
354
- "source": [
355
- "# Top 20 US states\n",
356
- "plot_usage_index_bars(\n",
357
- " df,\n",
358
- " geography=\"state_us\",\n",
359
- " top_n=20,\n",
360
- ")\n",
361
- "plt.savefig(\n",
362
- " output_dir / \"ai_usage_index_bar_state_top20.png\", dpi=300, bbox_inches=\"tight\"\n",
363
- ")"
364
- ]
365
- },
366
- {
367
- "cell_type": "code",
368
- "execution_count": null,
369
- "metadata": {
370
- "vscode": {
371
- "languageId": "python"
372
- }
373
- },
374
- "outputs": [],
375
- "source": [
376
- "# Create tier summary table for US states\n",
377
- "plot_tier_summary_table(df, geography=\"state_us\")\n",
378
- "plt.savefig(\n",
379
- " output_dir / \"tier_summary_table_state.png\",\n",
380
- " dpi=300,\n",
381
- " bbox_inches=\"tight\",\n",
382
- " transparent=True,\n",
383
- ")"
384
- ]
385
- },
386
- {
387
- "cell_type": "code",
388
- "execution_count": null,
389
- "metadata": {
390
- "vscode": {
391
- "languageId": "python"
392
- }
393
- },
394
- "outputs": [],
395
- "source": [
396
- "# Find the highest usage US state in each tier (1-4)\n",
397
- "\n",
398
- "# Get usage tier and usage count data for US states\n",
399
- "tier_data_states = df[\n",
400
- " (df[\"geography\"] == \"state_us\")\n",
401
- " & (df[\"variable\"] == \"usage_tier\")\n",
402
- " & (df[\"facet\"] == \"state_us\")\n",
403
- "][[\"geo_id\", \"value\"]].rename(columns={\"value\": \"tier\"})\n",
404
- "\n",
405
- "usage_data_states = df[\n",
406
- " (df[\"geography\"] == \"state_us\")\n",
407
- " & (df[\"variable\"] == \"usage_count\")\n",
408
- " & (df[\"facet\"] == \"state_us\")\n",
409
- "][[\"geo_id\", \"geo_name\", \"value\"]].rename(columns={\"value\": \"usage_count\"})\n",
410
- "\n",
411
- "# Merge tier and usage data\n",
412
- "state_data = usage_data_states.merge(tier_data_states, on=\"geo_id\")\n",
413
- "\n",
414
- "# Find the highest usage state in each tier\n",
415
- "selected_states = [\n",
416
- " state_data[state_data[\"tier\"] == tier]\n",
417
- " .sort_values(\"usage_count\", ascending=False)\n",
418
- " .iloc[0][\"geo_id\"]\n",
419
- " for tier in [4, 3, 2, 1]\n",
420
- "]"
421
- ]
422
- },
423
- {
424
- "cell_type": "code",
425
- "execution_count": null,
426
- "metadata": {
427
- "vscode": {
428
- "languageId": "python"
429
- }
430
- },
431
- "outputs": [],
432
- "source": [
433
- "# Compare top overrepresented requests for US states representing each tier\n",
434
- "# CA (Tier 4), TX (Tier 3), FL (Tier 2), SC (Tier 1)\n",
435
- "states_to_compare = [\"CA\", \"TX\", \"FL\", \"SC\"]\n",
436
- "\n",
437
- "plot_request_comparison_cards(\n",
438
- " df,\n",
439
- " geo_ids=states_to_compare,\n",
440
- " top_n=5,\n",
441
- " title=\"Top overrepresented high-level requests for California, Texas, Florida and South Carolina\",\n",
442
- " geography=\"state_us\",\n",
443
- ")\n",
444
- "\n",
445
- "plt.savefig(\n",
446
- " output_dir / \"request_comparison_cards_by_tier_state_selected4.png\",\n",
447
- " dpi=300,\n",
448
- " bbox_inches=\"tight\",\n",
449
- ")"
450
- ]
451
- },
452
- {
453
- "cell_type": "code",
454
- "execution_count": null,
455
- "metadata": {
456
- "vscode": {
457
- "languageId": "python"
458
- }
459
- },
460
- "outputs": [],
461
- "source": [
462
- "# Create card-style visualization for Washington DC\n",
463
- "# Shows top O*NET tasks and top request categories\n",
464
- "plot_dc_task_request_cards(\n",
465
- " df, title=\"Washington, DC: Highest Anthropic AI Usage Index in the US\"\n",
466
- ")\n",
467
- "\n",
468
- "plt.savefig(\n",
469
- " output_dir / \"task_request_comparison_state_dc.png\", dpi=300, bbox_inches=\"tight\"\n",
470
- ")"
471
- ]
472
- },
473
- {
474
- "cell_type": "code",
475
- "execution_count": null,
476
- "metadata": {
477
- "vscode": {
478
- "languageId": "python"
479
- }
480
- },
481
- "outputs": [],
482
- "source": [
483
- "# Collaboration pattern analysis with task mix control\n",
484
- "# This analysis determines whether the relationship between AUI\n",
485
- "# and automation preference persists after controlling for task composition\n",
486
- "collaboration_task_regression(df, geography=\"country\")\n",
487
- "plt.savefig(\n",
488
- " output_dir / \"collaboration_task_control_partial_corr_country.png\",\n",
489
- " dpi=300,\n",
490
- " bbox_inches=\"tight\",\n",
491
- ")"
492
- ]
493
- },
494
- {
495
- "cell_type": "markdown",
496
- "metadata": {},
497
- "source": [
498
- "# Appendix"
499
- ]
500
- },
501
- {
502
- "cell_type": "markdown",
503
- "metadata": {},
504
- "source": [
505
- "## Global"
506
- ]
507
- },
508
- {
509
- "cell_type": "code",
510
- "execution_count": null,
511
- "metadata": {
512
- "vscode": {
513
- "languageId": "python"
514
- }
515
- },
516
- "outputs": [],
517
- "source": [
518
- "# Distribution histogram\n",
519
- "plot_usage_index_histogram(\n",
520
- " df, geography=\"country\", title=\"Distribution of Anthropic AI Usage Index\"\n",
521
- ")\n",
522
- "plt.savefig(\n",
523
- " output_dir_app / \"ai_usage_index_histogram_country_all.png\",\n",
524
- " dpi=300,\n",
525
- " bbox_inches=\"tight\",\n",
526
- ")"
527
- ]
528
- },
529
- {
530
- "cell_type": "code",
531
- "execution_count": null,
532
- "metadata": {
533
- "vscode": {
534
- "languageId": "python"
535
- }
536
- },
537
- "outputs": [],
538
- "source": [
539
- "# Create map showing share of usage\n",
540
- "plot_variable_map(\n",
541
- " df,\n",
542
- " variable=\"usage_pct\",\n",
543
- " geography=\"country\",\n",
544
- " title=\"Share of global Claude usage by country\",\n",
545
- " figsize=(14, 8),\n",
546
- ")\n",
547
- "plt.savefig(\n",
548
- " output_dir_app / \"usage_pct_map_country_all.png\", dpi=300, bbox_inches=\"tight\"\n",
549
- ")"
550
- ]
551
- },
552
- {
553
- "cell_type": "code",
554
- "execution_count": null,
555
- "metadata": {
556
- "vscode": {
557
- "languageId": "python"
558
- }
559
- },
560
- "outputs": [],
561
- "source": [
562
- "# Create world map showing usage per capita\n",
563
- "plot_variable_map(\n",
564
- " df,\n",
565
- " variable=\"usage_per_capita_index\",\n",
566
- " geography=\"country\",\n",
567
- " title=\"Anthropic AI Usage Index by country\",\n",
568
- " center_at_one=True,\n",
569
- " figsize=(14, 8),\n",
570
- ")\n",
571
- "plt.savefig(\n",
572
- " output_dir_app / \"ai_usage_index_map_country_all.png\", dpi=300, bbox_inches=\"tight\"\n",
573
- ")"
574
- ]
575
- },
576
- {
577
- "cell_type": "code",
578
- "execution_count": null,
579
- "metadata": {
580
- "vscode": {
581
- "languageId": "python"
582
- }
583
- },
584
- "outputs": [],
585
- "source": [
586
- "# AUI for all countries\n",
587
- "plot_usage_index_bars(\n",
588
- " df,\n",
589
- " geography=\"country\",\n",
590
- " filtered_entities=filtered_countries,\n",
591
- ")\n",
592
- "plt.savefig(\n",
593
- " output_dir_app / \"ai_usage_index_country_all.png\", dpi=300, bbox_inches=\"tight\"\n",
594
- ")"
595
- ]
596
- },
597
- {
598
- "cell_type": "code",
599
- "execution_count": null,
600
- "metadata": {
601
- "vscode": {
602
- "languageId": "python"
603
- }
604
- },
605
- "outputs": [],
606
- "source": [
607
- "# SOC distribution comparison for countries by usage tier\n",
608
- "plot_soc_distribution(\n",
609
- " df,\n",
610
- " selected_countries,\n",
611
- " \"country\",\n",
612
- " title=\"Occupation groups by Claude task usage in the United States, Brazil, Vietnam and India\",\n",
613
- ")\n",
614
- "plt.savefig(\n",
615
- " output_dir_app / \"soc_distribution_by_tier_country_selected4.png\",\n",
616
- " dpi=300,\n",
617
- " bbox_inches=\"tight\",\n",
618
- ")"
619
- ]
620
- },
621
- {
622
- "cell_type": "code",
623
- "execution_count": null,
624
- "metadata": {
625
- "vscode": {
626
- "languageId": "python"
627
- }
628
- },
629
- "outputs": [],
630
- "source": [
631
- "# Plot automation preference residuals after controlling for task mix\n",
632
- "# This shows which countries prefer more automation vs augmentation\n",
633
- "# than would be expected given their task composition\n",
634
- "plot_automation_preference_residuals(df)\n",
635
- "plt.savefig(\n",
636
- " output_dir_app / \"automation_preference_residuals.png\", dpi=300, bbox_inches=\"tight\"\n",
637
- ")"
638
- ]
639
- },
640
- {
641
- "cell_type": "markdown",
642
- "metadata": {},
643
- "source": [
644
- "## United States"
645
- ]
646
- },
647
- {
648
- "cell_type": "code",
649
- "execution_count": null,
650
- "metadata": {
651
- "vscode": {
652
- "languageId": "python"
653
- }
654
- },
655
- "outputs": [],
656
- "source": [
657
- "# Top countries by share of global usage\n",
658
- "plot_usage_share_bars(\n",
659
- " df,\n",
660
- " geography=\"state_us\",\n",
661
- " top_n=30,\n",
662
- " title=\"Top 30 US states by share of US Claude usage\",\n",
663
- ")\n",
664
- "plt.savefig(\n",
665
- " output_dir_app / \"usage_pct_bar_state_top30.png\", dpi=300, bbox_inches=\"tight\"\n",
666
- ")"
667
- ]
668
- },
669
- {
670
- "cell_type": "code",
671
- "execution_count": null,
672
- "metadata": {
673
- "vscode": {
674
- "languageId": "python"
675
- }
676
- },
677
- "outputs": [],
678
- "source": [
679
- "# Distribution histogram\n",
680
- "plot_usage_index_histogram(\n",
681
- " df, geography=\"state_us\", title=\"Distribution of Anthropic AI Usage Index\"\n",
682
- ")\n",
683
- "plt.savefig(\n",
684
- " output_dir_app / \"ai_usage_index_histogram_state_all.png\",\n",
685
- " dpi=300,\n",
686
- " bbox_inches=\"tight\",\n",
687
- ")"
688
- ]
689
- },
690
- {
691
- "cell_type": "code",
692
- "execution_count": null,
693
- "metadata": {
694
- "vscode": {
695
- "languageId": "python"
696
- }
697
- },
698
- "outputs": [],
699
- "source": [
700
- "# Create map showing share of usage\n",
701
- "plot_variable_map(\n",
702
- " df,\n",
703
- " variable=\"usage_pct\",\n",
704
- " geography=\"state_us\",\n",
705
- " title=\"Share of global Claude usage by US state\",\n",
706
- " figsize=(14, 8),\n",
707
- ")\n",
708
- "plt.savefig(\n",
709
- " output_dir_app / \"usage_pct_map_state_all.png\", dpi=300, bbox_inches=\"tight\"\n",
710
- ")"
711
- ]
712
- },
713
- {
714
- "cell_type": "code",
715
- "execution_count": null,
716
- "metadata": {
717
- "vscode": {
718
- "languageId": "python"
719
- }
720
- },
721
- "outputs": [],
722
- "source": [
723
- "# Create map showing per capita usage\n",
724
- "plot_variable_map(\n",
725
- " df,\n",
726
- " variable=\"usage_per_capita_index\",\n",
727
- " geography=\"state_us\",\n",
728
- " title=\"Anthropic AI Usage Index by US state\",\n",
729
- " center_at_one=True,\n",
730
- " figsize=(14, 8),\n",
731
- ")\n",
732
- "plt.savefig(\n",
733
- " output_dir_app / \"ai_usage_index_map_state_all.png\", dpi=300, bbox_inches=\"tight\"\n",
734
- ")"
735
- ]
736
- },
737
- {
738
- "cell_type": "code",
739
- "execution_count": null,
740
- "metadata": {
741
- "vscode": {
742
- "languageId": "python"
743
- }
744
- },
745
- "outputs": [],
746
- "source": [
747
- "plot_usage_index_bars(\n",
748
- " df,\n",
749
- " geography=\"state_us\",\n",
750
- ")\n",
751
- "plt.savefig(\n",
752
- " output_dir_app / \"ai_usage_index_bar_state_all.png\", dpi=300, bbox_inches=\"tight\"\n",
753
- ")"
754
- ]
755
- },
756
- {
757
- "cell_type": "code",
758
- "execution_count": null,
759
- "metadata": {
760
- "vscode": {
761
- "languageId": "python"
762
- }
763
- },
764
- "outputs": [],
765
- "source": [
766
- "# GDP vs usage regression for US states\n",
767
- "plot_gdp_scatter(df, geography=\"state_us\", filtered_entities=filtered_states)\n",
768
- "plt.savefig(\n",
769
- " output_dir_app / \"ai_usage_index_gdp_reg_state_min_obs.png\",\n",
770
- " dpi=300,\n",
771
- " bbox_inches=\"tight\",\n",
772
- ")"
773
- ]
774
- },
775
- {
776
- "cell_type": "code",
777
- "execution_count": null,
778
- "metadata": {
779
- "vscode": {
780
- "languageId": "python"
781
- }
782
- },
783
- "outputs": [],
784
- "source": [
785
- "# SOC distribution comparison for US states by usage tier\n",
786
- "plot_soc_distribution(\n",
787
- " df,\n",
788
- " selected_states,\n",
789
- " \"state_us\",\n",
790
- " title=\"Occupation groups by Claude task usage in California, Texas, Florida and South Carolina\",\n",
791
- ")\n",
792
- "plt.savefig(\n",
793
- " output_dir_app / \"soc_distribution_by_tier_state_selected4.png\",\n",
794
- " dpi=300,\n",
795
- " bbox_inches=\"tight\",\n",
796
- ")"
797
- ]
798
- },
799
- {
800
- "cell_type": "code",
801
- "execution_count": null,
802
- "metadata": {
803
- "vscode": {
804
- "languageId": "python"
805
- }
806
- },
807
- "outputs": [],
808
- "source": [
809
- "# Top SOC chart\n",
810
- "plot_variable_bars(\n",
811
- " df,\n",
812
- " variable=\"soc_pct\",\n",
813
- " geography=\"country\",\n",
814
- " facet=\"soc_occupation\",\n",
815
- " geo_id=\"USA\",\n",
816
- " title=\"Occupation groups in the US by Claude use for associated tasks\",\n",
817
- " xlabel=\"Share of total usage (%)\",\n",
818
- " exclude_not_classified=True,\n",
819
- ")\n",
820
- "\n",
821
- "# Save the figure\n",
822
- "plt.savefig(output_dir_app / \"soc_bar_country_us.png\", dpi=300, bbox_inches=\"tight\")"
823
- ]
824
- },
825
- {
826
- "cell_type": "code",
827
- "execution_count": null,
828
- "metadata": {
829
- "vscode": {
830
- "languageId": "python"
831
- }
832
- },
833
- "outputs": [],
834
- "source": [
835
- "# Create SOC diffusion scatter plot with top 4 classified SOC groups\n",
836
- "plot_soc_usage_scatter(\n",
837
- " df,\n",
838
- " geography=\"state_us\",\n",
839
- ")\n",
840
- "plt.savefig(\n",
841
- " output_dir_app / \"soc_usage_scatter_top4_state_min.png\",\n",
842
- " dpi=300,\n",
843
- " bbox_inches=\"tight\",\n",
844
- ")"
845
- ]
846
- }
847
- ],
848
- "metadata": {
849
- "kernelspec": {
850
- "display_name": "Coconut",
851
- "language": "coconut",
852
- "name": "coconut"
853
- },
854
- "language_info": {
855
- "codemirror_mode": {
856
- "name": "python",
857
- "version": 3
858
- },
859
- "file_extension": ".coco",
860
- "mimetype": "text/x-python3",
861
- "name": "coconut",
862
- "pygments_lexer": "coconut",
863
- "version": "3.0.2"
864
- }
865
- },
866
- "nbformat": 4,
867
- "nbformat_minor": 4
868
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/code/aei_report_v3_change_over_time_claude_ai.py DELETED
@@ -1,564 +0,0 @@
1
- #!/usr/bin/env python3
2
- """
3
- Clean Economic Analysis Figure Generator
4
- ======================================
5
- Generates three key figures for V1→V2→V3 economic analysis:
6
- 1. Usage Share Trends Across Economic Index Reports
7
- 2. Notable Task Changes (Growing/Declining Tasks)
8
- 3. Automation vs Augmentation Evolution
9
-
10
- ASSUMPTIONS:
11
- - V1/V2/V3 use same task taxonomy
12
- - GLOBAL geo_id is representative
13
- - Missing values = 0% usage
14
- - Percentages don't need renormalization
15
- """
16
-
17
- import os
18
- import warnings
19
- from pathlib import Path
20
-
21
- import matplotlib.pyplot as plt
22
- import numpy as np
23
- import pandas as pd
24
- import seaborn as sns
25
-
26
- # Use default matplotlib styling
27
- plt.style.use("default")
28
-
29
- # Configuration
30
- FILES = {
31
- "v1_tasks": "../data/input/task_pct_v1.csv",
32
- "v2_tasks": "../data/input/task_pct_v2.csv",
33
- "v3_data": "../data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv",
34
- "v1_auto": "../data/input/automation_vs_augmentation_v1.csv",
35
- "v2_auto": "../data/input/automation_vs_augmentation_v2.csv",
36
- "onet": "../data/intermediate/onet_task_statements.csv",
37
- "soc": "../data/intermediate/soc_structure.csv",
38
- }
39
-
40
- AUTOMATION_TYPES = ["directive", "feedback_loop"]
41
- AUGMENTATION_TYPES = ["validation", "task_iteration", "learning"]
42
- MIN_THRESHOLD = 1.0
43
- COLORS = {
44
- "increase": "#2E8B57",
45
- "decrease": "#CD5C5C",
46
- "automation": "#FF6B6B",
47
- "augmentation": "#4ECDC4",
48
- }
49
-
50
- # ============================================================================
51
- # DATA LOADING
52
- # ============================================================================
53
-
54
-
55
- def load_task_data(filepath, version_name):
56
- """Load and validate task percentage data for any version."""
57
- if not Path(filepath).exists():
58
- raise FileNotFoundError(f"Missing {version_name} data: {filepath}")
59
-
60
- df = pd.read_csv(filepath)
61
-
62
- if version_name == "V3":
63
- # Filter V3 data for global onet tasks
64
- df = df[
65
- (df["geo_id"] == "GLOBAL")
66
- & (df["facet"] == "onet_task")
67
- & (df["variable"] == "onet_task_pct")
68
- ].copy()
69
- df = df.rename(columns={"cluster_name": "task_name", "value": "pct"})
70
-
71
- # Remove "not_classified" from V3 for fair comparison with V1/V2
72
- # Keep "none" as it represents legitimate unclassifiable tasks across all versions
73
- not_classified_pct = df[df["task_name"] == "not_classified"]["pct"].sum()
74
- df = df[df["task_name"] != "not_classified"].copy()
75
-
76
- # Renormalize V3 to 100% after removing not_classified
77
- if not_classified_pct > 0:
78
- remaining_total = df["pct"].sum()
79
- normalization_factor = 100 / remaining_total
80
- df["pct"] = df["pct"] * normalization_factor
81
- print(
82
- f" → Removed {not_classified_pct:.1f}% not_classified, renormalized by {normalization_factor:.3f}x"
83
- )
84
-
85
- # Validate structure
86
- if "task_name" not in df.columns or "pct" not in df.columns:
87
- raise ValueError(f"{version_name} data missing required columns")
88
-
89
- # Normalize task names and validate totals
90
- df["task_name"] = df["task_name"].str.lower().str.strip()
91
- total = df["pct"].sum()
92
-
93
- if not (80 <= total <= 120):
94
- warnings.warn(
95
- f"{version_name} percentages sum to {total:.1f}% (expected ~100%)",
96
- stacklevel=2,
97
- )
98
-
99
- print(f"✓ {version_name}: {len(df)} tasks, {total:.1f}% coverage")
100
- return df[["task_name", "pct"]]
101
-
102
-
103
- def load_automation_data():
104
- """Load automation/collaboration data for all versions."""
105
- result = {}
106
-
107
- # V1 and V2 - always renormalize to 100%
108
- for version in ["v1", "v2"]:
109
- df = pd.read_csv(FILES[f"{version}_auto"])
110
-
111
- # Always renormalize to 100%
112
- total = df["pct"].sum()
113
- normalization_factor = 100 / total
114
- df["pct"] = df["pct"] * normalization_factor
115
- print(
116
- f" → {version.upper()} automation: renormalized from {total:.1f}% to 100.0%"
117
- )
118
-
119
- result[version] = df
120
-
121
- # V3 from processed data
122
- df = pd.read_csv(FILES["v3_data"])
123
- v3_collab = df[
124
- (df["geo_id"] == "GLOBAL")
125
- & (df["facet"] == "collaboration")
126
- & (df["level"] == 0)
127
- & (df["variable"] == "collaboration_pct")
128
- ].copy()
129
- v3_collab = v3_collab.rename(
130
- columns={"cluster_name": "interaction_type", "value": "pct"}
131
- )
132
-
133
- # Remove "not_classified" from V3 collaboration data for fair comparison
134
- not_classified_pct = v3_collab[v3_collab["interaction_type"] == "not_classified"][
135
- "pct"
136
- ].sum()
137
- v3_collab = v3_collab[v3_collab["interaction_type"] != "not_classified"].copy()
138
-
139
- # Renormalize V3 collaboration to 100% after removing not_classified
140
- if not_classified_pct > 0:
141
- remaining_total = v3_collab["pct"].sum()
142
- normalization_factor = 100 / remaining_total
143
- v3_collab["pct"] = v3_collab["pct"] * normalization_factor
144
- print(
145
- f" → V3 collaboration: removed {not_classified_pct:.1f}% not_classified, renormalized by {normalization_factor:.3f}x"
146
- )
147
-
148
- result["v3"] = v3_collab[["interaction_type", "pct"]]
149
-
150
- print(f"✓ Automation data loaded for all versions")
151
- return result
152
-
153
-
154
- def load_occupational_mapping():
155
- """Load O*NET to SOC mapping data."""
156
- onet_df = pd.read_csv(FILES["onet"])
157
- soc_df = pd.read_csv(FILES["soc"]).dropna(subset=["Major Group"])
158
-
159
- onet_df["soc_major_group"] = onet_df["O*NET-SOC Code"].str[:2]
160
- soc_df["soc_major_group"] = soc_df["Major Group"].str[:2]
161
-
162
- merged = onet_df.merge(
163
- soc_df[["soc_major_group", "SOC or O*NET-SOC 2019 Title"]], on="soc_major_group"
164
- )
165
- merged["task_normalized"] = merged["Task"].str.lower().str.strip()
166
-
167
- print(f"✓ Occupational mapping: {merged['soc_major_group'].nunique()} SOC groups")
168
- return merged
169
-
170
-
171
- # ============================================================================
172
- # ANALYSIS
173
- # ============================================================================
174
-
175
-
176
- def analyze_occupational_trends(task_data, onet_soc_data):
177
- """Analyze occupational category trends across versions."""
178
-
179
- def aggregate_by_occupation(df):
180
- merged = df.merge(
181
- onet_soc_data[
182
- ["task_normalized", "SOC or O*NET-SOC 2019 Title"]
183
- ].drop_duplicates(),
184
- left_on="task_name",
185
- right_on="task_normalized",
186
- how="left",
187
- )
188
-
189
- unmapped = merged[merged["SOC or O*NET-SOC 2019 Title"].isna()]
190
- # Only warn if there are real unmapped tasks (not just "none" and "not_classified")
191
- real_unmapped = unmapped[
192
- ~unmapped["task_name"].isin(["none", "not_classified"])
193
- ]
194
- if len(real_unmapped) > 0:
195
- real_unmapped_pct = real_unmapped["pct"].sum()
196
- warnings.warn(
197
- f"{real_unmapped_pct:.1f}% of tasks unmapped to occupational categories",
198
- stacklevel=2,
199
- )
200
-
201
- return merged.groupby("SOC or O*NET-SOC 2019 Title")["pct"].sum()
202
-
203
- # Aggregate all versions
204
- comparison_df = pd.DataFrame(
205
- {
206
- "v1": aggregate_by_occupation(task_data["v1"]),
207
- "v2": aggregate_by_occupation(task_data["v2"]),
208
- "v3": aggregate_by_occupation(task_data["v3"]),
209
- }
210
- ).fillna(0)
211
-
212
- # Calculate changes and filter economically significant categories
213
- comparison_df["v3_v1_diff"] = comparison_df["v3"] - comparison_df["v1"]
214
- significant = comparison_df[
215
- (comparison_df[["v1", "v2", "v3"]] >= MIN_THRESHOLD).any(axis=1)
216
- ]
217
-
218
- print(
219
- f"✓ Occupational analysis: {len(significant)} economically significant categories"
220
- )
221
- return significant.sort_values("v1", ascending=False)
222
-
223
-
224
- def analyze_task_changes(task_data, onet_soc_data, top_n=12):
225
- """Identify most notable task changes V1→V3."""
226
- v1, v3 = task_data["v1"], task_data["v3"]
227
-
228
- # Compare changes
229
- comparison = (
230
- v1[["task_name", "pct"]]
231
- .rename(columns={"pct": "v1_pct"})
232
- .merge(
233
- v3[["task_name", "pct"]].rename(columns={"pct": "v3_pct"}),
234
- on="task_name",
235
- how="outer",
236
- )
237
- .fillna(0)
238
- )
239
-
240
- comparison["change"] = comparison["v3_pct"] - comparison["v1_pct"]
241
- comparison["rel_change"] = np.where(
242
- comparison["v1_pct"] > 0,
243
- (comparison["v3_pct"] - comparison["v1_pct"]) / comparison["v1_pct"] * 100,
244
- np.inf,
245
- )
246
-
247
- # Add SOC context
248
- with_context = comparison.merge(
249
- onet_soc_data[
250
- ["task_normalized", "SOC or O*NET-SOC 2019 Title"]
251
- ].drop_duplicates(),
252
- left_on="task_name",
253
- right_on="task_normalized",
254
- how="left",
255
- )
256
-
257
- # Get all tasks with economically significant changes (>= 0.2pp)
258
- significant_changes = with_context[abs(with_context["change"]) >= 0.2].copy()
259
-
260
- # Create category column with formatted relative percentage change
261
- def format_rel_change(row):
262
- if row["v1_pct"] > 0:
263
- rel_change = (row["v3_pct"] - row["v1_pct"]) / row["v1_pct"] * 100
264
- return f"{rel_change:+.0f}%"
265
- else:
266
- return "new"
267
-
268
- significant_changes["category"] = significant_changes.apply(
269
- format_rel_change, axis=1
270
- )
271
-
272
- # Rename column and sort by change descending
273
- significant_changes = significant_changes.rename(
274
- columns={"SOC or O*NET-SOC 2019 Title": "soc_group"}
275
- )
276
- significant_changes = significant_changes.sort_values("change", ascending=False)
277
-
278
- # Round to 3 decimals
279
- significant_changes[["v1_pct", "v3_pct", "change"]] = significant_changes[
280
- ["v1_pct", "v3_pct", "change"]
281
- ].round(3)
282
-
283
- print(f"✓ Task changes: {len(significant_changes)} notable changes identified")
284
- return significant_changes
285
-
286
-
287
- def analyze_automation_trends(automation_data):
288
- """Analyze automation vs augmentation trends across versions."""
289
- # Standardize interaction names
290
- for df in automation_data.values():
291
- df["interaction_type"] = df["interaction_type"].replace(
292
- {"task iteration": "task_iteration", "feedback loop": "feedback_loop"}
293
- )
294
-
295
- results = {}
296
- for version, data in automation_data.items():
297
- auto_total = data[data["interaction_type"].isin(AUTOMATION_TYPES)]["pct"].sum()
298
- aug_total = data[data["interaction_type"].isin(AUGMENTATION_TYPES)]["pct"].sum()
299
-
300
- interaction_dict = dict(zip(data["interaction_type"], data["pct"], strict=True))
301
- results[version] = {
302
- "automation_total": auto_total,
303
- "augmentation_total": aug_total,
304
- "directive": interaction_dict["directive"],
305
- "feedback_loop": interaction_dict["feedback_loop"],
306
- "validation": interaction_dict["validation"],
307
- "task_iteration": interaction_dict["task_iteration"],
308
- "learning": interaction_dict["learning"],
309
- }
310
-
311
- print("✓ Automation trends analysis complete")
312
- return results
313
-
314
-
315
- # ============================================================================
316
- # VISUALIZATION
317
- # ============================================================================
318
-
319
-
320
- def setup_plot_style():
321
- """Configure consistent plot styling."""
322
- plt.rcParams.update({"font.size": 12, "axes.titlesize": 16, "axes.labelsize": 14})
323
- sns.set_context("notebook", font_scale=1.1)
324
-
325
-
326
- def create_usage_trends_figure(comparison_df):
327
- """Create Usage Share Trends subplot figure."""
328
- setup_plot_style()
329
-
330
- # Get top categories
331
- top_cats = comparison_df[
332
- (comparison_df[["v1", "v2", "v3"]] >= MIN_THRESHOLD).any(axis=1)
333
- ].head(8)
334
- top_cats.index = top_cats.index.str.replace(" Occupations", "")
335
-
336
- fig, axes = plt.subplots(2, 4, figsize=(20, 15))
337
- axes = axes.flatten()
338
-
339
- line_color = "#FF8E53"
340
- fill_color = "#DEB887"
341
-
342
- # Simplified date labels (actual periods: Dec 2024-Jan 2025, Feb-Mar 2025, Aug 2025)
343
- versions, version_labels = [1, 2, 3], ["Jan 2025", "Mar 2025", "Aug 2025"]
344
-
345
- for i, (category, data) in enumerate(top_cats.iterrows()):
346
- if i >= len(axes):
347
- break
348
- ax = axes[i]
349
- values = [data["v1"], data["v2"], data["v3"]]
350
-
351
- ax.plot(
352
- versions,
353
- values,
354
- "o-",
355
- color=line_color,
356
- linewidth=3,
357
- markersize=8,
358
- markerfacecolor=line_color,
359
- markeredgecolor="white",
360
- markeredgewidth=2,
361
- )
362
- ax.fill_between(versions, values, alpha=0.3, color=fill_color)
363
-
364
- # Add value labels
365
- for x, y in zip(versions, values, strict=True):
366
- ax.text(
367
- x,
368
- y + max(values) * 0.02,
369
- f"{y:.1f}%",
370
- ha="center",
371
- va="bottom",
372
- fontsize=12,
373
- fontweight="bold",
374
- )
375
-
376
- ax.set_title(category, fontsize=14, fontweight="bold", pad=10)
377
- ax.set_xticks(versions)
378
- ax.set_xticklabels(version_labels)
379
- ax.set_ylabel("Percentage", fontsize=12)
380
- ax.set_ylim(0, max(values) * 1.15)
381
- ax.grid(True, alpha=0.3)
382
- ax.spines["top"].set_visible(False)
383
- ax.spines["right"].set_visible(False)
384
-
385
- fig.suptitle(
386
- "Usage share trends across economic index reports (V1 to V3)",
387
- fontsize=18,
388
- fontweight="bold",
389
- y=0.98,
390
- )
391
- plt.tight_layout()
392
- plt.subplots_adjust(top=0.88)
393
- return fig
394
-
395
-
396
- def create_automation_figure(trends):
397
- """Create Automation vs Augmentation Evolution figure."""
398
- setup_plot_style()
399
-
400
- fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6))
401
-
402
- # Simplified date labels (actual periods: Dec 2024-Jan 2025, Feb-Mar 2025, Aug 2025)
403
- version_labels = ["Jan 2025", "Mar 2025", "Aug 2025"]
404
- x_pos = [1, 2, 3]
405
-
406
- # Left: Overall trends (no fill)
407
- auto_vals = [trends[v]["automation_total"] for v in ["v1", "v2", "v3"]]
408
- aug_vals = [trends[v]["augmentation_total"] for v in ["v1", "v2", "v3"]]
409
-
410
- ax1.plot(
411
- x_pos,
412
- auto_vals,
413
- "o-",
414
- color=COLORS["automation"],
415
- linewidth=3,
416
- markersize=8,
417
- label="Automation",
418
- markeredgecolor="white",
419
- markeredgewidth=2,
420
- )
421
- ax1.plot(
422
