test
#9
by
nfmcclure
- opened
- .gitattributes +0 -3
- .gitignore +0 -1
- README.md +6 -28
- release_2025_09_15/README.md +0 -72
- release_2025_09_15/code/aei_analysis_functions_1p_api.py +0 -2339
- release_2025_09_15/code/aei_analysis_functions_claude_ai.py +0 -2926
- release_2025_09_15/code/aei_report_v3_analysis_1p_api.ipynb +0 -315
- release_2025_09_15/code/aei_report_v3_analysis_claude_ai.ipynb +0 -868
- release_2025_09_15/code/aei_report_v3_change_over_time_claude_ai.py +0 -564
- release_2025_09_15/code/aei_report_v3_preprocessing_claude_ai.ipynb +0 -1840
- release_2025_09_15/code/preprocess_gdp.py +0 -364
- release_2025_09_15/code/preprocess_iso_codes.py +0 -111
- release_2025_09_15/code/preprocess_onet.py +0 -179
- release_2025_09_15/code/preprocess_population.py +0 -407
- release_2025_09_15/data/input/BTOS_National.xlsx +0 -3
- release_2025_09_15/data/input/Population by single age _20250903072924.csv +0 -3
- release_2025_09_15/data/input/automation_vs_augmentation_v1.csv +0 -3
- release_2025_09_15/data/input/automation_vs_augmentation_v2.csv +0 -3
- release_2025_09_15/data/input/bea_us_state_gdp_2024.csv +0 -3
- release_2025_09_15/data/input/census_state_codes.txt +0 -58
- release_2025_09_15/data/input/geonames_countryInfo.txt +0 -302
- release_2025_09_15/data/input/imf_gdp_raw_2024.json +0 -3
- release_2025_09_15/data/input/onet_task_statements_raw.xlsx +0 -3
- release_2025_09_15/data/input/sc-est2024-agesex-civ.csv +0 -3
- release_2025_09_15/data/input/soc_structure_raw.csv +0 -3
- release_2025_09_15/data/input/task_pct_v1.csv +0 -3
- release_2025_09_15/data/input/task_pct_v2.csv +0 -3
- release_2025_09_15/data/input/working_age_pop_2024_country_raw.csv +0 -3
- release_2025_09_15/data/intermediate/aei_raw_1p_api_2025-08-04_to_2025-08-11.csv +0 -3
- release_2025_09_15/data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv +0 -3
- release_2025_09_15/data/intermediate/gdp_2024_country.csv +0 -3
- release_2025_09_15/data/intermediate/gdp_2024_us_state.csv +0 -3
- release_2025_09_15/data/intermediate/iso_country_codes.csv +0 -3
- release_2025_09_15/data/intermediate/onet_task_statements.csv +0 -3
- release_2025_09_15/data/intermediate/soc_structure.csv +0 -3
- release_2025_09_15/data/intermediate/working_age_pop_2024_country.csv +0 -3
- release_2025_09_15/data/intermediate/working_age_pop_2024_us_state.csv +0 -3
- release_2025_09_15/data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv +0 -3
- release_2025_09_15/data/output/request_hierarchy_tree_1p_api.json +0 -3
- release_2025_09_15/data/output/request_hierarchy_tree_claude_ai.json +0 -3
- release_2025_09_15/data_documentation.md +0 -373
.gitattributes
CHANGED
|
@@ -57,6 +57,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 57 |
# Video files - compressed
|
| 58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
| 60 |
-
release_2025_09_15/**/*.csv filter=lfs diff=lfs merge=lfs -text
|
| 61 |
-
release_2025_09_15/**/*.xlsx filter=lfs diff=lfs merge=lfs -text
|
| 62 |
-
release_2025_09_15/**/*.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 57 |
# Video files - compressed
|
| 58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
.gitignore
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
.DS_Store
|
|
|
|
|
|
README.md
CHANGED
|
@@ -9,14 +9,10 @@ tags:
|
|
| 9 |
viewer: true
|
| 10 |
license: mit
|
| 11 |
configs:
|
| 12 |
-
- config_name:
|
| 13 |
data_files:
|
| 14 |
-
- split:
|
| 15 |
-
path: "
|
| 16 |
-
- split: raw_1p_api
|
| 17 |
-
path: "release_2025_09_15/data/intermediate/aei_raw_1p_api_2025-08-04_to_2025-08-11.csv"
|
| 18 |
-
- split: enriched_claude_ai
|
| 19 |
-
path: "release_2025_09_15/data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv"
|
| 20 |
---
|
| 21 |
|
| 22 |
# The Anthropic Economic Index
|
|
@@ -29,17 +25,13 @@ The Anthropic Economic Index provides insights into how AI is being incorporated
|
|
| 29 |
|
| 30 |
This repository contains multiple data releases, each with its own documentation:
|
| 31 |
|
| 32 |
-
- **[2025-09-15 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_09_15)**: Updated analysis with geographic and first-party API data using Sonnet 4
|
| 33 |
-
- **[2025-03-27 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_03_27)**: Updated analysis with Claude 3.7 Sonnet data and cluster-level insights
|