- x_pos,
423
- aug_vals,
424
- "o-",
425
- color=COLORS["augmentation"],
426
- linewidth=3,
427
- markersize=8,
428
- label="Augmentation",
429
- markeredgecolor="white",
430
- markeredgewidth=2,
431
- )
432
-
433
- # Value labels with automation above and augmentation below dots
434
- y_max = max(max(auto_vals), max(aug_vals))
435
- for i, (auto, aug) in enumerate(zip(auto_vals, aug_vals, strict=True)):
436
- # Red (automation) always above the dot
437
- ax1.text(
438
- x_pos[i],
439
- auto + 1.2,
440
- f"{auto:.1f}%",
441
- ha="center",
442
- va="bottom",
443
- fontweight="bold",
444
- color=COLORS["automation"],
445
- )
446
- # Blue (augmentation) always below the dot
447
- ax1.text(
448
- x_pos[i],
449
- aug - 1.5,
450
- f"{aug:.1f}%",
451
- ha="center",
452
- va="top",
453
- fontweight="bold",
454
- color=COLORS["augmentation"],
455
- )
456
-
457
- ax1.set_xticks(x_pos)
458
- ax1.set_xticklabels(version_labels)
459
- ax1.set_ylabel("Percentage")
460
- ax1.set_title("Automation vs augmentation trends")
461
- ax1.legend()
462
- ax1.grid(True, alpha=0.3)
463
- ax1.spines[["top", "right"]].set_visible(False)
464
- ax1.set_ylim(0, y_max * 1.15)
465
-
466
- # Right: Individual interaction types with color-coded groups
467
- interactions = [
468
- "directive",
469
- "feedback_loop",
470
- "validation",
471
- "task_iteration",
472
- "learning",
473
- ]
474
- # Automation = red shades, Augmentation = cool shades
475
- colors_individual = ["#DC143C", "#FF6B6B", "#4682B4", "#5F9EA0", "#4169E1"]
476
-
477
- for interaction, color in zip(interactions, colors_individual, strict=True):
478
- values = [trends[v][interaction] for v in ["v1", "v2", "v3"]]
479
- ax2.plot(
480
- x_pos,
481
- values,
482
- "o-",
483
- color=color,
484
- linewidth=2.5,
485
- markersize=6,
486
- label=interaction.replace("_", " ").title(),
487
- alpha=0.8,
488
- )
489
-
490
- ax2.set_xticks(x_pos)
491
- ax2.set_xticklabels(version_labels)
492
- ax2.set_ylabel("Percentage")
493
- ax2.set_title("Individual interaction types")
494
- ax2.legend(bbox_to_anchor=(1.05, 1), loc="upper left")
495
- ax2.grid(True, alpha=0.3)
496
- ax2.spines[["top", "right"]].set_visible(False)
497
-
498
- plt.suptitle(
499
- "Automation vs augmentation evolution (V1 to V3)",
500
- fontsize=16,
501
- fontweight="bold",
502
- )
503
- plt.tight_layout()
504
- return fig
505
-
506
-
507
- # ============================================================================
508
- # MAIN
509
- # ============================================================================
510
-
511
-
512
- def main():
513
- """Generate all three economic analysis figures."""
514
- print("=" * 80)
515
- print("ECONOMIC ANALYSIS FIGURE GENERATION")
516
- print("=" * 80)
517
-
518
- # Use consistent output directory for all economic research scripts
519
- output_dir = "../data/output/figures"
520
- os.makedirs(output_dir, exist_ok=True)
521
-
522
- # Load all data
523
- print("\nLoading data...")
524
- task_data = {
525
- "v1": load_task_data(FILES["v1_tasks"], "V1"),
526
- "v2": load_task_data(FILES["v2_tasks"], "V2"),
527
- "v3": load_task_data(FILES["v3_data"], "V3"),
528
- }
529
- automation_data = load_automation_data()
530
- onet_soc_data = load_occupational_mapping()
531
-
532
- # Analysis
533
- print("\nAnalyzing trends...")
534
- occupational_trends = analyze_occupational_trends(task_data, onet_soc_data)
535
- task_changes = analyze_task_changes(task_data, onet_soc_data)
536
- automation_trends = analyze_automation_trends(automation_data)
537
-
538
- # Generate figures
539
- print("\nGenerating figures...")
540
-
541
- fig1 = create_usage_trends_figure(occupational_trends)
542
- fig1.savefig(
543
- f"{output_dir}/main_occupational_categories.png",
544
- dpi=300,
545
- bbox_inches="tight",
546
- facecolor="white",
547
- )
548
- print("✓ Saved: main_occupational_categories.png")
549
-
550
- fig3 = create_automation_figure(automation_trends)
551
- fig3.savefig(
552
- f"{output_dir}/automation_trends_v1_v2_v3.png",
553
- dpi=300,
554
- bbox_inches="tight",
555
- facecolor="white",
556
- )
557
- print("✓ Saved: automation_trends_v1_v2_v3.png")
558
-
559
- print(f"\n✅ All figures generated successfully!")
560
- return occupational_trends, task_changes, automation_trends
561
-
562
-
563
- if __name__ == "__main__":
564
- results = main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/code/aei_report_v3_preprocessing_claude_ai.ipynb DELETED
@@ -1,1840 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "markdown",
5
- "metadata": {},
6
- "source": [
7
- "# AEI Report v3 Claude.ai Preprocessing\n",
8
- "\n",
9
- "This notebook takes processed Clio data and enriches it with external sources:\n",
10
- "1. Merges with population data for per capita calculations\n",
11
- "2. Merges with GDP data for economic analysis\n",
12
- "3. Merges with SOC/O*NET data for occupational analysis\n",
13
- "4. Applies MIN_OBSERVATIONS filtering\n",
14
- "5. Calculates derived metrics (per capita, indices, tiers)\n",
15
- "6. Categorizes collaboration patterns\n",
16
- "\n",
17
- "**Input**: `aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv`\n",
18
- "\n",
19
- "**Output**: `aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv`"
20
- ]
21
- },
22
- {
23
- "cell_type": "markdown",
24
- "metadata": {},
25
- "source": [
26
- "## Configuration and Setup"
27
- ]
28
- },
29
- {
30
- "cell_type": "code",
31
- "execution_count": null,
32
- "metadata": {},
33
- "outputs": [],
34
- "source": [
35
- "from pathlib import Path\n",
36
- "\n",
37
- "import numpy as np\n",
38
- "import pandas as pd"
39
- ]
40
- },
41
- {
42
- "cell_type": "code",
43
- "execution_count": null,
44
- "metadata": {},
45
- "outputs": [],
46
- "source": [
47
- "# Year for external data\n",
48
- "YEAR = 2024\n",
49
- "\n",
50
- "# Data paths - using local directories\n",
51
- "DATA_INPUT_DIR = \"../data/input\" # Raw external data\n",
52
- "DATA_INTERMEDIATE_DIR = (\n",
53
- " \"../data/intermediate\" # Processed external data and Clio output\n",
54
- ")\n",
55
- "DATA_OUTPUT_DIR = \"../data/output\" # Final enriched data\n",
56
- "\n",
57
- "# Minimum observation thresholds\n",
58
- "MIN_OBSERVATIONS_COUNTRY = 200 # Threshold for countries\n",
59
- "MIN_OBSERVATIONS_US_STATE = 100 # Threshold for US states"
60
- ]
61
- },
62
- {
63
- "cell_type": "code",
64
- "execution_count": null,
65
- "metadata": {},
66
- "outputs": [],
67
- "source": [
68
- "# Countries where Claude doesn't operate (23 countries)\n",
69
- "EXCLUDED_COUNTRIES = [\n",
70
- " \"AF\", # Afghanistan\n",
71
- " \"BY\", # Belarus\n",
72
- " \"CD\", # Democratic Republic of the Congo\n",
73
- " \"CF\", # Central African Republic\n",
74
- " \"CN\", # China\n",
75
- " \"CU\", # Cuba\n",
76
- " \"ER\", # Eritrea\n",
77
- " \"ET\", # Ethiopia\n",
78
- " \"HK\", # Hong Kong\n",
79
- " \"IR\", # Iran\n",
80
- " \"KP\", # North Korea\n",
81
- " \"LY\", # Libya\n",
82
- " \"ML\", # Mali\n",
83
- " \"MM\", # Myanmar\n",
84
- " \"MO\", # Macau\n",
85
- " \"NI\", # Nicaragua\n",
86
- " \"RU\", # Russia\n",
87
- " \"SD\", # Sudan\n",
88
- " \"SO\", # Somalia\n",
89
- " \"SS\", # South Sudan\n",
90
- " \"SY\", # Syria\n",
91
- " \"VE\", # Venezuela\n",
92
- " \"YE\", # Yemen\n",
93
- "]"
94
- ]
95
- },
96
- {
97
- "cell_type": "markdown",
98
- "metadata": {},
99
- "source": [
100
- "## Data Loading Functions"
101
- ]
102
- },
103
- {
104
- "cell_type": "code",
105
- "execution_count": null,
106
- "metadata": {},
107
- "outputs": [],
108
- "source": [
109
- "def load_population_data():\n",
110
- " \"\"\"\n",
111
- " Load population data for countries and US states.\n",
112
- "\n",
113
- " Args:\n",
114
- " verbose: Whether to print progress\n",
115
- "\n",
116
- " Returns:\n",
117
- " Dict with country and state_us population dataframes\n",
118
- " \"\"\"\n",
119
- " pop_country_path = (\n",
120
- " Path(DATA_INTERMEDIATE_DIR) / f\"working_age_pop_{YEAR}_country.csv\"\n",
121
- " )\n",
122
- " pop_state_path = (\n",
123
- " Path(DATA_INTERMEDIATE_DIR) / f\"working_age_pop_{YEAR}_us_state.csv\"\n",
124
- " )\n",
125
- "\n",
126
- " if not pop_country_path.exists() or not pop_state_path.exists():\n",
127
- " raise FileNotFoundError(\n",
128
- " f\"Population data is required but not found.\\n\"\n",
129
- " f\" Expected files:\\n\"\n",
130
- " f\" - {pop_country_path}\\n\"\n",
131
- " f\" - {pop_state_path}\\n\"\n",
132
- " f\" Run preprocess_population.py first to generate these files.\"\n",
133
- " )\n",
134
- "\n",
135
- " # Use keep_default_na=False to preserve any \"NA\" values as strings\n",
136
- " df_pop_country = pd.read_csv(\n",
137
- " pop_country_path, keep_default_na=False, na_values=[\"\"]\n",
138
- " )\n",
139
- " df_pop_state = pd.read_csv(pop_state_path, keep_default_na=False, na_values=[\"\"])\n",
140
- "\n",
141
- " return {\"country\": df_pop_country, \"state_us\": df_pop_state}\n",
142
- "\n",
143
- "\n",
144
- "def load_gdp_data():\n",
145
- " \"\"\"\n",
146
- " Load GDP data for countries and US states.\n",
147
- "\n",
148
- " Returns:\n",
149
- " Dict with country and state_us GDP dataframes\n",
150
- " \"\"\"\n",
151
- " gdp_country_path = Path(DATA_INTERMEDIATE_DIR) / f\"gdp_{YEAR}_country.csv\"\n",
152
- " gdp_state_path = Path(DATA_INTERMEDIATE_DIR) / f\"gdp_{YEAR}_us_state.csv\"\n",
153
- "\n",
154
- " if not gdp_country_path.exists() or not gdp_state_path.exists():\n",
155
- " raise FileNotFoundError(\n",
156
- " f\"GDP data is required but not found.\\n\"\n",
157
- " f\" Expected files:\\n\"\n",
158
- " f\" - {gdp_country_path}\\n\"\n",
159
- " f\" - {gdp_state_path}\\n\"\n",
160
- " f\" Run preprocess_gdp.py first to generate these files.\"\n",
161
- " )\n",
162
- "\n",
163
- " # Use keep_default_na=False to preserve any \"NA\" values as strings\n",
164
- " df_gdp_country = pd.read_csv(\n",
165
- " gdp_country_path, keep_default_na=False, na_values=[\"\"]\n",
166
- " )\n",
167
- " df_gdp_state = pd.read_csv(gdp_state_path, keep_default_na=False, na_values=[\"\"])\n",
168
- "\n",
169
- " return {\"country\": df_gdp_country, \"state_us\": df_gdp_state}\n",
170
- "\n",
171
- "\n",
172
- "def load_task_data():\n",
173
- " \"\"\"\n",
174
- " Load O*NET task statements with SOC codes.\n",
175
- "\n",
176
- " Returns:\n",
177
- " DataFrame with O*NET tasks and SOC major groups\n",
178
- " \"\"\"\n",
179
- " onet_path = Path(DATA_INTERMEDIATE_DIR) / \"onet_task_statements.csv\"\n",
180
- "\n",
181
- " if not onet_path.exists():\n",
182
- " raise FileNotFoundError(\n",
183
- " f\"O*NET data is required but not found.\\n\"\n",
184
- " f\" Expected file:\\n\"\n",
185
- " f\" - {onet_path}\\n\"\n",
186
- " f\" Run preprocess_onet.py first to generate this file.\"\n",
187
- " )\n",
188
- "\n",
189
- " # Use keep_default_na=False to preserve any \"NA\" values as strings\n",
190
- " df_onet = pd.read_csv(onet_path, keep_default_na=False, na_values=[\"\"])\n",
191
- "\n",
192
- " # Normalize task names for matching with Clio data\n",
193
- " df_onet[\"task_normalized\"] = df_onet[\"Task\"].str.lower().str.strip()\n",
194
- "\n",
195
- " return df_onet\n",
196
- "\n",
197
- "\n",
198
- "def load_soc_data():\n",
199
- " \"\"\"\n",
200
- " Load SOC structure data for occupation names.\n",
201
- "\n",
202
- " Returns:\n",
203
- " DataFrame with SOC major groups and their titles\n",
204
- " \"\"\"\n",
205
- " soc_path = Path(DATA_INTERMEDIATE_DIR) / \"soc_structure.csv\"\n",
206
- "\n",
207
- " if not soc_path.exists():\n",
208
- " raise FileNotFoundError(\n",
209
- " f\"SOC structure data is required but not found.\\n\"\n",
210
- " f\" Expected file:\\n\"\n",
211
- " f\" - {soc_path}\\n\"\n",
212
- " f\" Run preprocess_onet.py first to generate this file.\"\n",
213
- " )\n",
214
- "\n",
215
- " # Use keep_default_na=False to preserve any \"NA\" values as strings\n",
216
- " df_soc = pd.read_csv(soc_path, keep_default_na=False, na_values=[\"\"])\n",
217
- "\n",
218
- " # Get unique major groups with their titles for SOC name mapping\n",
219
- " df_major_groups = df_soc[df_soc[\"soc_major_group\"].notna()][\n",
220
- " [\"soc_major_group\", \"SOC or O*NET-SOC 2019 Title\"]\n",
221
- " ].drop_duplicates(subset=[\"soc_major_group\"])\n",
222
- "\n",
223
- " return df_major_groups\n",
224
- "\n",
225
- "\n",
226
- "def load_external_data():\n",
227
- " \"\"\"\n",
228
- " Load all external data sources from local files.\n",
229
- "\n",
230
- " Returns:\n",
231
- " Dict with population, gdp, task_statements, and soc_structure dataframes\n",
232
- " \"\"\"\n",
233
- "\n",
234
- " external_data = {}\n",
235
- "\n",
236
- " # Load each data source with its specific function\n",
237
- " external_data[\"population\"] = load_population_data()\n",
238
- " external_data[\"gdp\"] = load_gdp_data()\n",
239
- " external_data[\"task_statements\"] = load_task_data()\n",
240
- " external_data[\"soc_structure\"] = load_soc_data()\n",
241
- "\n",
242
- " return external_data"
243
- ]
244
- },
245
- {
246
- "cell_type": "markdown",
247
- "metadata": {},
248
- "source": [
249
- "## Filtering Functions"
250
- ]
251
- },
252
- {
253
- "cell_type": "code",
254
- "execution_count": null,
255
- "metadata": {},
256
- "outputs": [],
257
- "source": [
258
- "def get_filtered_geographies(df):\n",
259
- " \"\"\"\n",
260
- " Get lists of countries and states that meet MIN_OBSERVATIONS thresholds.\n",
261
- "\n",
262
- " This function does NOT filter the dataframe - it only identifies which\n",
263
- " geographies meet the thresholds. The full dataframe is preserved\n",
264
- " so we can still report statistics for all geographies.\n",
265
- "\n",
266
- " Args:\n",
267
- " df: Input dataframe\n",
268
- "\n",
269
- " Returns:\n",
270
- " Tuple of (filtered_countries list, filtered_states list)\n",
271
- " \"\"\"\n",
272
- " # Get country usage counts\n",
273
- " country_usage = df[\n",
274
- " (df[\"facet\"] == \"country\") & (df[\"variable\"] == \"usage_count\")\n",
275
- " ].set_index(\"geo_id\")[\"value\"]\n",
276
- "\n",
277
- " # Get state usage counts\n",
278
- " state_usage = df[\n",
279
- " (df[\"facet\"] == \"state_us\") & (df[\"variable\"] == \"usage_count\")\n",
280
- " ].set_index(\"geo_id\")[\"value\"]\n",
281
- "\n",
282
- " # Get countries that meet MIN_OBSERVATIONS threshold\n",
283
- " filtered_countries = country_usage[\n",
284
- " country_usage >= MIN_OBSERVATIONS_COUNTRY\n",
285
- " ].index.tolist()\n",
286
- "\n",
287
- " # Get states that meet MIN_OBSERVATIONS threshold\n",
288
- " filtered_states = state_usage[\n",
289
- " state_usage >= MIN_OBSERVATIONS_US_STATE\n",
290
- " ].index.tolist()\n",
291
- "\n",
292
- " return filtered_countries, filtered_states"
293
- ]
294
- },
295
- {
296
- "cell_type": "markdown",
297
- "metadata": {},
298
- "source": [
299
- "## Data Merge Functions"
300
- ]
301
- },
302
- {
303
- "cell_type": "code",
304
- "execution_count": null,
305
- "metadata": {},
306
- "outputs": [],
307
- "source": [
308
- "def merge_population_data(df, population_data):\n",
309
- " \"\"\"\n",
310
- " Merge population data in long format.\n",
311
- "\n",
312
- " This function:\n",
313
- " 1. Adds countries/states that have population but no usage (with 0 usage values)\n",
314
- " 2. Adds population as new rows with variable=\"working_age_pop\"\n",
315
- "\n",
316
- " Args:\n",
317
- " df: Input dataframe in long format\n",
318
- " population_data: Dict with country and state_us population dataframes\n",
319
- "\n",
320
- " Returns:\n",
321
- " Dataframe with all geographies and population added as rows\n",
322
- " \"\"\"\n",
323
- " df_result = df.copy()\n",
324
- " new_rows = []\n",
325
- "\n",
326
- " # Get unique date/platform combinations to replicate for new data\n",
327
- " date_platform_combos = df_result[\n",
328
- " [\"date_start\", \"date_end\", \"platform_and_product\"]\n",
329
- " ].drop_duplicates()\n",
330
- "\n",
331
- " # Process countries\n",
332
- " if \"country\" in population_data and not population_data[\"country\"].empty:\n",
333
- " pop_country = population_data[\"country\"]\n",
334
- "\n",
335
- " # Get existing countries in our data\n",
336
- " existing_countries = df_result[\n",
337
- " (df_result[\"geography\"] == \"country\")\n",
338
- " & (df_result[\"variable\"] == \"usage_count\")\n",
339
- " ][\"geo_id\"].unique()\n",
340
- "\n",
341
- " # Add missing countries with 0 usage (excluding excluded countries)\n",
342
- " missing_countries = (\n",
343
- " set(pop_country[\"country_code\"])\n",
344
- " - set(existing_countries)\n",
345
- " - set(EXCLUDED_COUNTRIES)\n",
346
- " )\n",
347
- "\n",
348
- " for _, combo in date_platform_combos.iterrows():\n",
349
- " # Add missing countries with 0 usage (both count and percentage)\n",
350
- " for country_code in missing_countries:\n",
351
- " # Add usage_count = 0\n",
352
- " new_rows.append(\n",
353
- " {\n",
354
- " \"geo_id\": country_code,\n",
355
- " \"geography\": \"country\",\n",
356
- " \"date_start\": combo[\"date_start\"],\n",
357
- " \"date_end\": combo[\"date_end\"],\n",
358
- " \"platform_and_product\": combo[\"platform_and_product\"],\n",
359
- " \"facet\": \"country\",\n",
360
- " \"level\": 0,\n",
361
- " \"variable\": \"usage_count\",\n",
362
- " \"cluster_name\": \"\",\n",
363
- " \"value\": 0.0,\n",
364
- " }\n",
365
- " )\n",
366
- " # Add usage_pct = 0\n",
367
- " new_rows.append(\n",
368
- " {\n",
369
- " \"geo_id\": country_code,\n",
370
- " \"geography\": \"country\",\n",
371
- " \"date_start\": combo[\"date_start\"],\n",
372
- " \"date_end\": combo[\"date_end\"],\n",
373
- " \"platform_and_product\": combo[\"platform_and_product\"],\n",
374
- " \"facet\": \"country\",\n",
375
- " \"level\": 0,\n",
376
- " \"variable\": \"usage_pct\",\n",
377
- " \"cluster_name\": \"\",\n",
378
- " \"value\": 0.0,\n",
379
- " }\n",
380
- " )\n",
381
- "\n",
382
- " # Add population data for all countries (that are not excluded)\n",
383
- " for _, pop_row in pop_country.iterrows():\n",
384
- " new_rows.append(\n",
385
- " {\n",
386
- " \"geo_id\": pop_row[\"country_code\"],\n",
387
- " \"geography\": \"country\",\n",
388
- " \"date_start\": combo[\"date_start\"],\n",
389
- " \"date_end\": combo[\"date_end\"],\n",
390
- " \"platform_and_product\": combo[\"platform_and_product\"],\n",
391
- " \"facet\": \"country\",\n",
392
- " \"level\": 0,\n",
393
- " \"variable\": \"working_age_pop\",\n",
394
- " \"cluster_name\": \"\",\n",
395
- " \"value\": float(pop_row[\"working_age_pop\"]),\n",
396
- " }\n",
397
- " )\n",
398
- "\n",
399
- " # Process US states\n",
400
- " if \"state_us\" in population_data and not population_data[\"state_us\"].empty:\n",
401
- " pop_state = population_data[\"state_us\"]\n",
402
- "\n",
403
- " # Get existing states in our data\n",
404
- " existing_states = df_result[\n",
405
- " (df_result[\"geography\"] == \"state_us\")\n",
406
- " & (df_result[\"variable\"] == \"usage_count\")\n",
407
- " ][\"geo_id\"].unique()\n",
408
- "\n",
409
- " # Add missing states with 0 usage\n",
410
- " missing_states = set(pop_state[\"state_code\"]) - set(existing_states)\n",
411
- "\n",
412
- " for _, combo in date_platform_combos.iterrows():\n",
413
- " # Add missing states with 0 usage (both count and percentage)\n",
414
- " for state_code in missing_states:\n",
415
- " # Add usage_count = 0\n",
416
- " new_rows.append(\n",
417
- " {\n",
418
- " \"geo_id\": state_code,\n",
419
- " \"geography\": \"state_us\",\n",
420
- " \"date_start\": combo[\"date_start\"],\n",
421
- " \"date_end\": combo[\"date_end\"],\n",
422
- " \"platform_and_product\": combo[\"platform_and_product\"],\n",
423
- " \"facet\": \"state_us\",\n",
424
- " \"level\": 0,\n",
425
- " \"variable\": \"usage_count\",\n",
426
- " \"cluster_name\": \"\",\n",
427
- " \"value\": 0.0,\n",
428
- " }\n",
429
- " )\n",
430
- " # Add usage_pct = 0\n",
431
- " new_rows.append(\n",
432
- " {\n",
433
- " \"geo_id\": state_code,\n",
434
- " \"geography\": \"state_us\",\n",
435
- " \"date_start\": combo[\"date_start\"],\n",
436
- " \"date_end\": combo[\"date_end\"],\n",
437
- " \"platform_and_product\": combo[\"platform_and_product\"],\n",
438
- " \"facet\": \"state_us\",\n",
439
- " \"level\": 0,\n",
440
- " \"variable\": \"usage_pct\",\n",
441
- " \"cluster_name\": \"\",\n",
442
- " \"value\": 0.0,\n",
443
- " }\n",
444
- " )\n",
445
- "\n",
446
- " # Add population data for all states\n",
447
- " for _, pop_row in pop_state.iterrows():\n",
448
- " new_rows.append(\n",
449
- " {\n",
450
- " \"geo_id\": pop_row[\"state_code\"],\n",
451
- " \"geography\": \"state_us\",\n",
452
- " \"date_start\": combo[\"date_start\"],\n",
453
- " \"date_end\": combo[\"date_end\"],\n",
454
- " \"platform_and_product\": combo[\"platform_and_product\"],\n",
455
- " \"facet\": \"state_us\",\n",
456
- " \"level\": 0,\n",
457
- " \"variable\": \"working_age_pop\",\n",
458
- " \"cluster_name\": \"\",\n",
459
- " \"value\": float(pop_row[\"working_age_pop\"]),\n",
460
- " }\n",
461
- " )\n",
462
- "\n",
463
- " # Add all new rows to the dataframe\n",
464
- " if new_rows:\n",
465
- " df_new = pd.DataFrame(new_rows)\n",
466
- " df_result = pd.concat([df_result, df_new], ignore_index=True)\n",
467
- "\n",
468
- " return df_result\n",
469
- "\n",
470
- "\n",
471
- "def merge_gdp_data(df, gdp_data, population_data):\n",
472
- " \"\"\"\n",
473
- " Merge GDP data and calculate GDP per working age capita.\n",
474
- "\n",
475
- " Since we have total GDP in actual dollars, we divide by population to get per capita.\n",
476
- "\n",
477
- " Args:\n",
478
- " df: Input dataframe in long format\n",
479
- " gdp_data: Dict with country and state_us GDP dataframes (total GDP in dollars)\n",
480
- " population_data: Dict with country and state_us population dataframes\n",
481
- "\n",
482
- " Returns:\n",
483
- " Dataframe with GDP per capita data added as rows\n",
484
- " \"\"\"\n",
485
- " df_result = df.copy()\n",
486
- " new_rows = []\n",
487
- "\n",
488
- " # Get unique date/platform combinations\n",
489
- " date_platform_combos = df_result[\n",
490
- " [\"date_start\", \"date_end\", \"platform_and_product\"]\n",
491
- " ].drop_duplicates()\n",
492
- "\n",
493
- " # Process country GDP\n",
494
- " if \"country\" in gdp_data and \"country\" in population_data:\n",
495
- " gdp_country = gdp_data[\"country\"]\n",
496
- " pop_country = population_data[\"country\"]\n",
497
- "\n",
498
- " # Merge GDP with population to calculate per capita\n",
499
- " gdp_pop = gdp_country.merge(pop_country, on=\"iso_alpha_3\", how=\"inner\")\n",
500
- "\n",
501
- " # Calculate GDP per working age capita\n",
502
- " gdp_pop[\"gdp_per_working_age_capita\"] = (\n",
503
- " gdp_pop[\"gdp_total\"] / gdp_pop[\"working_age_pop\"]\n",
504
- " )\n",
505
- "\n",
506
- " for _, combo in date_platform_combos.iterrows():\n",
507
- " for _, gdp_row in gdp_pop.iterrows():\n",
508
- " new_rows.append(\n",
509
- " {\n",
510
- " \"geo_id\": gdp_row[\"country_code\"], # Use 2-letter code\n",
511
- " \"geography\": \"country\",\n",
512
- " \"date_start\": combo[\"date_start\"],\n",
513
- " \"date_end\": combo[\"date_end\"],\n",
514
- " \"platform_and_product\": combo[\"platform_and_product\"],\n",
515
- " \"facet\": \"country\",\n",
516
- " \"level\": 0,\n",
517
- " \"variable\": \"gdp_per_working_age_capita\",\n",
518
- " \"cluster_name\": \"\",\n",
519
- " \"value\": float(gdp_row[\"gdp_per_working_age_capita\"]),\n",
520
- " }\n",
521
- " )\n",
522
- "\n",
523
- " # Process state GDP\n",
524
- " if \"state_us\" in gdp_data and \"state_us\" in population_data:\n",
525
- " gdp_state = gdp_data[\"state_us\"]\n",
526
- " pop_state = population_data[\"state_us\"]\n",
527
- "\n",
528
- " # Merge GDP with population\n",
529
- " # Column names from preprocess_gdp.py: state_code, gdp_total (in actual dollars)\n",
530
- " gdp_pop = gdp_state.merge(pop_state, on=\"state_code\", how=\"inner\")\n",
531
- "\n",
532
- " # Calculate GDP per working age capita\n",
533
- " gdp_pop[\"gdp_per_working_age_capita\"] = (\n",
534
- " gdp_pop[\"gdp_total\"] / gdp_pop[\"working_age_pop\"]\n",
535
- " )\n",
536
- "\n",
537
- " for _, combo in date_platform_combos.iterrows():\n",
538
- " for _, gdp_row in gdp_pop.iterrows():\n",
539
- " new_rows.append(\n",
540
- " {\n",
541
- " \"geo_id\": gdp_row[\"state_code\"],\n",
542
- " \"geography\": \"state_us\",\n",
543
- " \"date_start\": combo[\"date_start\"],\n",
544
- " \"date_end\": combo[\"date_end\"],\n",
545
- " \"platform_and_product\": combo[\"platform_and_product\"],\n",
546
- " \"facet\": \"state_us\",\n",
547
- " \"level\": 0,\n",
548
- " \"variable\": \"gdp_per_working_age_capita\",\n",
549
- " \"cluster_name\": \"\",\n",
550
- " \"value\": float(gdp_row[\"gdp_per_working_age_capita\"]),\n",
551
- " }\n",
552
- " )\n",
553
- "\n",
554
- " # Add all new rows to the dataframe\n",
555
- " if new_rows:\n",
556
- " df_new = pd.DataFrame(new_rows)\n",
557
- " df_result = pd.concat([df_result, df_new], ignore_index=True)\n",
558
- "\n",
559
- " return df_result\n",
560
- "\n",
561
- "\n",
562
- "def calculate_soc_distribution(\n",
563
- " df, df_onet, df_soc_structure, filtered_countries=None, filtered_states=None\n",
564
- "):\n",
565
- " \"\"\"\n",
566
- " Calculate SOC occupation distribution from O*NET task usage.\n",
567
- "\n",
568
- " This uses the following approach:\n",
569
- " 1. Map tasks directly to SOC major groups (with minimal double counting)\n",
570
- " 2. Combine \"none\" and \"not_classified\" tasks into a single \"not_classified\" SOC group\n",
571
- " 3. Sum percentages by SOC group\n",
572
- " 4. Normalize to 100% for each geography\n",
573
- " 5. Calculate for countries, US states, and global that meet MIN_OBSERVATIONS threshold\n",
574
- "\n",
575
- " NOTE: For US states, only ~449 O*NET tasks have state-level data (those with sufficient\n",
576
- " observations), but these tasks still map to SOC groups the same way as for countries.\n",
577
- "\n",
578
- " Args:\n",
579
- " df: DataFrame with O*NET task percentages\n",
580
- " df_onet: O*NET task data with SOC codes\n",
581
- " df_soc_structure: SOC structure with major group names\n",
582
- " filtered_countries: List of countries that meet MIN_OBSERVATIONS (optional)\n",
583
- " filtered_states: List of states that meet MIN_OBSERVATIONS (optional)\n",
584
- "\n",
585
- " Returns:\n",
586
- " DataFrame with SOC distribution rows added\n",
587
- " \"\"\"\n",
588
- " df_result = df.copy()\n",
589
- " soc_rows = []\n",
590
- "\n",
591
- " # Get all O*NET task percentage data (including not_classified and \"none\")\n",
592
- " df_task_pct_all = df_result[\n",
593
- " (df_result[\"facet\"] == \"onet_task\") & (df_result[\"variable\"] == \"onet_task_pct\")\n",
594
- " ].copy()\n",
595
- "\n",
596
- " if df_task_pct_all.empty:\n",
597
- " return df_result\n",
598
- "\n",
599
- " # Build masks for each geography type\n",
600
- " # Always include global\n",
601
- " global_mask = df_task_pct_all[\"geography\"] == \"global\"\n",
602
- "\n",
603
- " # Apply filtering for countries\n",
604
- " if filtered_countries is not None:\n",
605
- " country_mask = (df_task_pct_all[\"geography\"] == \"country\") & (\n",
606
- " df_task_pct_all[\"geo_id\"].isin(filtered_countries)\n",
607
- " )\n",
608
- " else:\n",
609
- " # If no filter, keep all countries\n",
610
- " country_mask = df_task_pct_all[\"geography\"] == \"country\"\n",
611
- "\n",
612
- " # Apply filtering for states\n",
613
- " if filtered_states is not None:\n",
614
- " state_mask = (df_task_pct_all[\"geography\"] == \"state_us\") & (\n",
615
- " df_task_pct_all[\"geo_id\"].isin(filtered_states)\n",
616
- " )\n",
617
- " else:\n",
618
- " # If no filter, keep all states\n",
619
- " state_mask = df_task_pct_all[\"geography\"] == \"state_us\"\n",
620
- "\n",
621
- " # Combine masks to keep relevant geographies\n",
622
- " combined_mask = global_mask | country_mask | state_mask\n",
623
- " df_task_pct_all = df_task_pct_all[combined_mask].copy()\n",
624
- "\n",
625
- " if df_task_pct_all.empty:\n",
626
- " return df_result\n",
627
- "\n",
628
- " # Separate not_classified and none tasks from real O*NET tasks\n",
629
- " df_not_classified = df_task_pct_all[\n",
630
- " (df_task_pct_all[\"cluster_name\"].str.contains(\"not_classified\", na=False))\n",
631
- " | (df_task_pct_all[\"cluster_name\"] == \"none\")\n",
632
- " ].copy()\n",
633
- "\n",
634
- " # Get real O*NET tasks (excluding not_classified and none)\n",
635
- " df_task_pct = df_task_pct_all[\n",
636
- " (~df_task_pct_all[\"cluster_name\"].str.contains(\"not_classified\", na=False))\n",
637
- " & (df_task_pct_all[\"cluster_name\"] != \"none\")\n",
638
- " ].copy()\n",
639
- "\n",
640
- " # Normalize task names for matching\n",
641
- " df_task_pct[\"task_normalized\"] = df_task_pct[\"cluster_name\"].str.lower().str.strip()\n",
642
- "\n",
643
- " # Get unique task-SOC pairs from O*NET data\n",
644
- " # This keeps tasks that map to multiple SOC groups (different rows)\n",
645
- " df_task_soc = df_onet[[\"task_normalized\", \"soc_major_group\"]].drop_duplicates()\n",
646
- "\n",
647
- " # Merge tasks with their SOC codes\n",
648
- " df_with_soc = df_task_pct.merge(df_task_soc, on=\"task_normalized\", how=\"left\")\n",
649
- "\n",
650
- " # Check for unmapped tasks and raise error if found (same as for countries)\n",
651
- " unmapped_tasks = df_with_soc[df_with_soc[\"soc_major_group\"].isna()]\n",
652
- " if not unmapped_tasks.empty:\n",
653
- " unmapped_list = unmapped_tasks[\"cluster_name\"].unique()[:10] # Show first 10\n",
654
- " n_unmapped = len(unmapped_tasks[\"cluster_name\"].unique())\n",
655
- "\n",
656
- " # Check which geographies have unmapped tasks\n",
657
- " unmapped_geos = unmapped_tasks[\"geography\"].unique()\n",
658
- "\n",
659
- " raise ValueError(\n",
660
- " f\"Found {n_unmapped} O*NET tasks that could not be mapped to SOC codes.\\n\"\n",
661
- " f\"Geographies with unmapped tasks: {unmapped_geos.tolist()}\\n\"\n",
662
- " f\"First 10 unmapped tasks:\\n\"\n",
663
- " + \"\\n\".join(f\" - {task}\" for task in unmapped_list)\n",
664
- " + f\"\\n\\nThis likely means the O*NET data is out of sync with the Clio task data.\\n\"\n",
665
- " f\"Please verify that preprocess_onet.py has been run with the correct O*NET version.\"\n",
666
- " )\n",
667
- "\n",
668
- " # Create SOC name mapping if SOC structure is available\n",
669
- " soc_names = {}\n",
670
- " if not df_soc_structure.empty:\n",
671
- " for _, row in df_soc_structure.iterrows():\n",
672
- " soc_code = row[\"soc_major_group\"]\n",
673
- " title = row[\"SOC or O*NET-SOC 2019 Title\"]\n",
674
- " # Clean up title (remove \"Occupations\" suffix)\n",
675
- " clean_title = title.replace(\" Occupations\", \"\").replace(\" Occupation\", \"\")\n",
676
- " soc_names[soc_code] = clean_title\n",
677
- "\n",
678
- " # Group by geography and process each group\n",
679
- " geo_groups = df_with_soc.groupby(\n",
680
- " [\"geo_id\", \"geography\", \"date_start\", \"date_end\", \"platform_and_product\"]\n",
681
- " )\n",
682
- "\n",
683
- " # Also group not_classified data by geography\n",
684
- " not_classified_groups = df_not_classified.groupby(\n",
685
- " [\"geo_id\", \"geography\", \"date_start\", \"date_end\", \"platform_and_product\"]\n",
686
- " )\n",
687
- "\n",
688
- " # Track statistics\n",
689
- " states_with_soc = set()\n",
690
- " countries_with_soc = set()\n",
691
- "\n",
692
- " # Process all geographies\n",
693
- " all_geos = set()\n",
694
- " for (geo_id, geography, date_start, date_end, platform), _ in geo_groups:\n",
695
- " all_geos.add((geo_id, geography, date_start, date_end, platform))\n",
696
- " for (geo_id, geography, date_start, date_end, platform), _ in not_classified_groups:\n",
697
- " all_geos.add((geo_id, geography, date_start, date_end, platform))\n",
698
- "\n",
699
- " for geo_id, geography, date_start, date_end, platform in all_geos:\n",
700
- " # Get mapped SOC data for this geography\n",
701
- " try:\n",
702
- " geo_data = geo_groups.get_group(\n",
703
- " (geo_id, geography, date_start, date_end, platform)\n",
704
- " )\n",
705
- " # Sum percentages by SOC major group\n",
706
- " # If a task maps to multiple SOC groups, its percentage is added to each\n",
707
- " soc_totals = geo_data.groupby(\"soc_major_group\")[\"value\"].sum()\n",
708
- " except KeyError:\n",
709
- " # No mapped tasks for this geography\n",
710
- " soc_totals = pd.Series(dtype=float)\n",
711
- "\n",
712
- " # Get not_classified/none data for this geography\n",
713
- " try:\n",
714
- " not_classified_data = not_classified_groups.get_group(\n",
715
- " (geo_id, geography, date_start, date_end, platform)\n",
716
- " )\n",
717
- " # Sum all not_classified and none percentages\n",
718
- " not_classified_total = not_classified_data[\"value\"].sum()\n",
719
- " except KeyError:\n",
720
- " # No not_classified/none for this geography\n",
721
- " not_classified_total = 0\n",
722
- "\n",
723
- " # Combine and normalize to 100%\n",
724
- " total_pct = soc_totals.sum() + not_classified_total\n",
725
- "\n",
726
- " if total_pct > 0:\n",
727
- " # Normalize mapped SOC groups\n",
728
- " if len(soc_totals) > 0:\n",
729
- " soc_normalized = (soc_totals / total_pct) * 100\n",
730
- " else:\n",
731
- " soc_normalized = pd.Series(dtype=float)\n",
732
- "\n",
733
- " # Calculate normalized not_classified percentage\n",
734
- " not_classified_normalized = (not_classified_total / total_pct) * 100\n",
735
- "\n",
736
- " # Track geographies that have SOC data\n",
737
- " if geography == \"state_us\":\n",
738
- " states_with_soc.add(geo_id)\n",
739
- " elif geography == \"country\":\n",
740
- " countries_with_soc.add(geo_id)\n",
741
- "\n",
742
- " # Create rows for each SOC group\n",
743
- " for soc_group, pct_value in soc_normalized.items():\n",
744
- " # Get SOC name if available, otherwise use code\n",
745
- " soc_name = soc_names.get(soc_group, f\"SOC {soc_group}\")\n",
746
- "\n",
747
- " soc_row = {\n",
748
- " \"geo_id\": geo_id,\n",
749
- " \"geography\": geography,\n",
750
- " \"date_start\": date_start,\n",
751
- " \"date_end\": date_end,\n",
752
- " \"platform_and_product\": platform,\n",
753
- " \"facet\": \"soc_occupation\",\n",
754
- " \"level\": 0,\n",
755
- " \"variable\": \"soc_pct\",\n",
756
- " \"cluster_name\": soc_name,\n",
757
- " \"value\": pct_value,\n",
758
- " }\n",
759
- " soc_rows.append(soc_row)\n",
760
- "\n",
761
- " # Add not_classified SOC row if there's any not_classified/none percentage\n",
762
- " if not_classified_normalized > 0:\n",
763
- " soc_row = {\n",
764
- " \"geo_id\": geo_id,\n",
765
- " \"geography\": geography,\n",
766
- " \"date_start\": date_start,\n",
767
- " \"date_end\": date_end,\n",
768
- " \"platform_and_product\": platform,\n",
769
- " \"facet\": \"soc_occupation\",\n",
770
- " \"level\": 0,\n",
771
- " \"variable\": \"soc_pct\",\n",
772
- " \"cluster_name\": \"not_classified\",\n",
773
- " \"value\": not_classified_normalized,\n",
774
- " }\n",
775
- " soc_rows.append(soc_row)\n",
776
- "\n",
777
- " # Print summary\n",
778
- " if countries_with_soc:\n",
779
- " print(\n",
780
- " f\"Calculated SOC distributions for {len(countries_with_soc)} countries + global\"\n",
781
- " )\n",
782
- " if states_with_soc:\n",
783
- " print(f\"Calculated SOC distributions for {len(states_with_soc)} US states\")\n",
784
- "\n",
785
- " # Add all SOC rows to result\n",
786
- " if soc_rows:\n",
787
- " df_soc = pd.DataFrame(soc_rows)\n",
788
- " df_result = pd.concat([df_result, df_soc], ignore_index=True)\n",
789
- "\n",
790
- " return df_result"
791
- ]
792
- },
793
- {
794
- "cell_type": "markdown",
795
- "metadata": {},
796
- "source": [
797
- "## Metric Calculation Functions"
798
- ]
799
- },
800
- {
801
- "cell_type": "code",
802
- "execution_count": null,
803
- "metadata": {},
804
- "outputs": [],
805
- "source": [
806
- "def calculate_per_capita_metrics(df):\n",
807
- " \"\"\"\n",
808
- " Calculate per capita metrics by joining usage and population data.\n",
809
- "\n",
810
- " Since data is in long format, this function:\n",
811
- " 1. Extracts usage count rows\n",
812
- " 2. Extracts population rows\n",
813
- " 3. Joins them and calculates per capita\n",
814
- " 4. Adds results as new rows\n",
815
- "\n",
816
- " Args:\n",
817
- " df: Dataframe in long format with usage and population as rows\n",
818
- "\n",
819
- " Returns:\n",
820
- " Dataframe with per capita metrics added as new rows\n",
821
- " \"\"\"\n",
822
- " df_result = df.copy()\n",
823
- "\n",
824
- " # Define which metrics should have per capita calculations\n",
825
- " count_metrics = [\"usage_count\"]\n",
826
- "\n",
827
- " # Get population data\n",
828
- " df_pop = df_result[df_result[\"variable\"] == \"working_age_pop\"][\n",
829
- " [\n",
830
- " \"geo_id\",\n",
831
- " \"geography\",\n",
832
- " \"date_start\",\n",
833
- " \"date_end\",\n",
834
- " \"platform_and_product\",\n",
835
- " \"value\",\n",
836
- " ]\n",
837
- " ].rename(columns={\"value\": \"population\"})\n",
838
- "\n",
839
- " # Calculate per capita for each count metric\n",
840
- " per_capita_rows = []\n",
841
- "\n",
842
- " for metric in count_metrics:\n",
843
- " # Get the count data for this metric\n",
844
- " df_metric = df_result[df_result[\"variable\"] == metric].copy()\n",
845
- "\n",
846
- " # Join with population data\n",
847
- " df_joined = df_metric.merge(\n",
848
- " df_pop,\n",
849
- " on=[\n",
850
- " \"geo_id\",\n",
851
- " \"geography\",\n",
852
- " \"date_start\",\n",
853
- " \"date_end\",\n",
854
- " \"platform_and_product\",\n",
855
- " ],\n",
856
- " how=\"left\",\n",
857
- " )\n",
858
- "\n",
859
- " # Calculate per capita where population exists and is > 0\n",
860
- " df_joined = df_joined[\n",
861
- " df_joined[\"population\"].notna() & (df_joined[\"population\"] > 0)\n",
862
- " ]\n",
863
- "\n",
864
- " if not df_joined.empty:\n",
865
- " # Create per capita rows\n",
866
- " for _, row in df_joined.iterrows():\n",
867
- " per_capita_row = {\n",
868
- " \"geo_id\": row[\"geo_id\"],\n",
869
- " \"geography\": row[\"geography\"],\n",
870
- " \"date_start\": row[\"date_start\"],\n",
871
- " \"date_end\": row[\"date_end\"],\n",
872
- " \"platform_and_product\": row[\"platform_and_product\"],\n",
873
- " \"facet\": row[\"facet\"],\n",
874
- " \"level\": row[\"level\"],\n",
875
- " \"variable\": metric.replace(\"_count\", \"_per_capita\"),\n",
876
- " \"cluster_name\": row[\"cluster_name\"],\n",
877
- " \"value\": row[\"value\"] / row[\"population\"],\n",
878
- " }\n",
879
- " per_capita_rows.append(per_capita_row)\n",
880
- "\n",
881
- " # Add all per capita rows to the result\n",
882
- " if per_capita_rows:\n",
883
- " df_per_capita = pd.DataFrame(per_capita_rows)\n",
884
- " df_result = pd.concat([df_result, df_per_capita], ignore_index=True)\n",
885
- "\n",
886
- " return df_result\n",
887
- "\n",
888
- "\n",
889
- "def calculate_usage_per_capita_index(df, filtered_countries=None, filtered_states=None):\n",
890
- " \"\"\"\n",
891
- " Calculate usage concentration index: (% of usage) / (% of population).\n",
892
- "\n",
893
- " This shows whether a geography has more or less usage than expected based on its population.\n",
894
- " - Index = 1.0: Usage proportional to population\n",
895
- " - Index > 1.0: Over-representation (more usage than expected)\n",
896
- " - Index < 1.0: Under-representation (less usage than expected)\n",
897
- " - Index = 0.0: No usage at all\n",
898
- "\n",
899
- " The function calculates the index for all countries/states that have usage data.\n",
900
- " Excluded countries don't have usage data, so they're automatically excluded.\n",
901
- " Countries with zero usage get index=0 naturally from the calculation.\n",
902
- "\n",
903
- " Args:\n",
904
- " df: Dataframe with usage and population data\n",
905
- " filtered_countries: List of countries that meet MIN_OBSERVATIONS threshold (used for baseline calculation)\n",
906
- " filtered_states: List of states that meet MIN_OBSERVATIONS threshold (used for baseline calculation)\n",
907
- "\n",
908
- " Returns:\n",
909
- " Dataframe with usage concentration index added as new rows\n",
910
- " \"\"\"\n",
911
- " df_result = df.copy()\n",
912
- "\n",
913
- " index_rows = []\n",
914
- "\n",
915
- " # Process countries\n",
916
- " # Get all countries with usage data (excluded countries won't be here)\n",
917
- " df_usage_country = df_result[\n",
918
- " (df_result[\"geography\"] == \"country\") & (df_result[\"variable\"] == \"usage_count\")\n",
919
- " ].copy()\n",
920
- "\n",
921
- " # Get population data for the same countries\n",
922
- " df_pop_country = df_result[\n",
923
- " (df_result[\"geography\"] == \"country\")\n",
924
- " & (df_result[\"variable\"] == \"working_age_pop\")\n",
925
- " ].copy()\n",
926
- "\n",
927
- " if not df_usage_country.empty and not df_pop_country.empty:\n",
928
- " # For baseline calculation, use filtered countries if provided, otherwise use all\n",
929
- " if filtered_countries is not None:\n",
930
- " # Calculate totals using only filtered countries for the baseline\n",
931
- " usage_for_baseline = df_usage_country[\n",
932
- " df_usage_country[\"geo_id\"].isin(filtered_countries)\n",
933
- " ]\n",
934
- " pop_for_baseline = df_pop_country[\n",
935
- " df_pop_country[\"geo_id\"].isin(filtered_countries)\n",
936
- " ]\n",
937
- " total_usage = usage_for_baseline[\"value\"].sum()\n",
938
- " total_pop = pop_for_baseline[\"value\"].sum()\n",
939
- " else:\n",
940
- " # Use all countries for baseline\n",
941
- " total_usage = df_usage_country[\"value\"].sum()\n",
942
- " total_pop = df_pop_country[\"value\"].sum()\n",
943
- "\n",
944
- " if total_usage > 0 and total_pop > 0:\n",
945
- " # Calculate index for all countries (not just filtered)\n",
946
- " for _, usage_row in df_usage_country.iterrows():\n",
947
- " # Find corresponding population\n",
948
- " pop_value = df_pop_country[\n",
949
- " df_pop_country[\"geo_id\"] == usage_row[\"geo_id\"]\n",
950
- " ][\"value\"].values\n",
951
- "\n",
952
- " if len(pop_value) > 0 and pop_value[0] > 0:\n",
953
- " # Calculate shares\n",
954
- " usage_share = (\n",
955
- " usage_row[\"value\"] / total_usage\n",
956
- " if usage_row[\"value\"] > 0\n",
957
- " else 0\n",
958
- " )\n",
959
- " pop_share = pop_value[0] / total_pop\n",
960
- "\n",
961
- " # Calculate index (will be 0 if usage is 0)\n",
962
- " index_value = usage_share / pop_share if pop_share > 0 else 0\n",
963
- "\n",
964
- " index_row = {\n",
965
- " \"geo_id\": usage_row[\"geo_id\"],\n",
966
- " \"geography\": usage_row[\"geography\"],\n",
967
- " \"date_start\": usage_row[\"date_start\"],\n",
968
- " \"date_end\": usage_row[\"date_end\"],\n",
969
- " \"platform_and_product\": usage_row[\"platform_and_product\"],\n",
970
- " \"facet\": usage_row[\"facet\"],\n",
971
- " \"level\": usage_row[\"level\"],\n",
972
- " \"variable\": \"usage_per_capita_index\",\n",
973
- " \"cluster_name\": usage_row[\"cluster_name\"],\n",
974
- " \"value\": index_value,\n",
975
- " }\n",
976
- " index_rows.append(index_row)\n",
977
- "\n",
978
- " # Process states\n",
979
- " # Get all states with usage data\n",
980
- " df_usage_state = df_result[\n",
981
- " (df_result[\"geography\"] == \"state_us\")\n",
982
- " & (df_result[\"variable\"] == \"usage_count\")\n",
983
- " ].copy()\n",
984
- "\n",
985
- " # Get population data for the same states\n",
986
- " df_pop_state = df_result[\n",
987
- " (df_result[\"geography\"] == \"state_us\")\n",
988
- " & (df_result[\"variable\"] == \"working_age_pop\")\n",
989
- " ].copy()\n",
990
- "\n",
991
- " if not df_usage_state.empty and not df_pop_state.empty:\n",
992
- " # For baseline calculation, use filtered states if provided, otherwise use all\n",
993
- " if filtered_states is not None:\n",
994
- " # Calculate totals using only filtered states for the baseline\n",
995
- " usage_for_baseline = df_usage_state[\n",
996
- " df_usage_state[\"geo_id\"].isin(filtered_states)\n",
997
- " ]\n",
998
- " pop_for_baseline = df_pop_state[\n",
999
- " df_pop_state[\"geo_id\"].isin(filtered_states)\n",
1000
- " ]\n",
1001
- " total_usage = usage_for_baseline[\"value\"].sum()\n",
1002
- " total_pop = pop_for_baseline[\"value\"].sum()\n",
1003
- " else:\n",
1004
- " # Use all states for baseline\n",
1005
- " total_usage = df_usage_state[\"value\"].sum()\n",
1006
- " total_pop = df_pop_state[\"value\"].sum()\n",
1007
- "\n",
1008
- " if total_usage > 0 and total_pop > 0:\n",
1009
- " # Calculate index for all states (not just filtered)\n",
1010
- " for _, usage_row in df_usage_state.iterrows():\n",
1011
- " # Find corresponding population\n",
1012
- " pop_value = df_pop_state[df_pop_state[\"geo_id\"] == usage_row[\"geo_id\"]][\n",
1013
- " \"value\"\n",
1014
- " ].values\n",
1015
- "\n",
1016
- " if len(pop_value) > 0 and pop_value[0] > 0:\n",
1017
- " # Calculate shares\n",
1018
- " usage_share = (\n",
1019
- " usage_row[\"value\"] / total_usage\n",
1020
- " if usage_row[\"value\"] > 0\n",
1021
- " else 0\n",
1022
- " )\n",
1023
- " pop_share = pop_value[0] / total_pop\n",
1024
- "\n",
1025
- " # Calculate index (will be 0 if usage is 0)\n",
1026
- " index_value = usage_share / pop_share if pop_share > 0 else 0\n",
1027
- "\n",
1028
- " index_row = {\n",
1029
- " \"geo_id\": usage_row[\"geo_id\"],\n",
1030
- " \"geography\": usage_row[\"geography\"],\n",
1031
- " \"date_start\": usage_row[\"date_start\"],\n",
1032
- " \"date_end\": usage_row[\"date_end\"],\n",
1033
- " \"platform_and_product\": usage_row[\"platform_and_product\"],\n",
1034
- " \"facet\": usage_row[\"facet\"],\n",
1035
- " \"level\": usage_row[\"level\"],\n",
1036
- " \"variable\": \"usage_per_capita_index\",\n",
1037
- " \"cluster_name\": usage_row[\"cluster_name\"],\n",
1038
- " \"value\": index_value,\n",
1039
- " }\n",
1040
- " index_rows.append(index_row)\n",
1041
- "\n",
1042
- " # Add all index rows to result\n",
1043
- " if index_rows:\n",
1044
- " df_index = pd.DataFrame(index_rows)\n",
1045
- " df_result = pd.concat([df_result, df_index], ignore_index=True)\n",
1046
- "\n",
1047
- " return df_result\n",
1048
- "\n",
1049
- "\n",
1050
- "def calculate_category_percentage_index(\n",
1051
- " df, filtered_countries=None, filtered_states=None\n",
1052
- "):\n",
1053
- " \"\"\"\n",
1054
- " Calculate category percentage index for facet specialization.\n",
1055
- "\n",
1056
- " For countries: Compare to global percentage for that cluster\n",
1057
- " For US states: Compare to US country percentage for that cluster\n",
1058
- "\n",
1059
- " Only calculates for countries/states that meet MIN_OBSERVATIONS.\n",
1060
- " Excludes \"not_classified\" and \"none\" categories as these are catch-alls.\n",
1061
- "\n",
1062
- " Args:\n",
1063
- " df: Dataframe with percentage metrics as rows\n",
1064
- " filtered_countries: List of countries that meet MIN_OBSERVATIONS threshold\n",
1065
- " filtered_states: List of states that meet MIN_OBSERVATIONS threshold\n",
1066
- "\n",
1067
- " Returns:\n",
1068
- " Dataframe with category percentage index added as new rows (only for filtered geographies)\n",
1069
- " \"\"\"\n",
1070
- " df_result = df.copy()\n",
1071
- "\n",
1072
- " # Process percentage metrics for content facets\n",
1073
- " pct_vars = [\"onet_task_pct\", \"collaboration_pct\", \"request_pct\"]\n",
1074
- "\n",
1075
- " index_rows = []\n",
1076
- "\n",
1077
- " for pct_var in pct_vars:\n",
1078
- " # Get the base facet name\n",
1079
- " facet_name = pct_var.replace(\"_pct\", \"\")\n",
1080
- "\n",
1081
- " # Get percentage data for this variable\n",
1082
- " df_pct = df_result[\n",
1083
- " (df_result[\"variable\"] == pct_var) & (df_result[\"facet\"] == facet_name)\n",
1084
- " ].copy()\n",
1085
- "\n",
1086
- " # Exclude not_classified and none categories from index calculation\n",
1087
- " # These are catch-all/no-pattern categories that don't provide meaningful comparisons\n",
1088
- " df_pct = df_pct[~df_pct[\"cluster_name\"].isin([\"not_classified\", \"none\"])]\n",
1089
- "\n",
1090
- " if not df_pct.empty and \"cluster_name\" in df_pct.columns:\n",
1091
- " # Check if this facet has levels (like request)\n",
1092
- " has_levels = df_pct[\"level\"].notna().any() and (df_pct[\"level\"] != 0).any()\n",
1093
- "\n",
1094
- " if has_levels:\n",
1095
- " # Process each level separately\n",
1096
- " levels = df_pct[\"level\"].dropna().unique()\n",
1097
- "\n",
1098
- " for level in levels:\n",
1099
- " df_level = df_pct[df_pct[\"level\"] == level].copy()\n",
1100
- "\n",
1101
- " # Get global baselines for this level\n",
1102
- " global_baselines = (\n",
1103
- " df_level[\n",
1104
- " (df_level[\"geography\"] == \"global\")\n",
1105
- " & (df_level[\"geo_id\"] == \"GLOBAL\")\n",
1106
- " ]\n",
1107
- " .set_index(\"cluster_name\")[\"value\"]\n",
1108
- " .to_dict()\n",
1109
- " )\n",
1110
- "\n",
1111
- " # Get US baselines for this level\n",
1112
- " us_baselines = (\n",
1113
- " df_level[\n",
1114
- " (df_level[\"geography\"] == \"country\")\n",
1115
- " & (df_level[\"geo_id\"] == \"US\")\n",
1116
- " ]\n",
1117
- " .set_index(\"cluster_name\")[\"value\"]\n",
1118
- " .to_dict()\n",
1119
- " )\n",
1120
- "\n",
1121
- " # Process countries for this level\n",
1122
- " if filtered_countries is not None and global_baselines:\n",
1123
- " df_countries = df_level[\n",
1124
- " (df_level[\"geography\"] == \"country\")\n",
1125
- " & (df_level[\"geo_id\"].isin(filtered_countries))\n",
1126
- " ].copy()\n",
1127
- "\n",
1128
- " for _, row in df_countries.iterrows():\n",
1129
- " baseline = global_baselines.get(row[\"cluster_name\"])\n",
1130
- "\n",
1131
- " if baseline and baseline > 0:\n",
1132
- " index_row = {\n",
1133
- " \"geo_id\": row[\"geo_id\"],\n",
1134
- " \"geography\": row[\"geography\"],\n",
1135
- " \"date_start\": row[\"date_start\"],\n",
1136
- " \"date_end\": row[\"date_end\"],\n",
1137
- " \"platform_and_product\": row[\"platform_and_product\"],\n",
1138
- " \"facet\": row[\"facet\"],\n",
1139
- " \"level\": row[\"level\"],\n",
1140
- " \"variable\": f\"{facet_name}_pct_index\",\n",
1141
- " \"cluster_name\": row[\"cluster_name\"],\n",
1142
- " \"value\": row[\"value\"] / baseline,\n",
1143
- " }\n",
1144
- " index_rows.append(index_row)\n",
1145
- "\n",
1146
- " # Process states for this level\n",
1147
- " if filtered_states is not None and us_baselines:\n",
1148
- " df_states = df_level[\n",
1149
- " (df_level[\"geography\"] == \"state_us\")\n",
1150
- " & (df_level[\"geo_id\"].isin(filtered_states))\n",
1151
- " ].copy()\n",
1152
- "\n",
1153
- " for _, row in df_states.iterrows():\n",
1154
- " baseline = us_baselines.get(row[\"cluster_name\"])\n",
1155
- "\n",
1156
- " if baseline and baseline > 0:\n",
1157
- " index_row = {\n",
1158
- " \"geo_id\": row[\"geo_id\"],\n",
1159
- " \"geography\": row[\"geography\"],\n",
1160
- " \"date_start\": row[\"date_start\"],\n",
1161
- " \"date_end\": row[\"date_end\"],\n",
1162
- " \"platform_and_product\": row[\"platform_and_product\"],\n",
1163
- " \"facet\": row[\"facet\"],\n",
1164
- " \"level\": row[\"level\"],\n",
1165
- " \"variable\": f\"{facet_name}_pct_index\",\n",
1166
- " \"cluster_name\": row[\"cluster_name\"],\n",
1167
- " \"value\": row[\"value\"] / baseline,\n",
1168
- " }\n",
1169
- " index_rows.append(index_row)\n",
1170
- " else:\n",
1171
- " # No levels (onet_task, collaboration)\n",
1172
- " # Get global baselines\n",
1173
- " global_baselines = (\n",
1174
- " df_pct[\n",
1175
- " (df_pct[\"geography\"] == \"global\")\n",
1176
- " & (df_pct[\"geo_id\"] == \"GLOBAL\")\n",
1177
- " ]\n",
1178
- " .set_index(\"cluster_name\")[\"value\"]\n",
1179
- " .to_dict()\n",
1180
- " )\n",
1181
- "\n",
1182
- " # Get US baselines\n",
1183
- " us_baselines = (\n",
1184
- " df_pct[\n",
1185
- " (df_pct[\"geography\"] == \"country\") & (df_pct[\"geo_id\"] == \"US\")\n",
1186
- " ]\n",
1187
- " .set_index(\"cluster_name\")[\"value\"]\n",
1188
- " .to_dict()\n",
1189
- " )\n",
1190
- "\n",
1191
- " # Process countries\n",
1192
- " if filtered_countries is not None and global_baselines:\n",
1193
- " df_countries = df_pct[\n",
1194
- " (df_pct[\"geography\"] == \"country\")\n",
1195
- " & (df_pct[\"geo_id\"].isin(filtered_countries))\n",
1196
- " ].copy()\n",
1197
- "\n",
1198
- " for _, row in df_countries.iterrows():\n",
1199
- " baseline = global_baselines.get(row[\"cluster_name\"])\n",
1200
- "\n",
1201
- " if baseline and baseline > 0:\n",
1202
- " index_row = {\n",
1203
- " \"geo_id\": row[\"geo_id\"],\n",
1204
- " \"geography\": row[\"geography\"],\n",
1205
- " \"date_start\": row[\"date_start\"],\n",
1206
- " \"date_end\": row[\"date_end\"],\n",
1207
- " \"platform_and_product\": row[\"platform_and_product\"],\n",
1208
- " \"facet\": row[\"facet\"],\n",
1209
- " \"level\": row[\"level\"],\n",
1210
- " \"variable\": f\"{facet_name}_pct_index\",\n",
1211
- " \"cluster_name\": row[\"cluster_name\"],\n",
1212
- " \"value\": row[\"value\"] / baseline,\n",
1213
- " }\n",
1214
- " index_rows.append(index_row)\n",
1215
- "\n",
1216
- " # Process states\n",
1217
- " if filtered_states is not None and us_baselines:\n",
1218
- " df_states = df_pct[\n",
1219
- " (df_pct[\"geography\"] == \"state_us\")\n",
1220
- " & (df_pct[\"geo_id\"].isin(filtered_states))\n",
1221
- " ].copy()\n",
1222
- "\n",
1223
- " for _, row in df_states.iterrows():\n",
1224
- " baseline = us_baselines.get(row[\"cluster_name\"])\n",
1225
- "\n",
1226
- " if baseline and baseline > 0:\n",
1227
- " index_row = {\n",
1228
- " \"geo_id\": row[\"geo_id\"],\n",
1229
- " \"geography\": row[\"geography\"],\n",
1230
- " \"date_start\": row[\"date_start\"],\n",
1231
- " \"date_end\": row[\"date_end\"],\n",
1232
- " \"platform_and_product\": row[\"platform_and_product\"],\n",
1233
- " \"facet\": row[\"facet\"],\n",
1234
- " \"level\": row[\"level\"],\n",
1235
- " \"variable\": f\"{facet_name}_pct_index\",\n",
1236
- " \"cluster_name\": row[\"cluster_name\"],\n",
1237
- " \"value\": row[\"value\"] / baseline,\n",
1238
- " }\n",
1239
- " index_rows.append(index_row)\n",
1240
- "\n",
1241
- " # Add all index rows to result\n",
1242
- " if index_rows:\n",
1243
- " df_index = pd.DataFrame(index_rows)\n",
1244
- " df_result = pd.concat([df_result, df_index], ignore_index=True)\n",
1245
- "\n",
1246
- " return df_result"
1247
- ]
1248
- },
1249
- {
1250
- "cell_type": "code",
1251
- "execution_count": null,
1252
- "metadata": {},
1253
- "outputs": [],
1254
- "source": [
1255
- "def calculate_usage_tiers(df, n_tiers=4, filtered_countries=None, filtered_states=None):\n",
1256
- " \"\"\"\n",
1257
- " Calculate usage tiers based on indexed per capita usage.\n",
1258
- " - Tier 0: Zero adoption (index = 0)\n",
1259
- " - Tiers 1-4: Quartiles based on thresholds from filtered countries/states\n",
1260
- "\n",
1261
- " Quartile thresholds are calculated using only countries/states with ≥MIN_OBSERVATIONS,\n",
1262
- " but applied to all countries/states to ensure complete visualization.\n",
1263
- "\n",
1264
- " Note: Tier assignments for countries/states with <MIN_OBSERVATIONS should be\n",
1265
- " interpreted with caution due to sample size limitations.\n",
1266
- "\n",
1267
- " Args:\n",
1268
- " df: Input dataframe\n",
1269
- " n_tiers: Number of quartiles to create for non-zero usage (default 4)\n",
1270
- " filtered_countries: List of countries that meet MIN_OBSERVATIONS threshold\n",
1271
- " filtered_states: List of states that meet MIN_OBSERVATIONS threshold\n",
1272
- "\n",
1273
- " Returns:\n",
1274
- " Dataframe with usage tier rows added\n",
1275
- " \"\"\"\n",
1276
- " df_result = df.copy()\n",
1277
- "\n",
1278
- " # Calculate tiers for indexed per capita metrics\n",
1279
- " if \"variable\" in df_result.columns and \"value\" in df_result.columns:\n",
1280
- " index_vars = [\"usage_per_capita_index\"]\n",
1281
- "\n",
1282
- " quartile_labels = [\n",
1283
- " \"Emerging (bottom 25%)\",\n",
1284
- " \"Lower middle (25-50%)\",\n",
1285
- " \"Upper middle (50-75%)\",\n",
1286
- " \"Leading (top 25%)\",\n",
1287
- " ]\n",
1288
- "\n",
1289
- " tier_rows = []\n",
1290
- "\n",
1291
- " for var in index_vars:\n",
1292
- " # Process countries\n",
1293
- " # Get all countries with the index variable\n",
1294
- " all_country_data = df_result[\n",
1295
- " (df_result[\"variable\"] == var) & (df_result[\"geography\"] == \"country\")\n",
1296
- " ].copy()\n",
1297
- "\n",
1298
- " if not all_country_data.empty:\n",
1299
- " # Separate zero and non-zero usage\n",
1300
- " zero_usage = all_country_data[all_country_data[\"value\"] == 0].copy()\n",
1301
- " nonzero_usage = all_country_data[all_country_data[\"value\"] > 0].copy()\n",
1302
- "\n",
1303
- " # Calculate quartile thresholds using ONLY filtered countries\n",
1304
- " if filtered_countries is not None and not nonzero_usage.empty:\n",
1305
- " # Get only filtered countries for quartile calculation\n",
1306
- " filtered_for_quartiles = nonzero_usage[\n",
1307
- " nonzero_usage[\"geo_id\"].isin(filtered_countries)\n",
1308
- " ].copy()\n",
1309
- "\n",
1310
- " if not filtered_for_quartiles.empty:\n",
1311
- " # Calculate quartile thresholds from filtered countries\n",
1312
- " quartiles = (\n",
1313
- " filtered_for_quartiles[\"value\"]\n",
1314
- " .quantile([0.25, 0.5, 0.75])\n",
1315
- " .values\n",
1316
- " )\n",
1317
- "\n",
1318
- " # Apply thresholds to all non-zero countries\n",
1319
- " for _, row in nonzero_usage.iterrows():\n",
1320
- " value = row[\"value\"]\n",
1321
- "\n",
1322
- " # Assign tier based on thresholds\n",
1323
- " if value <= quartiles[0]:\n",
1324
- " tier_label = quartile_labels[0] # Bottom 25%\n",
1325
- " tier_value = 1\n",
1326
- " elif value <= quartiles[1]:\n",
1327
- " tier_label = quartile_labels[1] # 25-50%\n",
1328
- " tier_value = 2\n",
1329
- " elif value <= quartiles[2]:\n",
1330
- " tier_label = quartile_labels[2] # 50-75%\n",
1331
- " tier_value = 3\n",
1332
- " else:\n",
1333
- " tier_label = quartile_labels[3] # Top 25%\n",
1334
- " tier_value = 4\n",
1335
- "\n",
1336
- " tier_row = {\n",
1337
- " \"geo_id\": row[\"geo_id\"],\n",
1338
- " \"geography\": row[\"geography\"],\n",
1339
- " \"date_start\": row[\"date_start\"],\n",
1340
- " \"date_end\": row[\"date_end\"],\n",
1341
- " \"platform_and_product\": row[\"platform_and_product\"],\n",
1342
- " \"facet\": row[\"facet\"],\n",
1343
- " \"level\": row[\"level\"],\n",
1344
- " \"variable\": \"usage_tier\",\n",
1345
- " \"cluster_name\": tier_label,\n",
1346
- " \"value\": tier_value,\n",
1347
- " }\n",
1348
- " tier_rows.append(tier_row)\n",
1349
- "\n",
1350
- " # Add tier 0 for all zero usage countries\n",
1351
- " for _, row in zero_usage.iterrows():\n",
1352
- " tier_row = {\n",
1353
- " \"geo_id\": row[\"geo_id\"],\n",
1354
- " \"geography\": row[\"geography\"],\n",
1355
- " \"date_start\": row[\"date_start\"],\n",
1356
- " \"date_end\": row[\"date_end\"],\n",
1357
- " \"platform_and_product\": row[\"platform_and_product\"],\n",
1358
- " \"facet\": row[\"facet\"],\n",
1359
- " \"level\": row[\"level\"],\n",
1360
- " \"variable\": \"usage_tier\",\n",
1361
- " \"cluster_name\": \"Minimal\",\n",
1362
- " \"value\": 0,\n",
1363
- " }\n",
1364
- " tier_rows.append(tier_row)\n",
1365
- "\n",
1366
- " # Process states\n",
1367
- " # Get all states with the index variable\n",
1368
- " all_state_data = df_result[\n",
1369
- " (df_result[\"variable\"] == var) & (df_result[\"geography\"] == \"state_us\")\n",
1370
- " ].copy()\n",
1371
- "\n",
1372
- " if not all_state_data.empty:\n",
1373
- " # Separate zero and non-zero usage\n",
1374
- " zero_usage = all_state_data[all_state_data[\"value\"] == 0].copy()\n",
1375
- " nonzero_usage = all_state_data[all_state_data[\"value\"] > 0].copy()\n",
1376
- "\n",
1377
- " # Calculate quartile thresholds using ONLY filtered states\n",
1378
- " if filtered_states is not None and not nonzero_usage.empty:\n",
1379
- " # Get only filtered states for quartile calculation\n",
1380
- " filtered_for_quartiles = nonzero_usage[\n",
1381
- " nonzero_usage[\"geo_id\"].isin(filtered_states)\n",
1382
- " ].copy()\n",
1383
- "\n",
1384
- " if not filtered_for_quartiles.empty:\n",
1385
- " # Calculate quartile thresholds from filtered states\n",
1386
- " quartiles = (\n",
1387
- " filtered_for_quartiles[\"value\"]\n",
1388
- " .quantile([0.25, 0.5, 0.75])\n",
1389
- " .values\n",
1390
- " )\n",
1391
- "\n",
1392
- " # Apply thresholds to all non-zero states\n",
1393
- " for _, row in nonzero_usage.iterrows():\n",
1394
- " value = row[\"value\"]\n",
1395
- "\n",
1396
- " # Assign tier based on thresholds\n",
1397
- " if value <= quartiles[0]:\n",
1398
- " tier_label = quartile_labels[0] # Bottom 25%\n",
1399
- " tier_value = 1\n",
1400
- " elif value <= quartiles[1]:\n",
1401
- " tier_label = quartile_labels[1] # 25-50%\n",
1402
- " tier_value = 2\n",
1403
- " elif value <= quartiles[2]:\n",
1404
- " tier_label = quartile_labels[2] # 50-75%\n",
1405
- " tier_value = 3\n",
1406
- " else:\n",
1407
- " tier_label = quartile_labels[3] # Top 25%\n",
1408
- " tier_value = 4\n",
1409
- "\n",
1410
- " tier_row = {\n",
1411
- " \"geo_id\": row[\"geo_id\"],\n",
1412
- " \"geography\": row[\"geography\"],\n",
1413
- " \"date_start\": row[\"date_start\"],\n",
1414
- " \"date_end\": row[\"date_end\"],\n",
1415
- " \"platform_and_product\": row[\"platform_and_product\"],\n",
1416
- " \"facet\": row[\"facet\"],\n",
1417
- " \"level\": row[\"level\"],\n",
1418
- " \"variable\": \"usage_tier\",\n",
1419
- " \"cluster_name\": tier_label,\n",
1420
- " \"value\": tier_value,\n",
1421
- " }\n",
1422
- " tier_rows.append(tier_row)\n",
1423
- "\n",
1424
- " # Add tier 0 for all zero usage states\n",
1425
- " for _, row in zero_usage.iterrows():\n",
1426
- " tier_row = {\n",
1427
- " \"geo_id\": row[\"geo_id\"],\n",
1428
- " \"geography\": row[\"geography\"],\n",
1429
- " \"date_start\": row[\"date_start\"],\n",
1430
- " \"date_end\": row[\"date_end\"],\n",
1431
- " \"platform_and_product\": row[\"platform_and_product\"],\n",
1432
- " \"facet\": row[\"facet\"],\n",
1433
- " \"level\": row[\"level\"],\n",
1434
- " \"variable\": \"usage_tier\",\n",
1435
- " \"cluster_name\": \"Minimal\",\n",
1436
- " \"value\": 0,\n",
1437
- " }\n",
1438
- " tier_rows.append(tier_row)\n",
1439
- "\n",
1440
- " if tier_rows:\n",
1441
- " df_result = pd.concat(\n",
1442
- " [df_result, pd.DataFrame(tier_rows)], ignore_index=True\n",
1443
- " )\n",
1444
- "\n",
1445
- " return df_result"
1446
- ]
1447
- },
1448
- {
1449
- "cell_type": "code",
1450
- "execution_count": null,
1451
- "metadata": {},
1452
- "outputs": [],
1453
- "source": [
1454
- "def calculate_automation_augmentation_metrics(\n",
1455
- " df, filtered_countries=None, filtered_states=None\n",
1456
- "):\n",
1457
- " \"\"\"\n",
1458
- " Calculate automation vs augmentation percentages for collaboration patterns.\n",
1459
- "\n",
1460
- " This function:\n",
1461
- " 1. Categorizes collaboration patterns as automation or augmentation\n",
1462
- " 2. Calculates percentages excluding 'none' and 'not_classified'\n",
1463
- " 3. Only calculates for filtered geographies at country/state level\n",
1464
- "\n",
1465
- " Categorization:\n",
1466
- " - Automation: directive, feedback loop (AI-centric patterns)\n",
1467
- " - Augmentation: validation, task iteration, learning (human-centric patterns)\n",
1468
- " - Excluded: none (no collaboration), not_classified (unknown)\n",
1469
- "\n",
1470
- " Args:\n",
1471
- " df: Dataframe with collaboration data\n",
1472
- " filtered_countries: List of countries that meet MIN_OBSERVATIONS\n",
1473
- " filtered_states: List of states that meet MIN_OBSERVATIONS\n",
1474
- "\n",
1475
- " Returns:\n",
1476
- " Dataframe with automation/augmentation percentage rows added\n",
1477
- " \"\"\"\n",
1478
- " if \"facet\" not in df.columns or \"cluster_name\" not in df.columns:\n",
1479
- " return df\n",
1480
- "\n",
1481
- " df_result = df.copy()\n",
1482
- "\n",
1483
- " # Get collaboration data\n",
1484
- " collab_data = df_result[\n",
1485
- " (df_result[\"facet\"] == \"collaboration\")\n",
1486
- " & (df_result[\"variable\"] == \"collaboration_count\")\n",
1487
- " ].copy()\n",
1488
- "\n",
1489
- " if collab_data.empty:\n",
1490
- " return df_result\n",
1491
- "\n",
1492
- " # Define pattern categorization\n",
1493
- " def categorize_pattern(pattern_name):\n",
1494
- " if pd.isna(pattern_name):\n",
1495
- " return None\n",
1496
- "\n",
1497
- " pattern_clean = pattern_name.lower().replace(\"_\", \" \").replace(\"-\", \" \")\n",
1498
- "\n",
1499
- " # Augmentation patterns (human-centric)\n",
1500
- " if \"validation\" in pattern_clean:\n",
1501
- " return \"augmentation\"\n",
1502
- " elif \"task iteration\" in pattern_clean or \"task_iteration\" in pattern_clean:\n",
1503
- " return \"augmentation\"\n",
1504
- " elif \"learning\" in pattern_clean:\n",
1505
- " return \"augmentation\"\n",
1506
- " # Automation patterns (AI-centric)\n",
1507
- " elif \"directive\" in pattern_clean:\n",
1508
- " return \"automation\"\n",
1509
- " elif \"feedback loop\" in pattern_clean or \"feedback_loop\" in pattern_clean:\n",
1510
- " return \"automation\"\n",
1511
- " # Excluded patterns - return None to exclude from calculations\n",
1512
- " elif \"none\" in pattern_clean or \"not_classified\" in pattern_clean:\n",
1513
- " return None\n",
1514
- " else:\n",
1515
- " return None # Unknown patterns also excluded\n",
1516
- "\n",
1517
- " # Add category column\n",
1518
- " collab_data[\"category\"] = collab_data[\"cluster_name\"].apply(categorize_pattern)\n",
1519
- "\n",
1520
- " # Filter to only patterns that have a category (excludes none, not_classified, etc.)\n",
1521
- " collab_categorized = collab_data[collab_data[\"category\"].notna()].copy()\n",
1522
- "\n",
1523
- " if collab_categorized.empty:\n",
1524
- " return df_result\n",
1525
- "\n",
1526
- " # Process by geography\n",
1527
- " new_rows = []\n",
1528
- "\n",
1529
- " # Group by geography and geo_id\n",
1530
- " for (geography, geo_id), geo_data in collab_categorized.groupby(\n",
1531
- " [\"geography\", \"geo_id\"]\n",
1532
- " ):\n",
1533
- " # Apply filtering based on geography level\n",
1534
- " if geography == \"country\" and filtered_countries is not None:\n",
1535
- " if geo_id not in filtered_countries:\n",
1536
- " continue # Skip countries that don't meet threshold\n",
1537
- " elif geography == \"state_us\" and filtered_states is not None:\n",
1538
- " if geo_id not in filtered_states:\n",
1539
- " continue # Skip states that don't meet threshold\n",
1540
- " # global is always included (no filtering)\n",
1541
- "\n",
1542
- " # Calculate totals by category\n",
1543
- " automation_total = geo_data[geo_data[\"category\"] == \"automation\"][\"value\"].sum()\n",
1544
- " augmentation_total = geo_data[geo_data[\"category\"] == \"augmentation\"][\n",
1545
- " \"value\"\n",
1546
- " ].sum()\n",
1547
- "\n",
1548
- " # Total of categorized patterns (excluding none and not_classified)\n",
1549
- " total_categorized = automation_total + augmentation_total\n",
1550
- "\n",
1551
- " if total_categorized > 0:\n",
1552
- " # Get a sample row for metadata\n",
1553
- " sample_row = geo_data.iloc[0]\n",
1554
- "\n",
1555
- " # Create automation percentage row\n",
1556
- " automation_row = {\n",
1557
- " \"geo_id\": geo_id,\n",
1558
- " \"geography\": geography,\n",
1559
- " \"date_start\": sample_row[\"date_start\"],\n",
1560
- " \"date_end\": sample_row[\"date_end\"],\n",
1561
- " \"platform_and_product\": sample_row[\"platform_and_product\"],\n",
1562
- " \"facet\": \"collaboration_automation_augmentation\",\n",
1563
- " \"level\": 0,\n",
1564
- " \"variable\": \"automation_pct\",\n",
1565
- " \"cluster_name\": \"automation\",\n",
1566
- " \"value\": (automation_total / total_categorized) * 100,\n",
1567
- " }\n",
1568
- " new_rows.append(automation_row)\n",
1569
- "\n",
1570
- " # Create augmentation percentage row\n",
1571
- " augmentation_row = {\n",
1572
- " \"geo_id\": geo_id,\n",
1573
- " \"geography\": geography,\n",
1574
- " \"date_start\": sample_row[\"date_start\"],\n",
1575
- " \"date_end\": sample_row[\"date_end\"],\n",
1576
- " \"platform_and_product\": sample_row[\"platform_and_product\"],\n",
1577
- " \"facet\": \"collaboration_automation_augmentation\",\n",
1578
- " \"level\": 0,\n",
1579
- " \"variable\": \"augmentation_pct\",\n",
1580
- " \"cluster_name\": \"augmentation\",\n",
1581
- " \"value\": (augmentation_total / total_categorized) * 100,\n",
1582
- " }\n",
1583
- " new_rows.append(augmentation_row)\n",
1584
- "\n",
1585
- " # Add all new rows to result\n",
1586
- " if new_rows:\n",
1587
- " df_new = pd.DataFrame(new_rows)\n",
1588
- " df_result = pd.concat([df_result, df_new], ignore_index=True)\n",
1589
- "\n",
1590
- " return df_result"
1591
- ]
1592
- },
1593
- {
1594
- "cell_type": "code",
1595
- "execution_count": null,
1596
- "metadata": {},
1597
- "outputs": [],
1598
- "source": [
1599
- "def add_iso3_and_names(df):\n",
1600
- " \"\"\"\n",
1601
- " Replace ISO-2 codes with ISO-3 codes and add geographic names.\n",
1602
- "\n",
1603
- " This function:\n",
1604
- " 1. Replaces geo_id from ISO-2 to ISO-3 for countries\n",
1605
- " 2. Adds geo_name column with human-readable names for all geographies\n",
1606
- " 3. Preserves special geo_ids (like 'not_classified') that aren't in ISO mapping\n",
1607
- "\n",
1608
- " Args:\n",
1609
- " df: Enriched dataframe with geo_id (ISO-2 for countries, state codes for US states)\n",
1610
- "\n",
1611
- " Returns:\n",
1612
- " Dataframe with ISO-3 codes in geo_id and geo_name column added\n",
1613
- " \"\"\"\n",
1614
- " df_result = df.copy()\n",
1615
- "\n",
1616
- " # Initialize geo_name column\n",
1617
- " df_result[\"geo_name\"] = \"\"\n",
1618
- "\n",
1619
- " # Load ISO mapping data for countries\n",
1620
- " iso_path = Path(DATA_INTERMEDIATE_DIR) / \"iso_country_codes.csv\"\n",
1621
- " if iso_path.exists():\n",
1622
- " df_iso = pd.read_csv(iso_path, keep_default_na=False, na_values=[\"\"])\n",
1623
- "\n",
1624
- " # Create ISO-2 to ISO-3 mapping\n",
1625
- " iso2_to_iso3 = dict(zip(df_iso[\"iso_alpha_2\"], df_iso[\"iso_alpha_3\"]))\n",
1626
- "\n",
1627
- " # Create ISO-2 to country name mapping\n",
1628
- " iso2_to_name = dict(zip(df_iso[\"iso_alpha_2\"], df_iso[\"country_name\"]))\n",
1629
- "\n",
1630
- " # For all rows where geography is 'country', add country names and convert codes\n",
1631
- " # This includes content facets that are broken down by country\n",
1632
- " country_mask = df_result[\"geography\"] == \"country\"\n",
1633
- "\n",
1634
- " # First, identify which geo_ids don't have ISO mappings\n",
1635
- " country_geo_ids = df_result.loc[country_mask, \"geo_id\"].unique()\n",
1636
- " unmapped_geo_ids = [\n",
1637
- " g for g in country_geo_ids if g not in iso2_to_iso3 and pd.notna(g)\n",
1638
- " ]\n",
1639
- "\n",
1640
- " if unmapped_geo_ids:\n",
1641
- " print(\n",
1642
- " f\"\\nWarning: The following geo_ids are not in ISO-2 mapping and will be kept as-is:\"\n",
1643
- " )\n",
1644
- " for geo_id in unmapped_geo_ids:\n",
1645
- " # Count rows and usage for this geo_id\n",
1646
- " geo_mask = (df_result[\"geography\"] == \"country\") & (\n",
1647
- " df_result[\"geo_id\"] == geo_id\n",
1648
- " )\n",
1649
- " row_count = geo_mask.sum()\n",
1650
- " usage_mask = geo_mask & (df_result[\"variable\"] == \"usage_count\")\n",
1651
- " usage_sum = (\n",
1652
- " df_result.loc[usage_mask, \"value\"].sum() if usage_mask.any() else 0\n",
1653
- " )\n",
1654
- " print(f\" - '{geo_id}': {row_count} rows, {usage_sum:,.0f} usage count\")\n",
1655
- "\n",
1656
- " # Check for geo_ids without country names\n",
1657
- " unmapped_names = [g for g in unmapped_geo_ids if g not in iso2_to_name]\n",
1658
- " if unmapped_names:\n",
1659
- " print(\n",
1660
- " f\"\\nWarning: The following geo_ids don't have country names and will use geo_id as name:\"\n",
1661
- " )\n",
1662
- " for geo_id in unmapped_names:\n",
1663
- " print(f\" - '{geo_id}'\")\n",
1664
- "\n",
1665
- " # Apply country names BEFORE converting ISO-2 to ISO-3\n",
1666
- " # The iso2_to_name dictionary uses ISO-2 codes as keys\n",
1667
- " df_result.loc[country_mask, \"geo_name\"] = (\n",
1668
- " df_result.loc[country_mask, \"geo_id\"]\n",
1669
- " .map(iso2_to_name)\n",
1670
- " .fillna(df_result.loc[country_mask, \"geo_id\"])\n",
1671
- " )\n",
1672
- "\n",
1673
- " # Convert ISO-2 to ISO-3 codes\n",
1674
- " df_result.loc[country_mask, \"geo_id\"] = (\n",
1675
- " df_result.loc[country_mask, \"geo_id\"]\n",
1676
- " .map(iso2_to_iso3)\n",
1677
- " .fillna(df_result.loc[country_mask, \"geo_id\"])\n",
1678
- " )\n",
1679
- " else:\n",
1680
- " print(f\"Warning: ISO mapping file not found at {iso_path}\")\n",
1681
- "\n",
1682
- " # Load state names from census data\n",
1683
- " state_codes_path = Path(DATA_INPUT_DIR) / \"census_state_codes.txt\"\n",
1684
- " if state_codes_path.exists():\n",
1685
- " df_state_codes = pd.read_csv(state_codes_path, sep=\"|\")\n",
1686
- " # Create state code to name mapping (STUSAB is the 2-letter code, STATE_NAME is the full name)\n",
1687
- " state_code_to_name = dict(\n",
1688
- " zip(df_state_codes[\"STUSAB\"], df_state_codes[\"STATE_NAME\"])\n",
1689
- " )\n",
1690
- "\n",
1691
- " # For all rows where geography is 'state_us', add state names\n",
1692
- " state_mask = df_result[\"geography\"] == \"state_us\"\n",
1693
- " df_result.loc[state_mask, \"geo_name\"] = df_result.loc[state_mask, \"geo_id\"].map(\n",
1694
- " state_code_to_name\n",
1695
- " )\n",
1696
- " else:\n",
1697
- " print(f\"Warning: State census file not found at {state_codes_path}\")\n",
1698
- "\n",
1699
- " # For global entries\n",
1700
- " global_mask = df_result[\"geography\"] == \"global\"\n",
1701
- " df_result.loc[global_mask, \"geo_name\"] = \"global\"\n",
1702
- "\n",
1703
- " # Fill any missing geo_names with geo_id as fallback\n",
1704
- " df_result.loc[df_result[\"geo_name\"] == \"\", \"geo_name\"] = df_result.loc[\n",
1705
- " df_result[\"geo_name\"] == \"\", \"geo_id\"\n",
1706
- " ]\n",
1707
- " df_result[\"geo_name\"] = df_result[\"geo_name\"].fillna(df_result[\"geo_id\"])\n",
1708
- "\n",
1709
- " return df_result"
1710
- ]
1711
- },
1712
- {
1713
- "cell_type": "markdown",
1714
- "metadata": {},
1715
- "source": [
1716
- "## Main Processing Function"
1717
- ]
1718
- },
1719
- {
1720
- "cell_type": "code",
1721
- "execution_count": null,
1722
- "metadata": {},
1723
- "outputs": [],
1724
- "source": [
1725
- "def enrich_clio_data(input_path, output_path, external_data=None):\n",
1726
- " \"\"\"\n",
1727
- " Enrich processed Clio data with external sources.\n",
1728
- "\n",
1729
- " Args:\n",
1730
- " input_path: Path to processed Clio data\n",
1731
- " output_path: Path for enriched CSV output\n",
1732
- " external_data: Pre-loaded external data (optional)\n",
1733
- "\n",
1734
- " Returns:\n",
1735
- " Path to enriched data file\n",
1736
- " \"\"\"\n",
1737
- " # Load processed Clio data - use keep_default_na=False to preserve \"NA\" (Namibia)\n",
1738
- " df = pd.read_csv(input_path, keep_default_na=False, na_values=[\"\"])\n",
1739
- "\n",
1740
- " # Load external data if not provided\n",
1741
- " if external_data is None:\n",
1742
- " external_data = load_external_data()\n",
1743
- "\n",
1744
- " # Get filtered geographies (but keep all data in the dataframe)\n",
1745
- " filtered_countries, filtered_states = get_filtered_geographies(df)\n",
1746
- "\n",
1747
- " # Merge with population data\n",
1748
- " df = merge_population_data(df, external_data[\"population\"])\n",
1749
- "\n",
1750
- " # Merge with GDP data (pass population data for per capita calculation)\n",
1751
- " df = merge_gdp_data(df, external_data[\"gdp\"], external_data[\"population\"])\n",
1752
- "\n",
1753
- " # Calculate SOC occupation distribution from O*NET tasks\n",
1754
- " # Only for geographies that meet MIN_OBSERVATIONS threshold\n",
1755
- " df = calculate_soc_distribution(\n",
1756
- " df,\n",
1757
- " external_data[\"task_statements\"],\n",
1758
- " external_data[\"soc_structure\"],\n",
1759
- " filtered_countries=filtered_countries,\n",
1760
- " filtered_states=filtered_states,\n",
1761
- " )\n",
1762
- "\n",
1763
- " # Calculate per capita metrics\n",
1764
- " df = calculate_per_capita_metrics(df)\n",
1765
- "\n",
1766
- " # Calculate usage index - pass filtered countries/states to only use them for baseline\n",
1767
- " df = calculate_usage_per_capita_index(\n",
1768
- " df, filtered_countries=filtered_countries, filtered_states=filtered_states\n",
1769
- " )\n",
1770
- "\n",
1771
- " # Calculate category percentage index - pass filtered countries/states\n",
1772
- " df = calculate_category_percentage_index(\n",
1773
- " df, filtered_countries=filtered_countries, filtered_states=filtered_states\n",
1774
- " )\n",
1775
- "\n",
1776
- " # Calculate usage tiers - pass filtered countries/states to only use them\n",
1777
- " df = calculate_usage_tiers(\n",
1778
- " df, filtered_countries=filtered_countries, filtered_states=filtered_states\n",
1779
- " )\n",
1780
- "\n",
1781
- " # Add collaboration categorization\n",
1782
- " df = calculate_automation_augmentation_metrics(df)\n",
1783
- "\n",
1784
- " # Add ISO-3 codes and geographic names\n",
1785
- " df = add_iso3_and_names(df)\n",
1786
- "\n",
1787
- " # Sort for consistent output ordering\n",
1788
- " df = df.sort_values(\n",
1789
- " [\"geography\", \"geo_id\", \"facet\", \"level\", \"cluster_name\", \"variable\"]\n",
1790
- " )\n",
1791
- "\n",
1792
- " # Save enriched data as CSV\n",
1793
- " df.to_csv(output_path, index=False)\n",
1794
- "\n",
1795
- " return str(output_path)"
1796
- ]
1797
- },
1798
- {
1799
- "cell_type": "markdown",
1800
- "metadata": {},
1801
- "source": [
1802
- "## Merge External Data"
1803
- ]
1804
- },
1805
- {
1806
- "cell_type": "code",
1807
- "execution_count": null,
1808
- "metadata": {},
1809
- "outputs": [],
1810
- "source": [
1811
- "input_path = \"../data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv\"\n",
1812
- "output_path = \"../data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv\"\n",
1813
- "\n",
1814
- "enrich_clio_data(input_path, output_path)\n",
1815
- "print(f\"\\n✅ Enrichment complete! Output: {output_path}\")"
1816
- ]
1817
- }
1818
- ],
1819
- "metadata": {
1820
- "kernelspec": {
1821
- "display_name": "py311",
1822
- "language": "python",
1823
- "name": "python3"
1824
- },
1825
- "language_info": {
1826
- "codemirror_mode": {
1827
- "name": "ipython",
1828
- "version": 3
1829
- },
1830
- "file_extension": ".py",
1831
- "mimetype": "text/x-python",
1832
- "name": "python",
1833
- "nbconvert_exporter": "python",
1834
- "pygments_lexer": "ipython3",
1835
- "version": "3.11.13"
1836
- }
1837
- },
1838
- "nbformat": 4,
1839
- "nbformat_minor": 4
1840
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/code/preprocess_gdp.py DELETED
@@ -1,364 +0,0 @@
1
- """
2
- Preprocess GDP data for economic analysis.
3
-
4
- This script downloads and processes GDP data from:
5
- 1. IMF API for country-level GDP data
6
- 2. BEA (Bureau of Economic Analysis) for US state-level GDP data
7
-
8
- Output files:
9
- - gdp_YYYY_country.csv (e.g., gdp_2024_country.csv): Country-level total GDP
10
- - gdp_YYYY_us_state.csv (e.g., gdp_2024_us_state.csv): US state-level total GDP
11
- """
12
-
13
- import io
14
- import json
15
- import warnings
16
- from pathlib import Path
17
-
18
- import httpx
19
- import pandas as pd
20
-
21
- # Global configuration
22
- YEAR = 2024
23
- DATA_INPUT_DIR = Path("../data/input")
24
- DATA_INTERMEDIATE_DIR = Path("../data/intermediate")
25
-
26
-
27
- # Countries where Claude AI service is not available
28
- # These will be excluded from all GDP data
29
- EXCLUDED_COUNTRIES = [
30
- "AFG",
31
- "BLR",
32
- "COD",
33
- "CAF",
34
- "CHN",
35
- "CUB",
36
- "ERI",
37
- "ETH",
38
- "HKG",
39
- "IRN",
40
- "PRK",
41
- "LBY",
42
- "MLI",
43
- "MMR",
44
- "MAC",
45
- "NIC",
46
- "RUS",
47
- "SDN",
48
- "SOM",
49
- "SSD",
50
- "SYR",
51
- "VEN",
52
- "YEM",
53
- ]
54
-
55
-
56
- def check_existing_files():
57
- """Check if processed GDP files already exist."""
58
- gdp_country_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_country.csv"
59
- gdp_state_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_us_state.csv"
60
-
61
- if gdp_country_path.exists() and gdp_state_path.exists():
62
- print("✅ GDP files already exist:")
63
- print(f" - {gdp_country_path}")
64
- print(f" - {gdp_state_path}")
65
- print("Skipping GDP preprocessing. Delete these files if you want to re-run.")
66
- return True
67
- return False
68
-
69
-
70
- def load_country_gdp_data():
71
- """
72
- Load country-level GDP data from cache or IMF API.
73
-
74
- Returns:
75
- dict: Raw GDP data from IMF API, or None if fetch fails
76
- """
77
- # Check if raw data already exists
78
- raw_gdp_path = DATA_INPUT_DIR / f"imf_gdp_raw_{YEAR}.json"
79
- if raw_gdp_path.exists():
80
- print("Loading cached IMF GDP data...")
81
- with open(raw_gdp_path) as f:
82
- return json.load(f)
83
-
84
- # Download if not cached
85
- imf_total_gdp_url = "https://www.imf.org/external/datamapper/api/v1/NGDPD" # IMF returns GDP in billions USD
86
-
87
- print("Fetching GDP data from IMF API...")
88
- try:
89
- with httpx.Client() as client:
90
- response = client.get(imf_total_gdp_url, timeout=30)
91
- response.raise_for_status()
92
- gdp_data = response.json()
93
- print("✓ Successfully fetched total GDP data from IMF API")
94
-
95
- # Save raw data for future use
96
- with open(raw_gdp_path, "w") as f:
97
- json.dump(gdp_data, f, indent=2)
98
- print(f"✓ Saved raw GDP data to {raw_gdp_path}")
99
-
100
- return gdp_data
101
- except Exception as e:
102
- raise ConnectionError(f"Failed to fetch data from IMF API: {e}") from e
103
-
104
-
105
- def process_country_gdp_data(gdp_data):
106
- """
107
- Process IMF GDP data into standardized format.
108
-
109
- Args:
110
- gdp_data: Raw IMF API response
111
-
112
- Returns:
113
- pd.DataFrame: Processed country GDP data (excluding countries where service is not available)
114
- """
115
- # Extract GDP data for target year
116
- # Structure: {"values": {"NGDPD": {"countryiso3code": {"year": value}}}}
117
- gdp_values = gdp_data.get("values", {}).get("NGDPD", {})
118
-
119
- # Build records for target year data only
120
- gdp_records = []
121
- target_year = str(YEAR)
122
- missing_countries = []
123
-
124
- for countryiso3code, years_data in gdp_values.items():
125
- if isinstance(years_data, dict):
126
- if target_year in years_data and years_data[target_year]:
127
- gdp_value = years_data[target_year]
128
- # Convert from billions to actual dollars
129
- gdp_records.append(
130
- {
131
- "iso_alpha_3": countryiso3code,
132
- "gdp_total": float(gdp_value)
133
- * 1e9, # Convert billions to dollars
134
- "year": YEAR,
135
- }
136
- )
137
- else:
138
- missing_countries.append(countryiso3code)
139
-
140
- if missing_countries:
141
- warnings.warn(
142
- f"{len(missing_countries)} countries missing {YEAR} GDP data. "
143
- f"Examples: {missing_countries[:5]}",
144
- UserWarning,
145
- stacklevel=2,
146
- )
147
-
148
- df_gdp = pd.DataFrame(gdp_records)
149
-
150
- if df_gdp.empty:
151
- raise ValueError(f"No GDP data available for year {YEAR}")
152
-
153
- # Apply country code mappings for mismatches between IMF and ISO3
154
- country_code_mappings = {
155
- "UVK": "XKX", # Kosovo
156
- # Add more mappings as needed
157
- }
158
-
159
- for imf_code, iso3_code in country_code_mappings.items():
160
- df_gdp.loc[df_gdp["iso_alpha_3"] == imf_code, "iso_alpha_3"] = iso3_code
161
-
162
- # Filter to only keep countries with valid ISO-3 codes
163
- # This removes regional aggregates like ADVEC, AFQ, etc.
164
- iso_codes_path = DATA_INTERMEDIATE_DIR / "iso_country_codes.csv"
165
- df_iso = pd.read_csv(iso_codes_path, keep_default_na=False, na_values=[""])
166
- valid_iso3_codes = set(df_iso["iso_alpha_3"].unique())
167
-
168
- initial_aggregate_count = len(df_gdp)
169
- df_gdp = df_gdp[df_gdp["iso_alpha_3"].isin(valid_iso3_codes)]
170
- filtered_aggregates = initial_aggregate_count - len(df_gdp)
171
-
172
- if filtered_aggregates > 0:
173
- print(
174
- f" Filtered out {filtered_aggregates} non-country codes (regional aggregates)"
175
- )
176
-
177
- # Filter out excluded countries (now using 3-letter codes directly)
178
- initial_count = len(df_gdp)
179
- df_gdp = df_gdp[~df_gdp["iso_alpha_3"].isin(EXCLUDED_COUNTRIES)]
180
- excluded_count = initial_count - len(df_gdp)
181
-
182
- if excluded_count > 0:
183
- print(f" Excluded {excluded_count} countries where service is not available")
184
-
185
- # Save processed GDP data
186
- processed_gdp_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_country.csv"
187
- df_gdp.to_csv(processed_gdp_path, index=False)
188
-
189
- print(f"✓ Saved processed GDP data to {processed_gdp_path}")
190
- print(f" Countries with {YEAR} GDP data: {len(df_gdp)}")
191
- print(f" Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}")
192
- print(f" Total global GDP: ${df_gdp['gdp_total'].sum() / 1e12:.2f} trillion")
193
-
194
- return df_gdp
195
-
196
-
197
- def load_state_gdp_data():
198
- """
199
- Load US state GDP data from BEA file.
200
-
201
- Returns:
202
- pd.DataFrame: Raw state GDP data, or None if file not found
203
- """
204
- state_gdp_raw_path = DATA_INPUT_DIR / f"bea_us_state_gdp_{YEAR}.csv"
205
-
206
- if not state_gdp_raw_path.exists():
207
- error_msg = f"""
208
- State GDP data not found at: {state_gdp_raw_path}
209
-
210
- To obtain this data:
211
- 1. Go to: https://apps.bea.gov/itable/?ReqID=70&step=1
212
- 2. Select: SASUMMARY State annual summary statistics (area = "United States", statistic = Gross domestic product (GDP), unit of measure = "Levels")
213
- 3. Download the CSV file for year {YEAR}
214
- 4. Save it as: bea_us_state_gdp_{YEAR}.csv
215
- 5. Place it in your data input directory
216
- """
217
- raise FileNotFoundError(error_msg)
218
-
219
- print("Loading US state GDP data...")
220
- # Parse CSV skipping the first 3 rows (BEA metadata)
221
- df_state_gdp_raw = pd.read_csv(state_gdp_raw_path, skiprows=3)
222
- df_state_gdp_raw.columns = ["GeoFips", "State", f"gdp_{YEAR}_millions"]
223
-
224
- return df_state_gdp_raw
225
-
226
-
227
- def process_state_gdp_data(df_state_gdp_raw):
228
- """
229
- Process BEA state GDP data into standardized format.
230
-
231
- Args:
232
- df_state_gdp_raw: Raw BEA data
233
-
234
- Returns:
235
- pd.DataFrame: Processed state GDP data
236
- """
237
-
238
- # Remove the US total row (GeoFips = "00000")
239
- df_state_gdp = df_state_gdp_raw[df_state_gdp_raw["GeoFips"] != "00000"].copy()
240
-
241
- # Remove all rows starting from empty line before "Legend/Footnotes" marker
242
- # BEA files have footer information after the data, with an empty line before
243
- legend_index = (
244
- df_state_gdp[
245
- df_state_gdp["GeoFips"].str.contains("Legend", case=False, na=False)
246
- ].index[0]
247
- - 1
248
- )
249
- df_state_gdp = df_state_gdp.iloc[:legend_index].copy()
250
- print(f" Removed footer rows starting from 'Legend/Footnotes'")
251
-
252
- # Convert GDP from millions to actual dollars
253
- df_state_gdp["gdp_total"] = df_state_gdp[f"gdp_{YEAR}_millions"] * 1e6
254
-
255
- # Clean state names
256
- df_state_gdp["State"] = df_state_gdp["State"].str.strip()
257
-
258
- # Get state codes
259
- state_code_dict = get_state_codes()
260
- df_state_gdp["state_code"] = df_state_gdp["State"].map(state_code_dict)
261
-
262
- # Check for missing state codes
263
- missing_codes = df_state_gdp[df_state_gdp["state_code"].isna()]
264
- if not missing_codes.empty:
265
- raise ValueError(
266
- f"Could not find state codes for: {missing_codes['State'].tolist()}\n"
267
- f"All BEA state names should match Census state codes after filtering."
268
- )
269
-
270
- # Select and rename columns
271
- df_state_gdp_final = df_state_gdp[
272
- ["state_code", "State", "gdp_total", f"gdp_{YEAR}_millions"]
273
- ].copy()
274
- df_state_gdp_final.columns = [
275
- "state_code",
276
- "state_name",
277
- "gdp_total",
278
- "gdp_millions",
279
- ]
280
- df_state_gdp_final["year"] = YEAR
281
-
282
- # Save processed state GDP data
283
- processed_state_gdp_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_us_state.csv"
284
- df_state_gdp_final.to_csv(processed_state_gdp_path, index=False)
285
-
286
- print(
287
- f"✓ Processed state GDP data for {len(df_state_gdp_final)} states/territories"
288
- )
289
- print(
290
- f" Total US GDP: ${df_state_gdp_final['gdp_total'].sum() / 1e12:.2f} trillion"
291
- )
292
- print(f"✓ Saved to {processed_state_gdp_path}")
293
-
294
- return df_state_gdp_final
295
-
296
-
297
- def get_state_codes():
298
- """
299
- Get US state codes from Census Bureau.
300
-
301
- Returns:
302
- dict: Mapping of state names to abbreviations
303
- """
304
- state_codes_path = DATA_INPUT_DIR / "census_state_codes.txt"
305
-
306
- if state_codes_path.exists():
307
- print(" Loading cached state codes...")
308
- df_state_codes = pd.read_csv(state_codes_path, sep="|")
309
- else:
310
- print(" Downloading state codes from Census Bureau...")
311
- response = httpx.get("https://www2.census.gov/geo/docs/reference/state.txt")
312
- response.raise_for_status()
313
-
314
- # Save for future use
315
- with open(state_codes_path, "w") as f:
316
- f.write(response.text)
317
- print(f" Cached state codes to {state_codes_path}")
318
-
319
- df_state_codes = pd.read_csv(io.StringIO(response.text), sep="|")
320
-
321
- # Create mapping dictionary
322
- state_code_dict = dict(
323
- zip(df_state_codes["STATE_NAME"], df_state_codes["STUSAB"], strict=True)
324
- )
325
-
326
- return state_code_dict
327
-
328
-
329
- def main():
330
- """Main function to run GDP preprocessing."""
331
- # Check if files already exist
332
- if check_existing_files():
333
- return
334
-
335
- print("=" * 60)
336
- print(f"PROCESSING {YEAR} GDP DATA")
337
- print("=" * 60)
338
-
339
- # Process country-level GDP from IMF
340
- print(f"\n=== Country-Level GDP (IMF) - Year {YEAR} ===")
341
- gdp_data = load_country_gdp_data()
342
- df_gdp_country = process_country_gdp_data(gdp_data)
343
-
344
- # Process US state-level GDP from BEA
345
- print(f"\n=== US State-Level GDP (BEA) - Year {YEAR} ===")
346
- df_state_gdp_raw = load_state_gdp_data()
347
- df_gdp_state = process_state_gdp_data(df_state_gdp_raw)
348
-
349
- # Final status
350
- print(f"\n✅ {YEAR} GDP data preprocessing complete!")
351
- print("\n=== Summary Statistics ===")
352
- if df_gdp_country is not None:
353
- print(f"Countries processed: {len(df_gdp_country)}")
354
- print(f"Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}")
355
- print(
356
- f"Total global GDP: ${df_gdp_country['gdp_total'].sum() / 1e12:.2f} trillion"
357
- )
358
- if df_gdp_state is not None:
359
- print(f"US states processed: {len(df_gdp_state)}")
360
- print(f"Total US GDP: ${df_gdp_state['gdp_total'].sum() / 1e12:.2f} trillion")
361
-
362
-
363
- if __name__ == "__main__":
364
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/code/preprocess_iso_codes.py DELETED
@@ -1,111 +0,0 @@
1
- """
2
- Fetch ISO country code mappings from GeoNames.
3
-
4
- This script fetches comprehensive country data from GeoNames countryInfo.txt
5
- and saves it as a CSV file for use in data preprocessing pipelines.
6
- """
7
-
8
- import io
9
- from pathlib import Path
10
-
11
- import httpx
12
- import pandas as pd
13
-
14
-
15
- def fetch_country_mappings(save_raw=True):
16
- """
17
- Fetch country code mappings from GeoNames.
18
-
19
- Args:
20
- save_raw: Whether to save raw data file to data/input
21
-
22
- Returns:
23
- pd.DataFrame: DataFrame with country information from GeoNames
24
- """
25
- # Fetch countryInfo.txt from GeoNames
26
- geonames_url = "https://download.geonames.org/export/dump/countryInfo.txt"
27
-
28
- with httpx.Client() as client:
29
- response = client.get(geonames_url)
30
- response.raise_for_status()
31
- content = response.text
32
-
33
- # Save raw file to data/input for reference
34
- if save_raw:
35
- input_dir = Path("../data/input")
36
- input_dir.mkdir(parents=True, exist_ok=True)
37
-
38
- raw_path = input_dir / "geonames_countryInfo.txt"
39
- with open(raw_path, "w", encoding="utf-8") as f:
40
- f.write(content)
41
-
42
- # Extract column names from the last comment line
43
- lines = content.split("\n")
44
- header_line = [line for line in lines if line.startswith("#")][-1]
45
- column_names = header_line[1:].split("\t") # Remove # and split by tab
46
-
47
- # Parse the tab-separated file
48
- # keep_default_na=False to prevent "NA" (Namibia) from becoming NaN
49
- df = pd.read_csv(
50
- io.StringIO(content),
51
- sep="\t",
52
- comment="#",
53
- header=None, # No header row in the data
54
- keep_default_na=False, # Don't interpret "NA" as NaN (needed for Namibia)
55
- na_values=[""], # Only treat empty strings as NaN
56
- names=column_names, # Use the column names from the comment
57
- )
58
-
59
- # Rename columns to our standard format
60
- df = df.rename(
61
- columns={"ISO": "iso_alpha_2", "ISO3": "iso_alpha_3", "Country": "country_name"}
62
- )
63
-
64
- return df
65
-
66
-
67
- def create_country_dataframe(geonames_df):
68
- """
69
- Create a cleaned DataFrame with country codes and names.
70
-
71
- Args:
72
- geonames_df: DataFrame from GeoNames with all country information
73
-
74
- Returns:
75
- pd.DataFrame: DataFrame with columns [iso_alpha_2, iso_alpha_3, country_name]
76
- """
77
- # Select only the columns we need
78
- df = geonames_df[["iso_alpha_2", "iso_alpha_3", "country_name"]].copy()
79
-
80
- # Sort by country name for consistency
81
- df = df.sort_values("country_name").reset_index(drop=True)
82
-
83
- return df
84
-
85
-
86
- def save_country_codes(output_path="../data/intermediate/iso_country_codes.csv"):
87
- """
88
- Fetch country codes from GeoNames and save to CSV.
89
-
90
- Args:
91
- output_path: Path to save the CSV file
92
- """
93
- # Fetch full GeoNames data
94
- geonames_df = fetch_country_mappings()
95
-
96
- # Create cleaned DataFrame with just the columns we need
97
- df = create_country_dataframe(geonames_df)
98
-
99
- # Ensure output directory exists
100
- output_file = Path(output_path)
101
- output_file.parent.mkdir(parents=True, exist_ok=True)
102
-
103
- # Save to CSV
104
- df.to_csv(output_file, index=False)
105
-
106
- return df
107
-
108
-
109
- if __name__ == "__main__":
110
- # Fetch and save country codes
111
- df = save_country_codes()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/code/preprocess_onet.py DELETED
@@ -1,179 +0,0 @@
1
- """
2
- Preprocess O*NET and SOC data for economic analysis.
3
-
4
- This script downloads and processes occupational data from:
5
- 1. O*NET Resource Center for task statements
6
- 2. O*NET Resource Center for SOC structure
7
-
8
- Output files:
9
- - onet_task_statements.csv: O*NET task statements with SOC major groups
10
- - soc_structure.csv: SOC occupational classification structure
11
- """
12
-
13
- import io
14
- import os
15
- import tempfile
16
- from pathlib import Path
17
-
18
- import httpx
19
- import pandas as pd
20
-
21
- # Global configuration
22
- DATA_INPUT_DIR = Path("../data/input")
23
- DATA_INTERMEDIATE_DIR = Path("../data/intermediate")
24
-
25
-
26
- def check_existing_files():
27
- """Check if processed O*NET/SOC files already exist."""
28
- onet_task_statements_path = DATA_INTERMEDIATE_DIR / "onet_task_statements.csv"
29
- soc_structure_path = DATA_INTERMEDIATE_DIR / "soc_structure.csv"
30
-
31
- if onet_task_statements_path.exists() and soc_structure_path.exists():
32
- print("✅ SOC/O*NET files already exist:")
33
- print(f" - {onet_task_statements_path}")
34
- print(f" - {soc_structure_path}")
35
- print("Skipping SOC preprocessing. Delete these files if you want to re-run.")
36
- return True
37
- return False
38
-
39
-
40
- def load_task_data():
41
- """
42
- Load O*NET Task Statements from cache or O*NET Resource Center.
43
-
44
- Returns:
45
- pd.DataFrame: O*NET task statements data
46
- """
47
- # Check if raw data already exists
48
- raw_onet_path = DATA_INPUT_DIR / "onet_task_statements_raw.xlsx"
49
- if raw_onet_path.exists():
50
- df_onet = pd.read_excel(raw_onet_path)
51
- return df_onet
52
-
53
- # Download if not cached
54
- # O*NET Database version 20.1
55
- onet_url = "https://www.onetcenter.org/dl_files/database/db_20_1_excel/Task%20Statements.xlsx"
56
-
57
- print("Downloading O*NET task statements...")
58
- try:
59
- with httpx.Client(follow_redirects=True) as client:
60
- response = client.get(onet_url, timeout=60)
61
- response.raise_for_status()
62
- excel_content = response.content
63
- # Save raw data for future use
64
- with open(raw_onet_path, "wb") as f:
65
- f.write(excel_content)
66
-
67
- # Save to temporary file for pandas to read
68
- with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp_file:
69
- tmp_file.write(excel_content)
70
- tmp_path = tmp_file.name
71
-
72
- try:
73
- df_onet = pd.read_excel(tmp_path)
74
- return df_onet
75
- finally:
76
- os.unlink(tmp_path)
77
-
78
- except Exception as e:
79
- raise ConnectionError(f"Failed to download O*NET data: {e}") from e
80
-
81
-
82
- def process_task_data(df_tasks):
83
- """
84
- Process task statements data.
85
-
86
- Args:
87
- df_tasks: Raw task data
88
-
89
- Returns:
90
- pd.DataFrame: Processed O*NET data with SOC major groups
91
- """
92
- # Extract SOC major group from O*NET-SOC Code (first 2 digits)
93
- df_tasks["soc_major_group"] = df_tasks["O*NET-SOC Code"].str[:2]
94
-
95
- # Save processed task data
96
- processed_tasks_path = DATA_INTERMEDIATE_DIR / "onet_task_statements.csv"
97
- df_tasks.to_csv(processed_tasks_path, index=False)
98
-
99
- print(
100
- f"✓ Processed {len(df_tasks):,} task statements from {df_tasks['O*NET-SOC Code'].nunique()} occupations"
101
- )
102
-
103
- return df_tasks
104
-
105
-
106
- def load_soc_data():
107
- """
108
- Load SOC Structure from cache or O*NET Resource Center.
109
-
110
- Returns:
111
- pd.DataFrame: SOC structure data
112
- """
113
- # Check if raw data already exists
114
- raw_soc_path = DATA_INPUT_DIR / "soc_structure_raw.csv"
115
- if raw_soc_path.exists():
116
- return pd.read_csv(raw_soc_path)
117
-
118
- # Download if not cached
119
- soc_url = "https://www.onetcenter.org/taxonomy/2019/structure/?fmt=csv"
120
-
121
- print("Downloading SOC structure...")
122
- try:
123
- with httpx.Client(follow_redirects=True) as client:
124
- response = client.get(soc_url, timeout=30)
125
- response.raise_for_status()
126
- soc_content = response.text
127
- # Save raw data for future use
128
- with open(raw_soc_path, "w") as f:
129
- f.write(soc_content)
130
-
131
- # Parse the CSV
132
- df_soc = pd.read_csv(io.StringIO(soc_content))
133
- return df_soc
134
-
135
- except Exception as e:
136
- raise ConnectionError(f"Failed to download SOC structure: {e}") from e
137
-
138
-
139
- def process_soc_data(df_soc):
140
- """
141
- Process SOC structure data.
142
-
143
- Args:
144
- df_soc: Raw SOC structure data
145
-
146
- Returns:
147
- pd.DataFrame: Processed SOC structure
148
- """
149
- # Extract the 2-digit code from Major Group (e.g., "11-0000" -> "11")
150
- df_soc["soc_major_group"] = df_soc["Major Group"].str[:2]
151
-
152
- # Save processed SOC structure
153
- processed_soc_path = DATA_INTERMEDIATE_DIR / "soc_structure.csv"
154
- df_soc.to_csv(processed_soc_path, index=False)
155
-
156
- print(f"✓ Processed {len(df_soc):,} SOC entries")
157
-
158
- return df_soc
159
-
160
-
161
- def main():
162
- """Main function to run O*NET/SOC preprocessing."""
163
- # Check if files already exist
164
- if check_existing_files():
165
- return
166
-
167
- # Process Task Statements
168
- df_tasks_raw = load_task_data()
169
- process_task_data(df_tasks_raw)
170
-
171
- # Process SOC Structure
172
- df_soc_raw = load_soc_data()
173
- process_soc_data(df_soc_raw)
174
-
175
- print("\n✅ O*NET/SOC data preprocessing complete!")
176
-
177
-
178
- if __name__ == "__main__":
179
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/code/preprocess_population.py DELETED
@@ -1,407 +0,0 @@
1
- """
2
- Preprocess population data for economic analysis.
3
-
4
- This script downloads and processes working-age population data (ages 15-64) from:
5
- 1. World Bank API for country-level data
6
- 2. Taiwan National Development Council for Taiwan data (not in World Bank)
7
- 3. US Census Bureau for US state-level data
8
-
9
- Output files:
10
- - working_age_pop_YYYY_country.csv (e.g., working_age_pop_2024_country.csv): Country-level working age population
11
- - working_age_pop_YYYY_us_state.csv (e.g., working_age_pop_2024_us_state.csv): US state-level working age population
12
- """
13
-
14
- import io
15
- import warnings
16
- from pathlib import Path
17
-
18
- import httpx
19
- import pandas as pd
20
-
21
- # Global configuration
22
- YEAR = 2024
23
- DATA_INPUT_DIR = Path("../data/input")
24
- DATA_INTERMEDIATE_DIR = Path("../data/intermediate")
25
-
26
- # Countries where Claude AI service is not available
27
- # These will be excluded from all population data
28
- EXCLUDED_COUNTRIES = [
29
- "AF", # Afghanistan
30
- "BY", # Belarus
31
- "CD", # Democratic Republic of the Congo
32
- "CF", # Central African Republic
33
- "CN", # China
34
- "CU", # Cuba
35
- "ER", # Eritrea
36
- "ET", # Ethiopia
37
- "HK", # Hong Kong
38
- "IR", # Iran
39
- "KP", # North Korea
40
- "LY", # Libya
41
- "ML", # Mali
42
- "MM", # Myanmar
43
- "MO", # Macau
44
- "NI", # Nicaragua
45
- "RU", # Russia
46
- "SD", # Sudan
47
- "SO", # Somalia
48
- "SS", # South Sudan
49
- "SY", # Syria
50
- "VE", # Venezuela
51
- "YE", # Yemen
52
- ]
53
-
54
-
55
- def check_existing_files():
56
- """Check if processed population files already exist."""
57
- processed_country_pop_path = (
58
- DATA_INTERMEDIATE_DIR / f"working_age_pop_{YEAR}_country.csv"
59
- )
60
- processed_state_pop_path = (
61
- DATA_INTERMEDIATE_DIR / f"working_age_pop_{YEAR}_us_state.csv"
62
- )
63
-
64
- if processed_country_pop_path.exists() and processed_state_pop_path.exists():
65
- print("✅ Population files already exist:")
66
- print(f" - {processed_country_pop_path}")
67
- print(f" - {processed_state_pop_path}")
68
- print(
69
- "Skipping population preprocessing. Delete these files if you want to re-run."
70
- )
71
- return True
72
- return False
73
-
74
-
75
- def load_world_bank_population_data():
76
- """
77
- Load country-level working age population data from cache or World Bank API.
78
-
79
- Returns:
80
- pd.DataFrame: Raw population data from World Bank
81
- """
82
- # Check if raw data already exists
83
- raw_country_pop_path = DATA_INPUT_DIR / f"working_age_pop_{YEAR}_country_raw.csv"
84
- if raw_country_pop_path.exists():
85
- print("Loading cached country population data...")
86
- return pd.read_csv(raw_country_pop_path, keep_default_na=False, na_values=[""])
87
-
88
- # Download if not cached
89
- url = "https://api.worldbank.org/v2/country/all/indicator/SP.POP.1564.TO"
90
- params = {"format": "json", "date": str(YEAR), "per_page": "1000"}
91
-
92
- print("Downloading country population data from World Bank API...")
93
- response = httpx.get(url, params=params)
94
- response.raise_for_status()
95
-
96
- # World Bank API returns [metadata, data] structure
97
- data = response.json()[1]
98
- df_raw = pd.json_normalize(data)
99
-
100
- return df_raw
101
-
102
-
103
- def filter_to_country_level_data(df_raw):
104
- """
105
- Filter World Bank data to exclude regional aggregates and keep only countries.
106
-
107
- The World Bank data starts with regional aggregates (Arab World, Caribbean small states, etc.)
108
- followed by actual countries starting with Afghanistan (AFG).
109
-
110
- Args:
111
- df_raw: Raw World Bank data
112
-
113
- Returns:
114
- pd.DataFrame: Filtered data with only country-level records
115
- """
116
- # Find Afghanistan (AFG) - the first real country after aggregates
117
- afg_index = df_raw[df_raw["countryiso3code"] == "AFG"].index[0]
118
-
119
- # Keep everything from AFG onwards
120
- df_filtered = df_raw.iloc[afg_index:].copy()
121
- print(f"Filtered to {len(df_filtered)} countries (excluding regional aggregates)")
122
-
123
- return df_filtered
124
-
125
-
126
- def process_country_population_data(df_raw):
127
- """
128
- Process raw World Bank population data.
129
-
130
- Args:
131
- df_raw: Raw data from World Bank API
132
-
133
- Returns:
134
- pd.DataFrame: Processed country population data (excluding countries where service is not available)
135
- """
136
- # Filter to country level only
137
- df_country = filter_to_country_level_data(df_raw)
138
-
139
- # Select and rename columns
140
- df_processed = df_country[
141
- ["countryiso3code", "date", "value", "country.id", "country.value"]
142
- ].copy()
143
-
144
- df_processed.columns = [
145
- "iso_alpha_3",
146
- "year",
147
- "working_age_pop",
148
- "country_code",
149
- "country_name",
150
- ]
151
-
152
- # Convert year to int
153
- df_processed["year"] = pd.to_numeric(df_processed["year"])
154
- df_processed = df_processed.dropna(subset=["working_age_pop"])
155
-
156
- # Remove Channel Islands entry with invalid JG code
157
- channel_islands_mask = df_processed["country_code"] == "JG"
158
- if channel_islands_mask.any():
159
- print(f"Removing Channel Islands entry with invalid code 'JG'")
160
- df_processed = df_processed[~channel_islands_mask].copy()
161
-
162
- # Exclude countries where service is not available
163
- initial_count = len(df_processed)
164
- df_processed = df_processed[~df_processed["country_code"].isin(EXCLUDED_COUNTRIES)]
165
- excluded_count = initial_count - len(df_processed)
166
-
167
- if excluded_count > 0:
168
- print(f"Excluded {excluded_count} countries where service is not available")
169
-
170
- return df_processed
171
-
172
-
173
- def add_taiwan_population(df_country):
174
- """
175
- Add Taiwan population data from National Development Council.
176
-
177
- The World Bank API excludes Taiwan, so we use data directly from Taiwan's NDC.
178
- Source: https://pop-proj.ndc.gov.tw/main_en/Custom_Detail_Statistics_Search.aspx
179
-
180
- Args:
181
- df_country: Country population dataframe
182
-
183
- Returns:
184
- pd.DataFrame: Country data with Taiwan added
185
- """
186
- taiwan_file = DATA_INPUT_DIR / "Population by single age _20250903072924.csv"
187
-
188
- if not taiwan_file.exists():
189
- error_msg = f"""
190
- Taiwan population data not found at: {taiwan_file}
191
-
192
- To obtain this data:
193
- 1. Go to: https://pop-proj.ndc.gov.tw/main_en/Custom_Detail_Statistics_Search.aspx?n=175&_Query=258170a1-1394-49fe-8d21-dc80562b72fb&amp;page=1&amp;PageSize=10&amp;ToggleType=
194
- 2. The following options should have been selected:
195
- - Estimate type: Medium variant
196
- - Gender: Total
197
- - Year: {YEAR}
198
- - Age: Single age (ages 15-64)
199
- - Data attribute: data value
200
- 3. Download the CSV file
201
- 4. Save it as: "Population by single age _20250903072924.csv"
202
- 5. Place it in your data input directory
203
-
204
- Note: Taiwan data is not available from World Bank API and must be obtained separately.
205
- """
206
- raise FileNotFoundError(error_msg)
207
-
208
- print("Adding Taiwan population data from NDC...")
209
-
210
- # Load the NDC data (skip metadata rows)
211
- df_taiwan = pd.read_csv(taiwan_file, skiprows=10)
212
-
213
- # Clean the age column and sum population
214
- df_taiwan["Age"] = df_taiwan["Age"].str.replace("'", "")
215
- df_taiwan["Age"] = pd.to_numeric(df_taiwan["Age"])
216
-
217
- # The data is pre-filtered to ages 15-64, so sum all values
218
- taiwan_working_age_pop = df_taiwan["Data value (persons)"].sum()
219
-
220
- # Create Taiwan row
221
- taiwan_row = pd.DataFrame(
222
- {
223
- "iso_alpha_3": ["TWN"],
224
- "year": [YEAR],
225
- "working_age_pop": [taiwan_working_age_pop],
226
- "country_code": ["TW"],
227
- "country_name": ["Taiwan"],
228
- }
229
- )
230
-
231
- # Add Taiwan to the country data
232
- df_with_taiwan = pd.concat([df_country, taiwan_row], ignore_index=True)
233
- print(f"Added Taiwan: {taiwan_working_age_pop:,.0f} working age population")
234
-
235
- return df_with_taiwan
236
-
237
-
238
- def load_us_state_population_data():
239
- """
240
- Load US state population data from cache or Census Bureau.
241
-
242
- Returns:
243
- pd.DataFrame: Raw US state population data
244
- """
245
- # Check if raw data already exists
246
- raw_state_pop_path = DATA_INPUT_DIR / f"sc-est{YEAR}-agesex-civ.csv"
247
- if raw_state_pop_path.exists():
248
- print("Loading cached state population data...")
249
- return pd.read_csv(raw_state_pop_path)
250
-
251
- # Download if not cached
252
- url = f"https://www2.census.gov/programs-surveys/popest/datasets/2020-{YEAR}/state/asrh/sc-est{YEAR}-agesex-civ.csv"
253
-
254
- print("Downloading US state population data from Census Bureau...")
255
- response = httpx.get(url)
256
- response.raise_for_status()
257
-
258
- df_raw = pd.read_csv(io.StringIO(response.text))
259
- return df_raw
260
-
261
-
262
- def process_state_population_data(df_raw):
263
- """
264
- Process US state population data to get working age population.
265
-
266
- Args:
267
- df_raw: Raw Census Bureau data
268
-
269
- Returns:
270
- pd.DataFrame: Processed state population data with state codes
271
- """
272
- # Filter for working age (15-64) and sum by state
273
- # SEX=0 means "Both sexes" to avoid double counting
274
- df_working_age = df_raw[
275
- (df_raw["AGE"] >= 15) & (df_raw["AGE"] <= 64) & (df_raw["SEX"] == 0)
276
- ]
277
-
278
- # Sum by state
279
- working_age_by_state = (
280
- df_working_age.groupby("NAME")[f"POPEST{YEAR}_CIV"].sum().reset_index()
281
- )
282
- working_age_by_state.columns = ["state", "working_age_pop"]
283
-
284
- # Get state codes
285
- state_code_dict = get_state_codes()
286
-
287
- # Filter out "United States" row (national total, not a state)
288
- working_age_by_state = working_age_by_state[
289
- working_age_by_state["state"] != "United States"
290
- ]
291
-
292
- # Map state names to abbreviations
293
- working_age_by_state["state_code"] = working_age_by_state["state"].map(
294
- state_code_dict
295
- )
296
-
297
- # Check for missing state codes (should be none after filtering United States)
298
- missing_codes = working_age_by_state[working_age_by_state["state_code"].isna()]
299
- if not missing_codes.empty:
300
- warnings.warn(
301
- f"Could not find state codes for: {missing_codes['state'].tolist()}",
302
- UserWarning,
303
- stacklevel=2,
304
- )
305
-
306
- return working_age_by_state
307
-
308
-
309
- def get_state_codes():
310
- """
311
- Get US state codes from Census Bureau.
312
-
313
- Returns:
314
- dict: Mapping of state names to abbreviations
315
- """
316
- state_codes_path = DATA_INPUT_DIR / "census_state_codes.txt"
317
-
318
- if state_codes_path.exists():
319
- print("Loading cached state codes...")
320
- df_state_codes = pd.read_csv(state_codes_path, sep="|")
321
- else:
322
- print("Downloading state codes from Census Bureau...")
323
- response = httpx.get("https://www2.census.gov/geo/docs/reference/state.txt")
324
- response.raise_for_status()
325
-
326
- # Save for future use
327
- with open(state_codes_path, "w") as f:
328
- f.write(response.text)
329
- print(f"Cached state codes to {state_codes_path}")
330
-
331
- df_state_codes = pd.read_csv(io.StringIO(response.text), sep="|")
332
-
333
- # Create mapping dictionary
334
- state_code_dict = dict(
335
- zip(df_state_codes["STATE_NAME"], df_state_codes["STUSAB"], strict=True)
336
- )
337
-
338
- return state_code_dict
339
-
340
-
341
- def save_data(df_country, df_state, df_world_bank_raw, df_state_raw):
342
- """
343
- Save raw and processed population data.
344
-
345
- Args:
346
- df_country: Processed country population data
347
- df_state: Processed state population data
348
- df_world_bank_raw: Raw World Bank data
349
- df_state_raw: Raw Census Bureau data
350
- """
351
- # Save raw data (only if doesn't exist)
352
- raw_country_pop_path = DATA_INPUT_DIR / f"working_age_pop_{YEAR}_country_raw.csv"
353
- if not raw_country_pop_path.exists():
354
- df_world_bank_raw.to_csv(raw_country_pop_path, index=False)
355
- print(f"Saved raw country data to {raw_country_pop_path}")
356
-
357
- raw_state_pop_path = DATA_INPUT_DIR / f"sc-est{YEAR}-agesex-civ.csv"
358
- if not raw_state_pop_path.exists():
359
- df_state_raw.to_csv(raw_state_pop_path, index=False)
360
- print(f"Saved raw state data to {raw_state_pop_path}")
361
-
362
- # Save processed data
363
- country_output_path = DATA_INTERMEDIATE_DIR / f"working_age_pop_{YEAR}_country.csv"
364
- df_country.to_csv(country_output_path, index=False)
365
- print(f"Saved processed country population data to {country_output_path}")
366
-
367
- state_output_path = DATA_INTERMEDIATE_DIR / f"working_age_pop_{YEAR}_us_state.csv"
368
- df_state.to_csv(state_output_path, index=False)
369
- print(f"Saved processed US state population data to {state_output_path}")
370
-
371
-
372
- def main():
373
- """Main function to run population preprocessing."""
374
- # Check if files already exist
375
- if check_existing_files():
376
- return
377
-
378
- # Process country-level data
379
- print("\n=== Processing Country-Level Population Data ===")
380
- df_world_bank_raw = load_world_bank_population_data()
381
- df_country = process_country_population_data(df_world_bank_raw)
382
- df_country = add_taiwan_population(df_country)
383
-
384
- # Process US state-level data
385
- print("\n=== Processing US State-Level Population Data ===")
386
- df_state_raw = load_us_state_population_data()
387
- df_state = process_state_population_data(df_state_raw)
388
-
389
- # Save all data (raw and processed)
390
- print("\n=== Saving Data ===")
391
- save_data(df_country, df_state, df_world_bank_raw, df_state_raw)
392
-
393
- print("\n✅ Population data preprocessing complete!")
394
-
395
- # Print summary statistics
396
- print("\n=== Summary Statistics ===")
397
- print(f"Countries processed: {len(df_country)}")
398
- print(f"Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}")
399
- print(
400
- f"Total global working age population: {df_country['working_age_pop'].sum():,.0f}"
401
- )
402
- print(f"US states processed: {len(df_state)}")
403
- print(f"Total US working age population: {df_state['working_age_pop'].sum():,.0f}")
404
-
405
-
406
- if __name__ == "__main__":
407
- main()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/data/input/BTOS_National.xlsx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c55e2fc6892941a1a536e87445de0bee8ea327526081389b93b85c54a8d69761
3
- size 63052
 
 
 
 
release_2025_09_15/data/input/Population by single age _20250903072924.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:89c1e953dbab481760a966c40bdb121ed4e301b4cd0cbaea8a44990caa91ce8e
3
- size 2176
 
 
 
 
release_2025_09_15/data/input/automation_vs_augmentation_v1.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d1e264882b17618db4f4a00b6f87f48134222bc5c15eefb3d46aae9519e89d11
3
- size 197
 
 
 
 
release_2025_09_15/data/input/automation_vs_augmentation_v2.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0d7d8b1666f3d942d728f9b2177681ca6756edfe01fb8fc130e29264d41a391e
3
- size 198
 
 
 
 
release_2025_09_15/data/input/bea_us_state_gdp_2024.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:913bc0d017570e711c71bc838016b3b52cbf49e717d0cabc4cc2d70306acfa5a
3
- size 1663
 
 
 
 
release_2025_09_15/data/input/census_state_codes.txt DELETED
@@ -1,58 +0,0 @@
1
- STATE|STUSAB|STATE_NAME|STATENS
2
- 01|AL|Alabama|01779775
3
- 02|AK|Alaska|01785533
4
- 04|AZ|Arizona|01779777
5
- 05|AR|Arkansas|00068085
6
- 06|CA|California|01779778
7
- 08|CO|Colorado|01779779
8
- 09|CT|Connecticut|01779780
9
- 10|DE|Delaware|01779781
10
- 11|DC|District of Columbia|01702382
11
- 12|FL|Florida|00294478
12
- 13|GA|Georgia|01705317
13
- 15|HI|Hawaii|01779782
14
- 16|ID|Idaho|01779783
15
- 17|IL|Illinois|01779784
16
- 18|IN|Indiana|00448508
17
- 19|IA|Iowa|01779785
18
- 20|KS|Kansas|00481813
19
- 21|KY|Kentucky|01779786
20
- 22|LA|Louisiana|01629543
21
- 23|ME|Maine|01779787
22
- 24|MD|Maryland|01714934
23
- 25|MA|Massachusetts|00606926
24
- 26|MI|Michigan|01779789
25
- 27|MN|Minnesota|00662849
26
- 28|MS|Mississippi|01779790
27
- 29|MO|Missouri|01779791
28
- 30|MT|Montana|00767982
29
- 31|NE|Nebraska|01779792
30
- 32|NV|Nevada|01779793
31
- 33|NH|New Hampshire|01779794
32
- 34|NJ|New Jersey|01779795
33
- 35|NM|New Mexico|00897535
34
- 36|NY|New York|01779796
35
- 37|NC|North Carolina|01027616
36
- 38|ND|North Dakota|01779797
37
- 39|OH|Ohio|01085497
38
- 40|OK|Oklahoma|01102857
39
- 41|OR|Oregon|01155107
40
- 42|PA|Pennsylvania|01779798
41
- 44|RI|Rhode Island|01219835
42
- 45|SC|South Carolina|01779799
43
- 46|SD|South Dakota|01785534
44
- 47|TN|Tennessee|01325873
45
- 48|TX|Texas|01779801
46
- 49|UT|Utah|01455989
47
- 50|VT|Vermont|01779802
48
- 51|VA|Virginia|01779803
49
- 53|WA|Washington|01779804
50
- 54|WV|West Virginia|01779805
51
- 55|WI|Wisconsin|01779806
52
- 56|WY|Wyoming|01779807
53
- 60|AS|American Samoa|01802701
54
- 66|GU|Guam|01802705
55
- 69|MP|Northern Mariana Islands|01779809
56
- 72|PR|Puerto Rico|01779808
57
- 74|UM|U.S. Minor Outlying Islands|01878752
58
- 78|VI|U.S. Virgin Islands|01802710
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/data/input/geonames_countryInfo.txt DELETED
@@ -1,302 +0,0 @@
1
- # ================================
2
- #
3
- #
4
- # CountryCodes:
5
- # ============
6
- #
7
- # The official ISO country code for the United Kingdom is 'GB'. The code 'UK' is reserved.
8
- #
9
- # A list of dependent countries is available here:
10
- # https://spreadsheets.google.com/ccc?key=pJpyPy-J5JSNhe7F_KxwiCA&hl=en
11
- #
12
- #
13
- # The countrycode XK temporarily stands for Kosvo:
14
- # http://geonames.wordpress.com/2010/03/08/xk-country-code-for-kosovo/
15
- #
16
- #
17
- # CS (Serbia and Montenegro) with geonameId = 8505033 no longer exists.
18
- # AN (the Netherlands Antilles) with geonameId = 8505032 was dissolved on 10 October 2010.
19
- #
20
- #
21
- # Currencies :
22
- # ============
23
- #
24
- # A number of territories are not included in ISO 4217, because their currencies are not per se an independent currency,
25
- # but a variant of another currency. These currencies are:
26
- #
27
- # 1. FO : Faroese krona (1:1 pegged to the Danish krone)
28
- # 2. GG : Guernsey pound (1:1 pegged to the pound sterling)
29
- # 3. JE : Jersey pound (1:1 pegged to the pound sterling)
30
- # 4. IM : Isle of Man pound (1:1 pegged to the pound sterling)
31
- # 5. TV : Tuvaluan dollar (1:1 pegged to the Australian dollar).
32
- # 6. CK : Cook Islands dollar (1:1 pegged to the New Zealand dollar).
33
- #
34
- # The following non-ISO codes are, however, sometimes used: GGP for the Guernsey pound,
35
- # JEP for the Jersey pound and IMP for the Isle of Man pound (http://en.wikipedia.org/wiki/ISO_4217)
36
- #
37
- #
38
- # A list of currency symbols is available here : http://forum.geonames.org/gforum/posts/list/437.page
39
- # another list with fractional units is here: http://forum.geonames.org/gforum/posts/list/1961.page
40
- #
41
- #
42
- # Languages :
43
- # ===========
44
- #
45
- # The column 'languages' lists the languages spoken in a country ordered by the number of speakers. The language code is a 'locale'
46
- # where any two-letter primary-tag is an ISO-639 language abbreviation and any two-letter initial subtag is an ISO-3166 country code.
47
- #
48
- # Example : es-AR is the Spanish variant spoken in Argentina.
49
- #
50
- #ISO ISO3 ISO-Numeric fips Country Capital Area(in sq km) Population Continent tld CurrencyCode CurrencyName Phone Postal Code Format Postal Code Regex Languages geonameid neighbours EquivalentFipsCode
51
- AD AND 020 AN Andorra Andorra la Vella 468 77006 EU .ad EUR Euro 376 AD### ^(?:AD)*(\d{3})$ ca 3041565 ES,FR
52
- AE ARE 784 AE United Arab Emirates Abu Dhabi 82880 9630959 AS .ae AED Dirham 971 ##### ##### ^\d{5}-\d{5}$ ar-AE,fa,en,hi,ur 290557 SA,OM
53
- AF AFG 004 AF Afghanistan Kabul 647500 37172386 AS .af AFN Afghani 93 fa-AF,ps,uz-AF,tk 1149361 TM,CN,IR,TJ,PK,UZ
54
- AG ATG 028 AC Antigua and Barbuda St. John's 443 96286 NA .ag XCD Dollar +1-268 en-AG 3576396
55
- AI AIA 660 AV Anguilla The Valley 102 13254 NA .ai XCD Dollar +1-264 AI-#### ^(?:AZ)*(\d{4})$ en-AI 3573511
56
- AL ALB 008 AL Albania Tirana 28748 2866376 EU .al ALL Lek 355 #### ^(\d{4})$ sq,el 783754 MK,GR,ME,RS,XK
57
- AM ARM 051 AM Armenia Yerevan 29800 3076200 AS .am AMD Dram 374 ###### ^(\d{6})$ hy 174982 GE,IR,AZ,TR
58
- AO AGO 024 AO Angola Luanda 1246700 30809762 AF .ao AOA Kwanza 244 pt-AO 3351879 CD,NA,ZM,CG
59
- AQ ATA 010 AY Antarctica 14000000 0 AN .aq 6697173
60
- AR ARG 032 AR Argentina Buenos Aires 2766890 44494502 SA .ar ARS Peso 54 @####@@@ ^[A-Z]?\d{4}[A-Z]{0,3}$ es-AR,en,it,de,fr,gn 3865483 CL,BO,UY,PY,BR
61
- AS ASM 016 AQ American Samoa Pago Pago 199 55465 OC .as USD Dollar +1-684 #####-#### 96799 en-AS,sm,to 5880801
62
- AT AUT 040 AU Austria Vienna 83858 8847037 EU .at EUR Euro 43 #### ^(\d{4})$ de-AT,hr,hu,sl 2782113 CH,DE,HU,SK,CZ,IT,SI,LI
63
- AU AUS 036 AS Australia Canberra 7686850 24992369 OC .au AUD Dollar 61 #### ^(\d{4})$ en-AU 2077456
64
- AW ABW 533 AA Aruba Oranjestad 193 105845 NA .aw AWG Guilder 297 nl-AW,pap,es,en 3577279
65
- AX ALA 248 Aland Islands Mariehamn 1580 26711 EU .ax EUR Euro +358-18 ##### ^(?:FI)*(\d{5})$ sv-AX 661882 FI
66
- AZ AZE 031 AJ Azerbaijan Baku 86600 9942334 AS .az AZN Manat 994 AZ #### ^(?:AZ )*(\d{4})$ az,ru,hy 587116 GE,IR,AM,TR,RU
67
- BA BIH 070 BK Bosnia and Herzegovina Sarajevo 51129 3323929 EU .ba BAM Marka 387 ##### ^(\d{5})$ bs,hr-BA,sr-BA 3277605 HR,ME,RS
68
- BB BRB 052 BB Barbados Bridgetown 431 286641 NA .bb BBD Dollar +1-246 BB##### ^(?:BB)*(\d{5})$ en-BB 3374084
69
- BD BGD 050 BG Bangladesh Dhaka 144000 161356039 AS .bd BDT Taka 880 #### ^(\d{4})$ bn-BD,en 1210997 MM,IN
70
- BE BEL 056 BE Belgium Brussels 30510 11422068 EU .be EUR Euro 32 #### ^(\d{4})$ nl-BE,fr-BE,de-BE 2802361 DE,NL,LU,FR
71
- BF BFA 854 UV Burkina Faso Ouagadougou 274200 19751535 AF .bf XOF Franc 226 fr-BF,mos 2361809 NE,BJ,GH,CI,TG,ML
72
- BG BGR 100 BU Bulgaria Sofia 110910 7000039 EU .bg BGN Lev 359 #### ^(\d{4})$ bg,tr-BG,rom 732800 MK,GR,RO,TR,RS
73
- BH BHR 048 BA Bahrain Manama 665 1569439 AS .bh BHD Dinar 973 ####|### ^(\d{3}\d?)$ ar-BH,en,fa,ur 290291
74
- BI BDI 108 BY Burundi Gitega 27830 11175378 AF .bi BIF Franc 257 fr-BI,rn 433561 TZ,CD,RW
75
- BJ BEN 204 BN Benin Porto-Novo 112620 11485048 AF .bj XOF Franc 229 fr-BJ 2395170 NE,TG,BF,NG
76
- BL BLM 652 TB Saint Barthelemy Gustavia 21 8450 NA .gp EUR Euro 590 ##### ^(\d{5})$ fr 3578476
77
- BM BMU 060 BD Bermuda Hamilton 53 63968 NA .bm BMD Dollar +1-441 @@ ## ^([A-Z]{2}\d{2})$ en-BM,pt 3573345
78
- BN BRN 096 BX Brunei Bandar Seri Begawan 5770 428962 AS .bn BND Dollar 673 @@#### ^([A-Z]{2}\d{4})$ ms-BN,en-BN 1820814 MY
79
- BO BOL 068 BL Bolivia Sucre 1098580 11353142 SA .bo BOB Boliviano 591 es-BO,qu,ay 3923057 PE,CL,PY,BR,AR
80
- BQ BES 535 Bonaire, Saint Eustatius and Saba 328 18012 NA .bq USD Dollar 599 nl,pap,en 7626844
81
- BR BRA 076 BR Brazil Brasilia 8511965 209469333 SA .br BRL Real 55 #####-### ^\d{5}-\d{3}$ pt-BR,es,en,fr 3469034 SR,PE,BO,UY,GY,PY,GF,VE,CO,AR
82
- BS BHS 044 BF Bahamas Nassau 13940 385640 NA .bs BSD Dollar +1-242 en-BS 3572887
83
- BT BTN 064 BT Bhutan Thimphu 47000 754394 AS .bt BTN Ngultrum 975 dz 1252634 CN,IN
84
- BV BVT 074 BV Bouvet Island 49 0 AN .bv NOK Krone 3371123
85
- BW BWA 072 BC Botswana Gaborone 600370 2254126 AF .bw BWP Pula 267 en-BW,tn-BW 933860 ZW,ZA,NA
86
- BY BLR 112 BO Belarus Minsk 207600 9485386 EU .by BYN Belarusian ruble 375 ###### ^(\d{6})$ be,ru 630336 PL,LT,UA,RU,LV
87
- BZ BLZ 084 BH Belize Belmopan 22966 383071 NA .bz BZD Dollar 501 en-BZ,es 3582678 GT,MX
88
- CA CAN 124 CA Canada Ottawa 9984670 37058856 NA .ca CAD Dollar 1 @#@ #@# ^([ABCEGHJKLMNPRSTVXY]\d[ABCEGHJKLMNPRSTVWXYZ]) ?(\d[ABCEGHJKLMNPRSTVWXYZ]\d)$ en-CA,fr-CA,iu 6251999 US
89
- CC CCK 166 CK Cocos Islands West Island 14 628 AS .cc AUD Dollar 61 #### ^(\d{4})$ ms-CC,en 1547376
90
- CD COD 180 CG Democratic Republic of the Congo Kinshasa 2345410 84068091 AF .cd CDF Franc 243 fr-CD,ln,ktu,kg,sw,lua 203312 TZ,CF,SS,RW,ZM,BI,UG,CG,AO
91
- CF CAF 140 CT Central African Republic Bangui 622984 4666377 AF .cf XAF Franc 236 fr-CF,sg,ln,kg 239880 TD,SD,CD,SS,CM,CG
92
- CG COG 178 CF Republic of the Congo Brazzaville 342000 5244363 AF .cg XAF Franc 242 fr-CG,kg,ln-CG 2260494 CF,GA,CD,CM,AO
93
- CH CHE 756 SZ Switzerland Bern 41290 8516543 EU .ch CHF Franc 41 #### ^(\d{4})$ de-CH,fr-CH,it-CH,rm 2658434 DE,IT,LI,FR,AT
94
- CI CIV 384 IV Ivory Coast Yamoussoukro 322460 25069229 AF .ci XOF Franc 225 fr-CI 2287781 LR,GH,GN,BF,ML
95
- CK COK 184 CW Cook Islands Avarua 240 21388 OC .ck NZD Dollar 682 en-CK,mi 1899402
96
- CL CHL 152 CI Chile Santiago 756950 18729160 SA .cl CLP Peso 56 ####### ^(\d{7})$ es-CL 3895114 PE,BO,AR
97
- CM CMR 120 CM Cameroon Yaounde 475440 25216237 AF .cm XAF Franc 237 en-CM,fr-CM 2233387 TD,CF,GA,GQ,CG,NG
98
- CN CHN 156 CH China Beijing 9596960 1411778724 AS .cn CNY Yuan Renminbi 86 ###### ^(\d{6})$ zh-CN,yue,wuu,dta,ug,za 1814991 LA,BT,TJ,KZ,MN,AF,NP,MM,KG,PK,KP,RU,VN,IN
99
- CO COL 170 CO Colombia Bogota 1138910 49648685 SA .co COP Peso 57 ###### ^(\d{6})$ es-CO 3686110 EC,PE,PA,BR,VE
100
- CR CRI 188 CS Costa Rica San Jose 51100 4999441 NA .cr CRC Colon 506 ##### ^(\d{5})$ es-CR,en 3624060 PA,NI
101
- CU CUB 192 CU Cuba Havana 110860 11338138 NA .cu CUP Peso 53 CP ##### ^(?:CP)*(\d{5})$ es-CU,pap 3562981 US
102
- CV CPV 132 CV Cabo Verde Praia 4033 543767 AF .cv CVE Escudo 238 #### ^(\d{4})$ pt-CV 3374766
103
- CW CUW 531 UC Curacao Willemstad 444 159849 NA .cw ANG Guilder 599 nl,pap 7626836
104
- CX CXR 162 KT Christmas Island Flying Fish Cove 135 1500 OC .cx AUD Dollar 61 #### ^(\d{4})$ en,zh,ms-CX 2078138
105
- CY CYP 196 CY Cyprus Nicosia 9250 1189265 EU .cy EUR Euro 357 #### ^(\d{4})$ el-CY,tr-CY,en 146669
106
- CZ CZE 203 EZ Czechia Prague 78866 10625695 EU .cz CZK Koruna 420 ### ## ^\d{3}\s?\d{2}$ cs,sk 3077311 PL,DE,SK,AT
107
- DE DEU 276 GM Germany Berlin 357021 82927922 EU .de EUR Euro 49 ##### ^(\d{5})$ de 2921044 CH,PL,NL,DK,BE,CZ,LU,FR,AT
108
- DJ DJI 262 DJ Djibouti Djibouti 23000 958920 AF .dj DJF Franc 253 fr-DJ,ar,so-DJ,aa 223816 ER,ET,SO
109
- DK DNK 208 DA Denmark Copenhagen 43094 5797446 EU .dk DKK Krone 45 #### ^(\d{4})$ da-DK,en,fo,de-DK 2623032 DE
110
- DM DMA 212 DO Dominica Roseau 754 71625 NA .dm XCD Dollar +1-767 en-DM 3575830
111
- DO DOM 214 DR Dominican Republic Santo Domingo 48730 10627165 NA .do DOP Peso +1-809 and 1-829 ##### ^(\d{5})$ es-DO 3508796 HT
112
- DZ DZA 012 AG Algeria Algiers 2381740 42228429 AF .dz DZD Dinar 213 ##### ^(\d{5})$ ar-DZ 2589581 NE,EH,LY,MR,TN,MA,ML
113
- EC ECU 218 EC Ecuador Quito 283560 17084357 SA .ec USD Dollar 593 @####@ ^([a-zA-Z]\d{4}[a-zA-Z])$ es-EC 3658394 PE,CO
114
- EE EST 233 EN Estonia Tallinn 45226 1320884 EU .ee EUR Euro 372 ##### ^(\d{5})$ et,ru 453733 RU,LV
115
- EG EGY 818 EG Egypt Cairo 1001450 98423595 AF .eg EGP Pound 20 ##### ^(\d{5})$ ar-EG,en,fr 357994 LY,SD,IL,PS
116
- EH ESH 732 WI Western Sahara El-Aaiun 266000 273008 AF .eh MAD Dirham 212 ar,mey 2461445 DZ,MR,MA
117
- ER ERI 232 ER Eritrea Asmara 121320 6209262 AF .er ERN Nakfa 291 aa-ER,ar,tig,kun,ti-ER 338010 ET,SD,DJ
118
- ES ESP 724 SP Spain Madrid 504782 46723749 EU .es EUR Euro 34 ##### ^(\d{5})$ es-ES,ca,gl,eu,oc 2510769 AD,PT,GI,FR,MA
119
- ET ETH 231 ET Ethiopia Addis Ababa 1127127 109224559 AF .et ETB Birr 251 #### ^(\d{4})$ am,en-ET,om-ET,ti-ET,so-ET,sid 337996 ER,KE,SD,SS,SO,DJ
120
- FI FIN 246 FI Finland Helsinki 337030 5518050 EU .fi EUR Euro 358 ##### ^(?:FI)*(\d{5})$ fi-FI,sv-FI,smn 660013 NO,RU,SE
121
- FJ FJI 242 FJ Fiji Suva 18270 883483 OC .fj FJD Dollar 679 en-FJ,fj 2205218
122
- FK FLK 238 FK Falkland Islands Stanley 12173 2638 SA .fk FKP Pound 500 FIQQ 1ZZ FIQQ 1ZZ en-FK 3474414
123
- FM FSM 583 FM Micronesia Palikir 702 112640 OC .fm USD Dollar 691 ##### ^(\d{5})$ en-FM,chk,pon,yap,kos,uli,woe,nkr,kpg 2081918
124
- FO FRO 234 FO Faroe Islands Torshavn 1399 48497 EU .fo DKK Krone 298 ### ^(?:FO)*(\d{3})$ fo,da-FO 2622320
125
- FR FRA 250 FR France Paris 547030 66987244 EU .fr EUR Euro 33 ##### ^(\d{5})$ fr-FR,frp,br,co,ca,eu,oc 3017382 CH,DE,BE,LU,IT,AD,MC,ES
126
- GA GAB 266 GB Gabon Libreville 267667 2119275 AF .ga XAF Franc 241 fr-GA 2400553 CM,GQ,CG
127
- GB GBR 826 UK United Kingdom London 244820 66488991 EU .uk GBP Pound 44 @# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA ^([Gg][Ii][Rr]\s?0[Aa]{2})|((([A-Za-z][0-9]{1,2})|(([A-Za-z][A-Ha-hJ-Yj-y][0-9]{1,2})|(([A-Za-z][0-9][A-Za-z])|([A-Za-z][A-Ha-hJ-Yj-y][0-9]?[A-Za-z]))))\s?[0-9][A-Za-z]{2})$ en-GB,cy-GB,gd 2635167 IE
128
- GD GRD 308 GJ Grenada St. George's 344 111454 NA .gd XCD Dollar +1-473 en-GD 3580239
129
- GE GEO 268 GG Georgia Tbilisi 69700 3731000 AS .ge GEL Lari 995 #### ^(\d{4})$ ka,ru,hy,az 614540 AM,AZ,TR,RU
130
- GF GUF 254 FG French Guiana Cayenne 91000 195506 SA .gf EUR Euro 594 ##### ^((97|98)3\d{2})$ fr-GF 3381670 SR,BR
131
- GG GGY 831 GK Guernsey St Peter Port 78 65228 EU .gg GBP Pound +44-1481 @# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA ^((?:(?:[A-PR-UWYZ][A-HK-Y]\d[ABEHMNPRV-Y0-9]|[A-PR-UWYZ]\d[A-HJKPS-UW0-9])\s\d[ABD-HJLNP-UW-Z]{2})|GIR\s?0AA)$ en,nrf 3042362
132
- GH GHA 288 GH Ghana Accra 239460 29767108 AF .gh GHS Cedi 233 en-GH,ak,ee,tw 2300660 CI,TG,BF
133
- GI GIB 292 GI Gibraltar Gibraltar 6.5 33718 EU .gi GIP Pound 350 GX11 1AA GX11 1AA en-GI,es,it,pt 2411586 ES
134
- GL GRL 304 GL Greenland Nuuk 2166086 56025 NA .gl DKK Krone 299 #### ^(\d{4})$ kl,da-GL,en 3425505
135
- GM GMB 270 GA Gambia Banjul 11300 2280102 AF .gm GMD Dalasi 220 en-GM,mnk,wof,wo,ff 2413451 SN
136
- GN GIN 324 GV Guinea Conakry 245857 12414318 AF .gn GNF Franc 224 fr-GN 2420477 LR,SN,SL,CI,GW,ML
137
- GP GLP 312 GP Guadeloupe Basse-Terre 1780 443000 NA .gp EUR Euro 590 ##### ^((97|98)\d{3})$ fr-GP 3579143
138
- GQ GNQ 226 EK Equatorial Guinea Malabo 28051 1308974 AF .gq XAF Franc 240 es-GQ,fr,pt 2309096 GA,CM
139
- GR GRC 300 GR Greece Athens 131940 10727668 EU .gr EUR Euro 30 ### ## ^(\d{5})$ el-GR,en,fr 390903 AL,MK,TR,BG
140
- GS SGS 239 SX South Georgia and the South Sandwich Islands Grytviken 3903 30 AN .gs GBP Pound SIQQ 1ZZ SIQQ 1ZZ en 3474415
141
- GT GTM 320 GT Guatemala Guatemala City 108890 17247807 NA .gt GTQ Quetzal 502 ##### ^(\d{5})$ es-GT 3595528 MX,HN,BZ,SV
142
- GU GUM 316 GQ Guam Hagatna 549 165768 OC .gu USD Dollar +1-671 969## ^(969\d{2})$ en-GU,ch-GU 4043988
143
- GW GNB 624 PU Guinea-Bissau Bissau 36120 1874309 AF .gw XOF Franc 245 #### ^(\d{4})$ pt-GW,pov 2372248 SN,GN
144
- GY GUY 328 GY Guyana Georgetown 214970 779004 SA .gy GYD Dollar 592 en-GY 3378535 SR,BR,VE
145
- HK HKG 344 HK Hong Kong Hong Kong 1092 7396076 AS .hk HKD Dollar 852 ###### ^(\d{6})$ zh-HK,yue,zh,en 1819730
146
- HM HMD 334 HM Heard Island and McDonald Islands 412 0 AN .hm AUD Dollar #### ^(\d{4})$ 1547314
147
- HN HND 340 HO Honduras Tegucigalpa 112090 9587522 NA .hn HNL Lempira 504 ##### ^(\d{6})$ es-HN,cab,miq 3608932 GT,NI,SV
148
- HR HRV 191 HR Croatia Zagreb 56542 3871833 EU .hr EUR Euro 385 ##### ^(?:HR)*(\d{5})$ hr-HR,sr 3202326 HU,SI,BA,ME,RS
149
- HT HTI 332 HA Haiti Port-au-Prince 27750 11123176 NA .ht HTG Gourde 509 HT#### ^(?:HT)*(\d{4})$ ht,fr-HT 3723988 DO
150
- HU HUN 348 HU Hungary Budapest 93030 9768785 EU .hu HUF Forint 36 #### ^(\d{4})$ hu-HU 719819 SK,SI,RO,UA,HR,AT,RS
151
- ID IDN 360 ID Indonesia Jakarta 1919440 267663435 AS .id IDR Rupiah 62 ##### ^(\d{5})$ id,en,nl,jv 1643084 PG,TL,MY
152
- IE IRL 372 EI Ireland Dublin 70280 4853506 EU .ie EUR Euro 353 @@@ @@@@ ^(D6W|[AC-FHKNPRTV-Y][0-9]{2})\s?([AC-FHKNPRTV-Y0-9]{4}) en-IE,ga-IE 2963597 GB
153
- IL ISR 376 IS Israel Jerusalem 20770 8883800 AS .il ILS Shekel 972 ####### ^(\d{7}|\d{5})$ he,ar-IL,en-IL, 294640 SY,JO,LB,EG,PS
154
- IM IMN 833 IM Isle of Man Douglas 572 84077 EU .im GBP Pound +44-1624 @# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA ^((?:(?:[A-PR-UWYZ][A-HK-Y]\d[ABEHMNPRV-Y0-9]|[A-PR-UWYZ]\d[A-HJKPS-UW0-9])\s\d[ABD-HJLNP-UW-Z]{2})|GIR\s?0AA)$ en,gv 3042225
155
- IN IND 356 IN India New Delhi 3287590 1352617328 AS .in INR Rupee 91 ###### ^(\d{6})$ en-IN,hi,bn,te,mr,ta,ur,gu,kn,ml,or,pa,as,bh,sat,ks,ne,sd,kok,doi,mni,sit,sa,fr,lus,inc 1269750 CN,NP,MM,BT,PK,BD
156
- IO IOT 086 IO British Indian Ocean Territory Diego Garcia 60 4000 AS .io USD Dollar 246 BBND 1ZZ BBND 1ZZ en-IO 1282588
157
- IQ IRQ 368 IZ Iraq Baghdad 437072 38433600 AS .iq IQD Dinar 964 ##### ^(\d{5})$ ar-IQ,ku,hy 99237 SY,SA,IR,JO,TR,KW
158
- IR IRN 364 IR Iran Tehran 1648000 81800269 AS .ir IRR Rial 98 ########## ^(\d{10})$ fa-IR,ku 130758 TM,AF,IQ,AM,PK,AZ,TR
159
- IS ISL 352 IC Iceland Reykjavik 103000 353574 EU .is ISK Krona 354 ### ^(\d{3})$ is,en,de,da,sv,no 2629691
160
- IT ITA 380 IT Italy Rome 301230 60431283 EU .it EUR Euro 39 ##### ^(\d{5})$ it-IT,de-IT,fr-IT,sc,ca,co,sl 3175395 CH,VA,SI,SM,FR,AT
161
- JE JEY 832 JE Jersey Saint Helier 116 90812 EU .je GBP Pound +44-1534 @# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA ^((?:(?:[A-PR-UWYZ][A-HK-Y]\d[ABEHMNPRV-Y0-9]|[A-PR-UWYZ]\d[A-HJKPS-UW0-9])\s\d[ABD-HJLNP-UW-Z]{2})|GIR\s?0AA)$ en,fr,nrf 3042142
162
- JM JAM 388 JM Jamaica Kingston 10991 2934855 NA .jm JMD Dollar +1-876 en-JM 3489940
163
- JO JOR 400 JO Jordan Amman 92300 9956011 AS .jo JOD Dinar 962 ##### ^(\d{5})$ ar-JO,en 248816 SY,SA,IQ,IL,PS
164
- JP JPN 392 JA Japan Tokyo 377835 126529100 AS .jp JPY Yen 81 ###-#### ^\d{3}-\d{4}$ ja 1861060
165
- KE KEN 404 KE Kenya Nairobi 582650 51393010 AF .ke KES Shilling 254 ##### ^(\d{5})$ en-KE,sw-KE 192950 ET,TZ,SS,SO,UG
166
- KG KGZ 417 KG Kyrgyzstan Bishkek 198500 6315800 AS .kg KGS Som 996 ###### ^(\d{6})$ ky,uz,ru 1527747 CN,TJ,UZ,KZ
167
- KH KHM 116 CB Cambodia Phnom Penh 181040 16249798 AS .kh KHR Riels 855 ##### ^(\d{5})$ km,fr,en 1831722 LA,TH,VN
168
- KI KIR 296 KR Kiribati Tarawa 811 115847 OC .ki AUD Dollar 686 en-KI,gil 4030945
169
- KM COM 174 CN Comoros Moroni 2170 832322 AF .km KMF Franc 269 ar,fr-KM 921929
170
- KN KNA 659 SC Saint Kitts and Nevis Basseterre 261 52441 NA .kn XCD Dollar +1-869 en-KN 3575174
171
- KP PRK 408 KN North Korea Pyongyang 120540 25549819 AS .kp KPW Won 850 ###-### ^(\d{6})$ ko-KP 1873107 CN,KR,RU
172
- KR KOR 410 KS South Korea Seoul 98480 51635256 AS .kr KRW Won 82 ##### ^(\d{5})$ ko-KR,en 1835841 KP
173
- XK XKX 0 KV Kosovo Pristina 10908 1845300 EU EUR Euro sq,sr 831053 RS,AL,MK,ME
174
- KW KWT 414 KU Kuwait Kuwait City 17820 4137309 AS .kw KWD Dinar 965 ##### ^(\d{5})$ ar-KW,en 285570 SA,IQ
175
- KY CYM 136 CJ Cayman Islands George Town 262 64174 NA .ky KYD Dollar +1-345 en-KY 3580718
176
- KZ KAZ 398 KZ Kazakhstan Nur-Sultan 2717300 18276499 AS .kz KZT Tenge 7 ###### ^(\d{6})$ kk,ru 1522867 TM,CN,KG,UZ,RU
177
- LA LAO 418 LA Laos Vientiane 236800 7061507 AS .la LAK Kip 856 ##### ^(\d{5})$ lo,fr,en 1655842 CN,MM,KH,TH,VN
178
- LB LBN 422 LE Lebanon Beirut 10400 6848925 AS .lb LBP Pound 961 #### ####|#### ^(\d{4}(\d{4})?)$ ar-LB,fr-LB,en,hy 272103 SY,IL
179
- LC LCA 662 ST Saint Lucia Castries 616 181889 NA .lc XCD Dollar +1-758 en-LC 3576468
180
- LI LIE 438 LS Liechtenstein Vaduz 160 37910 EU .li CHF Franc 423 #### ^(\d{4})$ de-LI 3042058 CH,AT
181
- LK LKA 144 CE Sri Lanka Colombo 65610 21670000 AS .lk LKR Rupee 94 ##### ^(\d{5})$ si,ta,en 1227603
182
- LR LBR 430 LI Liberia Monrovia 111370 4818977 AF .lr LRD Dollar 231 #### ^(\d{4})$ en-LR 2275384 SL,CI,GN
183
- LS LSO 426 LT Lesotho Maseru 30355 2108132 AF .ls LSL Loti 266 ### ^(\d{3})$ en-LS,st,zu,xh 932692 ZA
184
- LT LTU 440 LH Lithuania Vilnius 65200 2789533 EU .lt EUR Euro 370 LT-##### ^(?:LT)*(\d{5})$ lt,ru,pl 597427 PL,BY,RU,LV
185
- LU LUX 442 LU Luxembourg Luxembourg 2586 607728 EU .lu EUR Euro 352 L-#### ^(?:L-)?\d{4}$ lb,de-LU,fr-LU 2960313 DE,BE,FR
186
- LV LVA 428 LG Latvia Riga 64589 1926542 EU .lv EUR Euro 371 LV-#### ^(?:LV)*(\d{4})$ lv,ru,lt 458258 LT,EE,BY,RU
187
- LY LBY 434 LY Libya Tripoli 1759540 6678567 AF .ly LYD Dinar 218 ar-LY,it,en 2215636 TD,NE,DZ,SD,TN,EG
188
- MA MAR 504 MO Morocco Rabat 446550 36029138 AF .ma MAD Dirham 212 ##### ^(\d{5})$ ar-MA,ber,fr 2542007 DZ,EH,ES
189
- MC MCO 492 MN Monaco Monaco 1.95 38682 EU .mc EUR Euro 377 ##### ^(\d{5})$ fr-MC,en,it 2993457 FR
190
- MD MDA 498 MD Moldova Chisinau 33843 3545883 EU .md MDL Leu 373 MD-#### ^MD-\d{4}$ ro,ru,gag,tr 617790 RO,UA
191
- ME MNE 499 MJ Montenegro Podgorica 14026 622345 EU .me EUR Euro 382 ##### ^(\d{5})$ sr,hu,bs,sq,hr,rom 3194884 AL,HR,BA,RS,XK
192
- MF MAF 663 RN Saint Martin Marigot 53 37264 NA .gp EUR Euro 590 ##### ^(\d{5})$ fr 3578421 SX
193
- MG MDG 450 MA Madagascar Antananarivo 587040 26262368 AF .mg MGA Ariary 261 ### ^(\d{3})$ fr-MG,mg 1062947
194
- MH MHL 584 RM Marshall Islands Majuro 181.3 58413 OC .mh USD Dollar 692 #####-#### ^969\d{2}(-\d{4})$ mh,en-MH 2080185
195
- MK MKD 807 MK North Macedonia Skopje 25333 2082958 EU .mk MKD Denar 389 #### ^(\d{4})$ mk,sq,tr,rmm,sr 718075 AL,GR,BG,RS,XK
196
- ML MLI 466 ML Mali Bamako 1240000 19077690 AF .ml XOF Franc 223 fr-ML,bm 2453866 SN,NE,DZ,CI,GN,MR,BF
197
- MM MMR 104 BM Myanmar Nay Pyi Taw 678500 53708395 AS .mm MMK Kyat 95 ##### ^(\d{5})$ my 1327865 CN,LA,TH,BD,IN
198
- MN MNG 496 MG Mongolia Ulaanbaatar 1565000 3170208 AS .mn MNT Tugrik 976 ###### ^(\d{6})$ mn,ru 2029969 CN,RU
199
- MO MAC 446 MC Macao Macao 254 631636 AS .mo MOP Pataca 853 ###### ^(\d{6})$ zh,zh-MO,pt 1821275
200
- MP MNP 580 CQ Northern Mariana Islands Saipan 477 56882 OC .mp USD Dollar +1-670 ##### ^9695\d{1}$ fil,tl,zh,ch-MP,en-MP 4041468
201
- MQ MTQ 474 MB Martinique Fort-de-France 1100 432900 NA .mq EUR Euro 596 ##### ^(\d{5})$ fr-MQ 3570311
202
- MR MRT 478 MR Mauritania Nouakchott 1030700 4403319 AF .mr MRU Ouguiya 222 ar-MR,fuc,snk,fr,mey,wo 2378080 SN,DZ,EH,ML
203
- MS MSR 500 MH Montserrat Plymouth 102 9341 NA .ms XCD Dollar +1-664 en-MS 3578097
204
- MT MLT 470 MT Malta Valletta 316 483530 EU .mt EUR Euro 356 @@@ #### ^[A-Z]{3}\s?\d{4}$ mt,en-MT 2562770
205
- MU MUS 480 MP Mauritius Port Louis 2040 1265303 AF .mu MUR Rupee 230 en-MU,bho,fr 934292
206
- MV MDV 462 MV Maldives Male 300 515696 AS .mv MVR Rufiyaa 960 ##### ^(\d{5})$ dv,en 1282028
207
- MW MWI 454 MI Malawi Lilongwe 118480 17563749 AF .mw MWK Kwacha 265 ###### ^(\d{6})$ ny,yao,tum,swk 927384 TZ,MZ,ZM
208
- MX MEX 484 MX Mexico Mexico City 1972550 126190788 NA .mx MXN Peso 52 ##### ^(\d{5})$ es-MX 3996063 GT,US,BZ
209
- MY MYS 458 MY Malaysia Kuala Lumpur 329750 31528585 AS .my MYR Ringgit 60 ##### ^(\d{5})$ ms-MY,en,zh,ta,te,ml,pa,th 1733045 BN,TH,ID
210
- MZ MOZ 508 MZ Mozambique Maputo 801590 29495962 AF .mz MZN Metical 258 #### ^(\d{4})$ pt-MZ,vmw 1036973 ZW,TZ,SZ,ZA,ZM,MW
211
- NA NAM 516 WA Namibia Windhoek 825418 2448255 AF .na NAD Dollar 264 en-NA,af,de,hz,naq 3355338 ZA,BW,ZM,AO
212
- NC NCL 540 NC New Caledonia Noumea 19060 284060 OC .nc XPF Franc 687 ##### ^(\d{5})$ fr-NC 2139685
213
- NE NER 562 NG Niger Niamey 1267000 22442948 AF .ne XOF Franc 227 #### ^(\d{4})$ fr-NE,ha,kr,dje 2440476 TD,BJ,DZ,LY,BF,NG,ML
214
- NF NFK 574 NF Norfolk Island Kingston 34.6 1828 OC .nf AUD Dollar 672 #### ^(\d{4})$ en-NF 2155115
215
- NG NGA 566 NI Nigeria Abuja 923768 195874740 AF .ng NGN Naira 234 ###### ^(\d{6})$ en-NG,ha,yo,ig,ff 2328926 TD,NE,BJ,CM
216
- NI NIC 558 NU Nicaragua Managua 129494 6465513 NA .ni NIO Cordoba 505 ###-###-# ^(\d{7})$ es-NI,en 3617476 CR,HN
217
- NL NLD 528 NL The Netherlands Amsterdam 41526 17231017 EU .nl EUR Euro 31 #### @@ ^(\d{4}\s?[a-zA-Z]{2})$ nl-NL,fy-NL 2750405 DE,BE
218
- NO NOR 578 NO Norway Oslo 324220 5314336 EU .no NOK Krone 47 #### ^(\d{4})$ no,nb,nn,se,fi 3144096 FI,RU,SE
219
- NP NPL 524 NP Nepal Kathmandu 140800 28087871 AS .np NPR Rupee 977 ##### ^(\d{5})$ ne,en 1282988 CN,IN
220
- NR NRU 520 NR Nauru Yaren 21 12704 OC .nr AUD Dollar 674 NRU68 NRU68 na,en-NR 2110425
221
- NU NIU 570 NE Niue Alofi 260 2166 OC .nu NZD Dollar 683 #### ^(\d{4})$ niu,en-NU 4036232
222
- NZ NZL 554 NZ New Zealand Wellington 268680 4885500 OC .nz NZD Dollar 64 #### ^(\d{4})$ en-NZ,mi 2186224
223
- OM OMN 512 MU Oman Muscat 212460 4829483 AS .om OMR Rial 968 ### ^(\d{3})$ ar-OM,en,bal,ur 286963 SA,YE,AE
224
- PA PAN 591 PM Panama Panama City 78200 4176873 NA .pa PAB Balboa 507 ##### ^(\d{5})$ es-PA,en 3703430 CR,CO
225
- PE PER 604 PE Peru Lima 1285220 31989256 SA .pe PEN Sol 51 ##### ^(\d{5})$ es-PE,qu,ay 3932488 EC,CL,BO,BR,CO
226
- PF PYF 258 FP French Polynesia Papeete 4167 277679 OC .pf XPF Franc 689 ##### ^((97|98)7\d{2})$ fr-PF,ty 4030656
227
- PG PNG 598 PP Papua New Guinea Port Moresby 462840 8606316 OC .pg PGK Kina 675 ### ^(\d{3})$ en-PG,ho,meu,tpi 2088628 ID
228
- PH PHL 608 RP Philippines Manila 300000 106651922 AS .ph PHP Peso 63 #### ^(\d{4})$ tl,en-PH,fil,ceb,ilo,hil,war,pam,bik,bcl,pag,mrw,tsg,mdh,cbk,krj,sgd,msb,akl,ibg,yka,mta,abx 1694008
229
- PK PAK 586 PK Pakistan Islamabad 803940 212215030 AS .pk PKR Rupee 92 ##### ^(\d{5})$ ur-PK,en-PK,pa,sd,ps,brh 1168579 CN,AF,IR,IN
230
- PL POL 616 PL Poland Warsaw 312685 37978548 EU .pl PLN Zloty 48 ##-### ^\d{2}-\d{3}$ pl 798544 DE,LT,SK,CZ,BY,UA,RU
231
- PM SPM 666 SB Saint Pierre and Miquelon Saint-Pierre 242 7012 NA .pm EUR Euro 508 ##### ^(97500)$ fr-PM 3424932
232
- PN PCN 612 PC Pitcairn Adamstown 47 46 OC .pn NZD Dollar 870 PCRN 1ZZ PCRN 1ZZ en-PN 4030699
233
- PR PRI 630 RQ Puerto Rico San Juan 9104 3195153 NA .pr USD Dollar +1-787 and 1-939 #####-#### ^00[679]\d{2}(?:-\d{4})?$ en-PR,es-PR 4566966
234
- PS PSE 275 WE Palestinian Territory East Jerusalem 5970 4569087 AS .ps ILS Shekel 970 ar-PS 6254930 JO,IL,EG
235
- PT PRT 620 PO Portugal Lisbon 92391 10281762 EU .pt EUR Euro 351 ####-### ^\d{4}-\d{3}\s?[a-zA-Z]{0,25}$ pt-PT,mwl 2264397 ES
236
- PW PLW 585 PS Palau Melekeok 458 17907 OC .pw USD Dollar 680 96940 ^(96940)$ pau,sov,en-PW,tox,ja,fil,zh 1559582
237
- PY PRY 600 PA Paraguay Asuncion 406750 6956071 SA .py PYG Guarani 595 #### ^(\d{4})$ es-PY,gn 3437598 BO,BR,AR
238
- QA QAT 634 QA Qatar Doha 11437 2781677 AS .qa QAR Rial 974 ar-QA,es 289688 SA
239
- RE REU 638 RE Reunion Saint-Denis 2517 776948 AF .re EUR Euro 262 ##### ^((97|98)(4|7|8)\d{2})$ fr-RE 935317
240
- RO ROU 642 RO Romania Bucharest 237500 19473936 EU .ro RON Leu 40 ###### ^(\d{6})$ ro,hu,rom 798549 MD,HU,UA,BG,RS
241
- RS SRB 688 RI Serbia Belgrade 88361 6982084 EU .rs RSD Dinar 381 ##### ^(\d{5})$ sr,hu,bs,rom 6290252 AL,HU,MK,RO,HR,BA,BG,ME,XK
242
- RU RUS 643 RS Russia Moscow 17100000 144478050 EU .ru RUB Ruble 7 ###### ^(\d{6})$ ru,tt,xal,cau,ady,kv,ce,tyv,cv,udm,tut,mns,bua,myv,mdf,chm,ba,inh,kbd,krc,av,sah,nog 2017370 GE,CN,BY,UA,KZ,LV,PL,EE,LT,FI,MN,NO,AZ,KP
243
- RW RWA 646 RW Rwanda Kigali 26338 12301939 AF .rw RWF Franc 250 rw,en-RW,fr-RW,sw 49518 TZ,CD,BI,UG
244
- SA SAU 682 SA Saudi Arabia Riyadh 1960582 33699947 AS .sa SAR Rial 966 ##### ^(\d{5})$ ar-SA 102358 QA,OM,IQ,YE,JO,AE,KW
245
- SB SLB 090 BP Solomon Islands Honiara 28450 652858 OC .sb SBD Dollar 677 en-SB,tpi 2103350
246
- SC SYC 690 SE Seychelles Victoria 455 96762 AF .sc SCR Rupee 248 en-SC,fr-SC 241170
247
- SD SDN 729 SU Sudan Khartoum 1861484 41801533 AF .sd SDG Pound 249 ##### ^(\d{5})$ ar-SD,en,fia 366755 SS,TD,EG,ET,ER,LY,CF
248
- SS SSD 728 OD South Sudan Juba 644329 8260490 AF .ss SSP Pound 211 en 7909807 CD,CF,ET,KE,SD,UG
249
- SE SWE 752 SW Sweden Stockholm 449964 10183175 EU .se SEK Krona 46 ### ## ^(?:SE)?\d{3}\s\d{2}$ sv-SE,se,sma,fi-SE 2661886 NO,FI
250
- SG SGP 702 SN Singapore Singapore 692.7 5638676 AS .sg SGD Dollar 65 ###### ^(\d{6})$ cmn,en-SG,ms-SG,ta-SG,zh-SG 1880251
251
- SH SHN 654 SH Saint Helena Jamestown 410 7460 AF .sh SHP Pound 290 STHL 1ZZ ^(STHL1ZZ)$ en-SH 3370751
252
- SI SVN 705 SI Slovenia Ljubljana 20273 2067372 EU .si EUR Euro 386 #### ^(?:SI)*(\d{4})$ sl,sh 3190538 HU,IT,HR,AT
253
- SJ SJM 744 SV Svalbard and Jan Mayen Longyearbyen 62049 2550 EU .sj NOK Krone 47 #### ^(\d{4})$ no,ru 607072
254
- SK SVK 703 LO Slovakia Bratislava 48845 5447011 EU .sk EUR Euro 421 ### ## ^\d{3}\s?\d{2}$ sk,hu 3057568 PL,HU,CZ,UA,AT
255
- SL SLE 694 SL Sierra Leone Freetown 71740 7650154 AF .sl SLE Leone 232 en-SL,men,tem 2403846 LR,GN
256
- SM SMR 674 SM San Marino San Marino 61.2 33785 EU .sm EUR Euro 378 4789# ^(4789\d)$ it-SM 3168068 IT
257
- SN SEN 686 SG Senegal Dakar 196190 15854360 AF .sn XOF Franc 221 ##### ^(\d{5})$ fr-SN,wo,fuc,mnk 2245662 GN,MR,GW,GM,ML
258
- SO SOM 706 SO Somalia Mogadishu 637657 15008154 AF .so SOS Shilling 252 @@ ##### ^([A-Z]{2}\d{5})$ so-SO,ar-SO,it,en-SO 51537 ET,KE,DJ
259
- SR SUR 740 NS Suriname Paramaribo 163270 575991 SA .sr SRD Dollar 597 nl-SR,en,srn,hns,jv 3382998 GY,BR,GF
260
- ST STP 678 TP Sao Tome and Principe Sao Tome 1001 197700 AF .st STN Dobra 239 pt-ST 2410758
261
- SV SLV 222 ES El Salvador San Salvador 21040 6420744 NA .sv USD Dollar 503 CP #### ^(?:CP)*(\d{4})$ es-SV 3585968 GT,HN
262
- SX SXM 534 NN Sint Maarten Philipsburg 21 40654 NA .sx ANG Guilder 599 nl,en 7609695 MF
263
- SY SYR 760 SY Syria Damascus 185180 16906283 AS .sy SYP Pound 963 ar-SY,ku,hy,arc,fr,en 163843 IQ,JO,IL,TR,LB
264
- SZ SWZ 748 WZ Eswatini Mbabane 17363 1136191 AF .sz SZL Lilangeni 268 @### ^([A-Z]\d{3})$ en-SZ,ss-SZ 934841 ZA,MZ
265
- TC TCA 796 TK Turks and Caicos Islands Cockburn Town 430 37665 NA .tc USD Dollar +1-649 TKCA 1ZZ ^(TKCA 1ZZ)$ en-TC 3576916
266
- TD TCD 148 CD Chad N'Djamena 1284000 15477751 AF .td XAF Franc 235 TKCA 1ZZ ^(TKCA 1ZZ)$ fr-TD,ar-TD,sre 2434508 NE,LY,CF,SD,CM,NG
267
- TF ATF 260 FS French Southern Territories Port-aux-Francais 7829 140 AN .tf EUR Euro fr 1546748
268
- TG TGO 768 TO Togo Lome 56785 7889094 AF .tg XOF Franc 228 fr-TG,ee,hna,kbp,dag,ha 2363686 BJ,GH,BF
269
- TH THA 764 TH Thailand Bangkok 514000 69428524 AS .th THB Baht 66 ##### ^(\d{5})$ th,en 1605651 LA,MM,KH,MY
270
- TJ TJK 762 TI Tajikistan Dushanbe 143100 9100837 AS .tj TJS Somoni 992 ###### ^(\d{6})$ tg,ru 1220409 CN,AF,KG,UZ
271
- TK TKL 772 TL Tokelau 10 1466 OC .tk NZD Dollar 690 tkl,en-TK 4031074
272
- TL TLS 626 TT Timor Leste Dili 15007 1267972 OC .tl USD Dollar 670 tet,pt-TL,id,en 1966436 ID
273
- TM TKM 795 TX Turkmenistan Ashgabat 488100 5850908 AS .tm TMT Manat 993 ###### ^(\d{6})$ tk,ru,uz 1218197 AF,IR,UZ,KZ
274
- TN TUN 788 TS Tunisia Tunis 163610 11565204 AF .tn TND Dinar 216 #### ^(\d{4})$ ar-TN,fr 2464461 DZ,LY
275
- TO TON 776 TN Tonga Nuku'alofa 748 103197 OC .to TOP Pa'anga 676 to,en-TO 4032283
276
- TR TUR 792 TU Turkey Ankara 780580 82319724 AS .tr TRY Lira 90 ##### ^(\d{5})$ tr-TR,ku,diq,az,av 298795 SY,GE,IQ,IR,GR,AM,AZ,BG
277
- TT TTO 780 TD Trinidad and Tobago Port of Spain 5128 1389858 NA .tt TTD Dollar +1-868 en-TT,hns,fr,es,zh 3573591
278
- TV TUV 798 TV Tuvalu Funafuti 26 11508 OC .tv AUD Dollar 688 tvl,en,sm,gil 2110297
279
- TW TWN 158 TW Taiwan Taipei 35980 23451837 AS .tw TWD Dollar 886 ##### ^(\d{5})$ zh-TW,zh,nan,hak 1668284
280
- TZ TZA 834 TZ Tanzania Dodoma 945087 56318348 AF .tz TZS Shilling 255 sw-TZ,en,ar 149590 MZ,KE,CD,RW,ZM,BI,UG,MW
281
- UA UKR 804 UP Ukraine Kyiv 603700 44622516 EU .ua UAH Hryvnia 380 ##### ^(\d{5})$ uk,ru-UA,rom,pl,hu 690791 PL,MD,HU,SK,BY,RO,RU
282
- UG UGA 800 UG Uganda Kampala 236040 42723139 AF .ug UGX Shilling 256 en-UG,lg,sw,ar 226074 TZ,KE,SS,CD,RW
283
- UM UMI 581 United States Minor Outlying Islands 0 0 OC .um USD Dollar 1 en-UM 5854968
284
- US USA 840 US United States Washington 9629091 327167434 NA .us USD Dollar 1 #####-#### ^\d{5}(-\d{4})?$ en-US,es-US,haw,fr 6252001 CA,MX,CU
285
- UY URY 858 UY Uruguay Montevideo 176220 3449299 SA .uy UYU Peso 598 ##### ^(\d{5})$ es-UY 3439705 BR,AR
286
- UZ UZB 860 UZ Uzbekistan Tashkent 447400 32955400 AS .uz UZS Som 998 ###### ^(\d{6})$ uz,ru,tg 1512440 TM,AF,KG,TJ,KZ
287
- VA VAT 336 VT Vatican Vatican City 0.44 921 EU .va EUR Euro 379 ##### ^(\d{5})$ la,it,fr 3164670 IT
288
- VC VCT 670 VC Saint Vincent and the Grenadines Kingstown 389 110211 NA .vc XCD Dollar +1-784 en-VC,fr 3577815
289
- VE VEN 862 VE Venezuela Caracas 912050 28870195 SA .ve VES Bolivar Soberano 58 #### ^(\d{4})$ es-VE 3625428 GY,BR,CO
290
- VG VGB 092 VI British Virgin Islands Road Town 153 29802 NA .vg USD Dollar +1-284 en-VG 3577718
291
- VI VIR 850 VQ U.S. Virgin Islands Charlotte Amalie 352 106977 NA .vi USD Dollar +1-340 #####-#### ^008\d{2}(?:-\d{4})?$ en-VI 4796775
292
- VN VNM 704 VM Vietnam Hanoi 329560 95540395 AS .vn VND Dong 84 ###### ^(\d{6})$ vi,en,fr,zh,km 1562822 CN,LA,KH
293
- VU VUT 548 NH Vanuatu Port Vila 12200 292680 OC .vu VUV Vatu 678 bi,en-VU,fr-VU 2134431
294
- WF WLF 876 WF Wallis and Futuna Mata Utu 274 16025 OC .wf XPF Franc 681 ##### ^(986\d{2})$ wls,fud,fr-WF 4034749
295
- WS WSM 882 WS Samoa Apia 2944 196130 OC .ws WST Tala 685 AS 96799 AS 96799 sm,en-WS 4034894
296
- YE YEM 887 YM Yemen Sanaa 527970 28498687 AS .ye YER Rial 967 ar-YE 69543 SA,OM
297
- YT MYT 175 MF Mayotte Mamoudzou 374 279471 AF .yt EUR Euro 262 ##### ^(\d{5})$ fr-YT 1024031
298
- ZA ZAF 710 SF South Africa Pretoria 1219912 57779622 AF .za ZAR Rand 27 #### ^(\d{4})$ zu,xh,af,nso,en-ZA,tn,st,ts,ss,ve,nr 953987 ZW,SZ,MZ,BW,NA,LS
299
- ZM ZMB 894 ZA Zambia Lusaka 752614 17351822 AF .zm ZMW Kwacha 260 ##### ^(\d{5})$ en-ZM,bem,loz,lun,lue,ny,toi 895949 ZW,TZ,MZ,CD,NA,MW,AO
300
- ZW ZWE 716 ZI Zimbabwe Harare 390580 16868409 AF .zw ZWG Zimbabwe Gold 263 en-ZW,sn,nr,nd 878675 ZA,MZ,BW,ZM
301
- CS SCG 891 YI Serbia and Montenegro Belgrade 102350 10829175 EU .cs RSD Dinar 381 ##### ^(\d{5})$ cu,hu,sq,sr 8505033 AL,HU,MK,RO,HR,BA,BG
302
- AN ANT 530 NT Netherlands Antilles Willemstad 960 300000 NA .an ANG Guilder 599 nl-AN,en,es 8505032 GP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
release_2025_09_15/data/input/imf_gdp_raw_2024.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d8583c093381da17225f57ee69ab39285f4c9557d53fa1ce5a8ce1160950c509
3
- size 265358
 
 
 
 
release_2025_09_15/data/input/onet_task_statements_raw.xlsx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:373cdc961891d04bcd29db66c43c7cf412d61fe3ef1f49e634dd979f4d5a3a95
3
- size 1204658
 
 
 
 
release_2025_09_15/data/input/sc-est2024-agesex-civ.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:334210a5080a6e470db22e42346ba7e6d0d43490887e08c5ed3ece62a7adfa9c
3
- size 818707
 
 
 
 
release_2025_09_15/data/input/soc_structure_raw.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:05eb5e689fb471b7a66962b57bba6666dee2c3e6a6854f0f84faf423af68dd17
3
- size 77176
 
 
 
 
release_2025_09_15/data/input/task_pct_v1.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8de89c99f762146c9e46b2202c3501e2a14f11c5b44c61c8007021127b6c676e
3
- size 461306
 
 
 
 
release_2025_09_15/data/input/task_pct_v2.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:0c20f184cd4a1e3d8ef3d77f500b32b62431ce61a3c2f133c3af7fa8429f97db
3
- size 435372
 
 
 
 
release_2025_09_15/data/input/working_age_pop_2024_country_raw.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:7c86dcb133a3f9f54f5f22e74683f5d6c5cc97faa9ddc2cdd466a4422cd4124c
3
- size 22974
 
 
 
 
release_2025_09_15/data/intermediate/aei_raw_1p_api_2025-08-04_to_2025-08-11.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c0fc061ea7d4feb71a7bd88c528d54e2d3a11e2045574f1e1fb2d594eebffd0f
3
- size 7027019
 
 
 
 
release_2025_09_15/data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:c8ef9c5eee0c42febc73e358ecc7d2358e0a0ce3b50122c0c15ae8ec569aceff
3
- size 18894517
 
 
 
 
release_2025_09_15/data/intermediate/gdp_2024_country.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e0618d6ba634a612b97b1c82f521ab38a387216069818a86f50c9aaf8e2bda6c
3
- size 4115
 
 
 
 
release_2025_09_15/data/intermediate/gdp_2024_us_state.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cb1573e8143bd407c2ea7c43f5a6822852568c596dbde843fc5d8692c9e967ec
3
- size 2179
 
 
 
 
release_2025_09_15/data/intermediate/iso_country_codes.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:eee318d4ab2c2c30f5a7da11f2bc7e0e36c246f6be5bb9b323fdb12b8e4809e0
3
- size 4564
 
 
 
 
release_2025_09_15/data/intermediate/onet_task_statements.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:88427f8d2a9f37a7c08b5420c6c66a01cdae6467b716bbbd31989128504b8ebb
3
- size 3650862
 
 
 
 
release_2025_09_15/data/intermediate/soc_structure.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:97dee70470182ac642872839f71a4a938c03677829aadca9bfbf250cb4021863
3
- size 78834
 
 
 
 
release_2025_09_15/data/intermediate/working_age_pop_2024_country.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3a9e0edc0453702e8efb63d7cab57e5b1a689bc09e070626bbf513e37edd5dd3
3
- size 6321
 
 
 
 
release_2025_09_15/data/intermediate/working_age_pop_2024_us_state.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e2d0fb7239934f4f6d0ae3444ab12ad8ff1dd323b71ccfc4295d074b537f17ec
3
- size 1079
 
 
 
 
release_2025_09_15/data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:48a2c39f8a98ce7c2ba72767cbe3760fd55ba4a64a193abfecefc76d19852c09
3
- size 26840881
 
 
 
 
release_2025_09_15/data/output/request_hierarchy_tree_1p_api.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:83ad607dace603931ef663768edc63738fe3547b41e5ab47739b49e3b1cdbad7
3
- size 302699
 
 
 
 
release_2025_09_15/data/output/request_hierarchy_tree_claude_ai.json DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:79f9f7939ba8c2dda1a5e52967dd9c6def3238e9fe024772330a411c849de7e0
3
- size 438531
 
 
 
 
release_2025_09_15/data_documentation.md DELETED
@@ -1,373 +0,0 @@
1
- # Data Documentation
2
-
3
- This document describes the data sources and variables used in the third Anthropic Economic Index (AEI) report.
4
-
5
- ## Claude.ai Usage Data
6
-
7
- ### Overview
8
- The core dataset contains Claude AI usage metrics aggregated by geography and analysis dimensions (facets).
9
-
10
- **Source files**:
11
- - `aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv` (pre-enrichment data in data/intermediate/)
12
- - `aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv` (enriched data in data/output/)
13
-
14
- **Note on data sources**: The AEI raw file contains raw counts and percentages. Derived metrics (indices, tiers, per capita calculations, automation/augmentation percentages) are calculated during the enrichment process in `aei_report_v3_preprocessing_claude_ai.ipynb`.
15
-
16
- ### Data Schema
17
- Each row represents one metric value for a specific geography and facet combination:
18
-
19
- | Column | Type | Description |
20
- |--------|------|-------------|
21
- | `geo_id` | string | Geographic identifier (ISO-2 country code for countries, US state code, or "GLOBAL", ISO-3 country codes in enriched data) |
22
- | `geography` | string | Geographic level: "country", "state_us", or "global" |
23
- | `date_start` | date | Start of data collection period |
24
- | `date_end` | date | End of data collection period |
25
- | `platform_and_product` | string | "Claude AI (Free and Pro)" |
26
- | `facet` | string | Analysis dimension (see Facets below) |
27
- | `level` | integer | Sub-level within facet (0-2) |
28
- | `variable` | string | Metric name (see Variables below) |
29
- | `cluster_name` | string | Specific entity within facet (task, pattern, etc.). For intersections, format is "base::category" |
30
- | `value` | float | Numeric metric value |
31
-
32
- ### Facets
33
- - **country**: Country-level aggregations
34
- - **state_us**: US state-level aggregations
35
- - **onet_task**: O*NET occupational tasks
36
- - **collaboration**: Human-AI collaboration patterns
37
- - **request**: Request complexity levels (0=highest granularity, 1=middle granularity, 2=lowest granularity)
38
- - **onet_task::collaboration**: Intersection of tasks and collaboration patterns
39
- - **request::collaboration**: Intersection of request categories and collaboration patterns
40
-
41
- ### Core Variables
42
-
43
- Variables follow the pattern `{prefix}_{suffix}` with specific meanings:
44
-
45
- **From AEI processing**: `*_count`, `*_pct`
46
- **From enrichment**: `*_per_capita`, `*_per_capita_index`, `*_pct_index`, `*_tier`, `automation_pct`, `augmentation_pct`, `soc_pct`
47
-
48
- #### Usage Metrics
49
- - **usage_count**: Total number of conversations/interactions in a geography
50
- - **usage_pct**: Percentage of total usage (relative to parent geography - gobal for countries, US for states)
51
- - **usage_per_capita**: Usage count divided by working age population
52
- - **usage_per_capita_index**: Concentration index showing if a geography has more/less usage than expected based on population share (1.0 = proportional, >1.0 = over-representation, <1.0 = under-representation)
53
- - **usage_tier**: Usage adoption tier (0 = no/little adoption, 1-4 = quartiles of adoption among geographies with sufficient usage)
54
-
55
- #### Content Facet Metrics
56
- **O*NET Task Metrics**:
57
- - **onet_task_count**: Number of conversations using this specific O*NET task
58
- - **onet_task_pct**: Percentage of geographic total using this task
59
- - **onet_task_pct_index**: Specialization index comparing task usage to baseline (global for countries, US for states)
60
- - **onet_task_collaboration_count**: Number of conversations with both this task and collaboration pattern (intersection)
61
- - **onet_task_collaboration_pct**: Percentage of the base task's total that has this collaboration pattern (sums to 100% within each task)
62
-
63
- #### Occupation Metrics
64
- - **soc_pct**: Percentage of classified O*NET tasks associated with this SOC major occupation group (e.g., Management, Computer and Mathematical)
65
-
66
- **Request Metrics**:
67
- - **request_count**: Number of conversations in this request category level
68
- - **request_pct**: Percentage of geographic total in this category
69
- - **request_pct_index**: Specialization index comparing request usage to baseline
70
- - **request_collaboration_count**: Number of conversations with both this request category and collaboration pattern (intersection)
71
- - **request_collaboration_pct**: Percentage of the base request's total that has this collaboration pattern (sums to 100% within each request)
72
-
73
- **Collaboration Pattern Metrics**:
74
- - **collaboration_count**: Number of conversations with this collaboration pattern
75
- - **collaboration_pct**: Percentage of geographic total with this pattern
76
- - **collaboration_pct_index**: Specialization index comparing pattern to baseline
77
- - **automation_pct**: Percentage of classifiable collaboration that is automation-focused (directive, feedback loop patterns)
78
- - **augmentation_pct**: Percentage of classifiable collaboration that is augmentation-focused (validation, task iteration, learning patterns)
79
-
80
- #### Demographic & Economic Metrics
81
- - **working_age_pop**: Population aged 15-64 (working age definition used by World Bank)
82
- - **gdp_per_working_age_capita**: Total GDP divided by working age population (in USD)
83
-
84
- #### Special Values
85
- - **not_classified**: Indicates data that was filtered for privacy protection or could not be classified
86
- - **none**: Indicates the absence of the attribute (e.g., no collaboration, no task selected)
87
-
88
- ### Data Processing Notes
89
- - **Minimum Observations**: 200 conversations per country, 100 per US state (applied in enrichment step, not raw preprocessing)
90
- - **Population Base**: Working-age population (ages 15-64)
91
- - **not_classified**:
92
- - For regular facets: Captures filtered/unclassified conversations
93
- - For intersection facets: Each base cluster has its own not_classified (e.g., "task1::not_classified")
94
- - **Intersection Percentages**: Calculated relative to base cluster totals, ensuring each base cluster's percentages sum to 100%
95
- - **Percentage Index Calculations**:
96
- - Exclude `not_classified` and `none` categories from index calculations as they are not meaningful
97
- - **Country Codes**: ISO-2 format (e.g., "US" in raw data), ISO-3 (e.g., "USA", "GBR", "FRA") for countries after enrichment
98
- - **Variable Definitions**: See Core Variables section above
99
-
100
- ## 1P API Usage Data
101
-
102
- ### Overview
103
- Dataset containing first-party API usage metrics along various dimensions based on a sample of 1P API traffic and analyzed using privacy-preserving methods.
104
-
105
- **Source file**: `aei_raw_1p_api_2025-08-04_to_2025-08-11.csv` (in data/intermediate/)
106
-
107
- ### Data Schema
108
- Each row represents one metric value for a specific facet combination at global level:
109
-
110
- | Column | Type | Description |
111
- |--------|------|-------------|
112
- | `geo_id` | string | Geographic identifier (always "GLOBAL" for API data) |
113
- | `geography` | string | Geographic level (always "global" for API data) |
114
- | `date_start` | date | Start of data collection period |
115
- | `date_end` | date | End of data collection period |
116
- | `platform_and_product` | string | "1P API" |
117
- | `facet` | string | Analysis dimension (see Facets below) |
118
- | `level` | integer | Sub-level within facet (0-2) |
119
- | `variable` | string | Metric name (see Variables below) |
120
- | `cluster_name` | string | Specific entity within facet. For intersections, format is "base::category" or "base::index"/"base::count" for mean value metrics |
121
- | `value` | float | Numeric metric value |
122
-
123
- ### Facets
124
- - **onet_task**: O*NET occupational tasks
125
- - **collaboration**: Human-AI collaboration patterns
126
- - **request**: Request categories (hierarchical levels 0-2 from bottom-up taxonomy)
127
- - **onet_task::collaboration**: Intersection of tasks and collaboration patterns
128
- - **onet_task::prompt_tokens**: Mean prompt tokens per task (normalized, average = 1.0)
129
- - **onet_task::completion_tokens**: Mean completion tokens per task (normalized, average = 1.0)
130
- - **onet_task::cost**: Mean cost per task (normalized, average = 1.0)
131
- - **request::collaboration**: Intersection of request categories and collaboration patterns
132
-
133
- ### Core Variables
134
-
135
- #### Usage Metrics
136
- - **collaboration_count**: Number of 1P API records with this collaboration pattern
137
- - **collaboration_pct**: Percentage of total with this pattern
138
-
139
- #### Content Facet Metrics
140
- **O*NET Task Metrics**:
141
- - **onet_task_count**: Number of 1P API records using this specific O*NET task
142
- - **onet_task_pct**: Percentage of total using this task
143
- - **onet_task_collaboration_count**: Records with both this task and collaboration pattern
144
- - **onet_task_collaboration_pct**: Percentage of the task's total with this collaboration pattern
145
-
146
- **Mean Value Intersection Metrics** (unique to API data):
147
- - **prompt_tokens_index**: Re-indexed mean prompt tokens (1.0 = average across all tasks)
148
- - **prompt_tokens_count**: Number of records for this metric
149
- - **completion_tokens_index**: Re-indexed mean completion tokens (1.0 = average across all tasks)
150
- - **completion_tokens_count**: Number of records for this metric
151
- - **cost_index**: Re-indexed mean cost (1.0 = average across all tasks)
152
- - **cost_count**: Number of records for this metric
153
-
154
- **Request Metrics**:
155
- - **request_count**: Number of 1P API records in this request category
156
- - **request_pct**: Percentage of total in this category
157
- - **request_collaboration_count**: Records with both this request category and collaboration pattern
158
- - **request_collaboration_pct**: Percentage of the request's total with this collaboration pattern
159
-
160
- ## Claude.ai Request Hierarchy
161
-
162
- Contains the hierarchy of request clusters for Claude.ai usage with their names and descriptions.
163
-
164
- **Source file**: `request_hierarchy_tree_claude_ai.json` (in data/output/)
165
-
166
- ## 1P API Request Hierarchy
167
-
168
- Contains the hierarchy of request clusters for 1P API usage with their names and descriptions.
169
-
170
- **Source file**: `request_hierarchy_tree_1p_api.json` (in data/output/)
171
-
172
- ## Claude.ai Usage Data from Prior Anthropic Economic Index Releases
173
-
174
- Data on task usage and automation/augmentation patterns from the first and second Anthropic Economic Index reports.
175
-
176
- - **Source**: Anthropic/EconomicIndex dataset on Hugging Face
177
- - **URL**: https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_03_27
178
- - **License**: Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)
179
- - **Files**:
180
- - `automation_vs_augmentation_v1.csv`
181
- - `automation_vs_augmentation_v2.csv`
182
- - `task_pct_v1.csv`
183
- - `task_pct_v2.csv`
184
-
185
- ## External Data Sources
186
-
187
- We use external data to enrich Claude usage data with external economic and demographic sources.
188
-
189
- ### ISO Country Codes
190
-
191
- **ISO 3166 Country Codes**
192
-
193
- International standard codes for representing countries and territories, used for mapping IP-based geolocation data to standardized country identifiers.
194
-
195
- - **Standard**: ISO 3166-1
196
- - **Source**: GeoNames geographical database
197
- - **URL**: https://download.geonames.org/export/dump/countryInfo.txt
198
- - **License**: Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)
199
- - **Attribution note**: Data in the data/intermediate and data/output folders have been processed and modified from original source; modifications to data in data/intermediate include extracting only tabular data, selecting a subset of columns, and renaming columns; modifications to data in data/output include transforming data to long format
200
- - **Download date**: September 2, 2025
201
- - **Output files**:
202
- - `geonames_countryInfo.txt` (raw GeoNames data in data/input/)
203
- - `iso_country_codes.csv` (processed country codes in data/intermediate/)
204
- - **Key fields**:
205
- - `iso_alpha_2`: Two-letter country code (e.g., "US", "GB", "FR")
206
- - `iso_alpha_3`: Three-letter country code (e.g., "USA", "GBR", "FRA")
207
- - `country_name`: Country name from GeoNames
208
- - **Usage**: Maps IP-based country identification to standardized ISO codes for consistent geographic aggregation
209
-
210
- ### US State Codes
211
-
212
- **State FIPS Codes and USPS Abbreviations**
213
-
214
- Official state and territory codes including FIPS codes and two-letter USPS abbreviations for all U.S. states, territories, and the District of Columbia.
215
-
216
- - **Series**: State FIPS Codes
217
- - **Source**: U.S. Census Bureau, Geography Division
218
- - **URL**: https://www2.census.gov/geo/docs/reference/state.txt
219
- - **License**: Public Domain (U.S. Government Work)
220
- - **Download date**: September 2, 2025
221
- - **Output files**:
222
- - `census_state_codes.txt` (raw pipe-delimited text file in data/input/)
223
- - **Usage**: Maps state names to two-letter abbreviations (e.g., "California" → "CA")
224
-
225
- ### Population Data
226
-
227
- ### US State Population
228
-
229
- **State Characteristics Estimates - Age and Sex - Civilian Population**
230
-
231
- Annual estimates of the civilian population by single year of age, sex, race, and Hispanic origin for states and the District of Columbia.
232
-
233
- - **Series**: SC-EST2024-AGESEX-CIV
234
- - **Source**: U.S. Census Bureau, Population Division
235
- - **URL**: https://www2.census.gov/programs-surveys/popest/datasets/2020-2024/state/asrh/sc-est2024-agesex-civ.csv
236
- - **License**: Public Domain (U.S. Government Work)
237
- - **Download date**: September 2, 2025
238
- - **Output files**:
239
- - `sc-est2024-agesex-civ.csv` (raw Census data in data/input/)
240
- - `working_age_pop_2024_us_state.csv` (processed data summed for ages 15-64 by state in data/intermediate/)
241
- - **Documentation**: https://www2.census.gov/programs-surveys/popest/technical-documentation/file-layouts/2020-2024/SC-EST2024-AGESEX-CIV.pdf
242
-
243
- ### Country Population
244
-
245
- **Population ages 15-64, total**
246
-
247
- Total population between the ages 15 to 64. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
248
-
249
- - **Series**: SP.POP.1564.TO
250
- - **Source**: World Population Prospects, United Nations (UN), publisher: UN Population Division; Staff estimates, World Bank (WB)
251
- - **URL**: https://api.worldbank.org/v2/country/all/indicator/SP.POP.1564.TO?format=json&date=2024&per_page=1000
252
- - **License**: Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)
253
- - **Attribution note**: Data in the data/intermediate folder have been processed and modified from original source; modifications to data in data/input include changing the file format; modifications to data/intermediate include adding Taiwan population data, removing non-country aggregates, removing invalid country codes, removing excluded countries, and renaming columns; modifications to data in data/output include transforming data to long format
254
- - **Download date**: September 2, 2025
255
- - **Output files**:
256
- - `working_age_pop_2024_country_raw.csv` (raw World Bank data in data/input/)
257
- - `working_age_pop_2024_country.csv` (processed country-level data including Taiwan in data/intermediate/)
258
-
259
- ### Taiwan Population
260
-
261
- **Population by single age**
262
-
263
- Population projections by single year of age for Taiwan (Republic of China). This data supplements the World Bank country data which excludes Taiwan.
264
-
265
- - **Series**: Population by single age (Medium variant, Total gender)
266
- - **Source**: National Development Council, Population Projections for the R.O.C (Taiwan)
267
- - **URL**: https://pop-proj.ndc.gov.tw/main_en/Custom_Detail_Statistics_Search.aspx?n=175&_Query=258170a1-1394-49fe-8d21-dc80562b72fb&page=1&PageSize=10&ToggleType=
268
- - **License**: Open Government Data License (Taiwan) (https://data.gov.tw/en/license)
269
- - **Update date**: 2025.06.17
270
- - **Download date**: September 2, 2025
271
- - **Reference year**: 2024
272
- - **Variable name in script**: `df_taiwan` (raw data), added to `df_working_age_pop_country`
273
- - **Output files**:
274
- - `Population by single age _20250802235608.csv` (raw data in data/input/, pre-filtered to ages 15-64)
275
- - Merged into `working_age_pop_2024_country.csv` (processed country-level data in data/intermediate/)
276
-
277
- ## GDP Data
278
-
279
- ### Country GDP
280
-
281
- **Gross Domestic Product, Current Prices (Billions of U.S. Dollars)**
282
-
283
- Total gross domestic product at current market prices for all countries and territories.
284
-
285
- - **Series**: NGDPD
286
- - **Source**: International Monetary Fund (IMF), World Economic Outlook Database
287
- - **URL**: https://www.imf.org/external/datamapper/api/v1/NGDPD
288
- - **License**: IMF Data Terms and Conditions (https://www.imf.org/en/About/copyright-and-terms#data)
289
- - **Reference year**: 2024
290
- - **Download date**: September 2, 2025
291
- - **Output files**:
292
- - `imf_gdp_raw_2024.json` (raw API response in data/input/)
293
- - `gdp_2024_country.csv` (processed country GDP data in data/intermediate/)
294
-
295
- ### US State GDP
296
-
297
- **SASUMMARY State Annual Summary Statistics: Personal Income, GDP, Consumer Spending, Price Indexes, and Employment**
298
-
299
- Gross domestic product by state in millions of current U.S. dollars.
300
-
301
- - **Series**: SASUMMARY (Gross Domestic Product by State)
302
- - **Source**: U.S. Bureau of Economic Analysis (BEA)
303
- - **URL**: https://apps.bea.gov/itable/?ReqID=70&step=1
304
- - **License**: Public Domain (U.S. Government Work)
305
- - **Download date**: September 2, 2025
306
- - **Reference year**: 2024
307
- - **Output files**:
308
- - `bea_us_state_gdp_2024.csv` (raw data in data/input/, manually downloaded from BEA)
309
- - `gdp_2024_us_state.csv` (processed state GDP data in data/intermediate/)
310
- - **Citation**: U.S. Bureau of Economic Analysis, "SASUMMARY State annual summary statistics: personal income, GDP, consumer spending, price indexes, and employment" (accessed September 2, 2025)
311
-
312
- ## SOC and O*NET Data
313
-
314
- ### O*NET Task Statements
315
-
316
- **O*NET Task Statements Dataset**
317
-
318
- Comprehensive database of task statements associated with occupations in the O*NET-SOC taxonomy, providing detailed work activities for each occupation.
319
-
320
- - **Database Version**: O*NET Database 20.1
321
- - **Source**: O*NET Resource Center, U.S. Department of Labor
322
- - **URL**: https://www.onetcenter.org/dl_files/database/db_20_1_excel/Task%20Statements.xlsx
323
- - **License**: Public Domain (U.S. Government Work)
324
- - **Download date**: September 2, 2025
325
- - **Output files**:
326
- - `onet_task_statements_raw.xlsx` (raw Excel file in data/input/)
327
- - `onet_task_statements.csv` (processed data with soc_major_group in data/intermediate/)
328
- - **Key fields**:
329
- - `O*NET-SOC Code`: Full occupation code (e.g., "11-1011.00")
330
- - `Title`: Occupation title
331
- - `Task ID`: Unique task identifier
332
- - `Task`: Description of work task
333
- - `Task Type`: Core or Supplemental
334
- - `soc_major_group`: First 2 digits of SOC code (e.g., "11" for Management)
335
- - **Notes**:
336
- - SOC major group codes extracted from O*NET-SOC codes for aggregation
337
- - Used to map Claude usage patterns to occupational categories
338
-
339
- ### SOC Structure
340
-
341
- **Standard Occupational Classification (SOC) Structure**
342
-
343
- Hierarchical classification system for occupations, providing standardized occupation titles and codes.
344
-
345
- - **SOC Version**: 2019
346
- - **Source**: O*NET Resource Center (SOC taxonomy)
347
- - **URL**: https://www.onetcenter.org/taxonomy/2019/structure/?fmt=csv
348
- - **License**: Public Domain (U.S. Government Work)
349
- - **Download date**: September 2, 2025
350
- - **Variable name in script**: `df_soc` (SOC structure dataframe)
351
- - **Output files**:
352
- - `soc_structure_raw.csv` (raw data in data/input/)
353
- - `soc_structure.csv` (processed SOC structure in data/intermediate/)
354
- - **Key fields**:
355
- - `Major Group`: SOC major group code (e.g., "11-0000")
356
- - `Minor Group`: SOC minor group code
357
- - `Broad Occupation`: Broad occupation code
358
- - `Detailed Occupation`: Detailed occupation code
359
- - `soc_major_group`: 2-digit major group code (e.g., "11")
360
- - `SOC or O*NET-SOC 2019 Title`: Occupation group title
361
- - **Notes**:
362
- - Provides hierarchical structure for occupational classification
363
-
364
- ### Business Trends and Outlook Survey
365
-
366
- Core questions, National.
367
-
368
- - **Source**: U.S. Census Bureau
369
- - **URL**: https://www.census.gov/hfp/btos/downloads/National.xlsx
370
- - **License**: Public Domain (U.S. Government Work)
371
- - **Download date**: September 5, 2025
372
- - **Reference periods**: Ending in September 2023 and August 2025
373
- - **Input file**: `BTOS_National.xlsx`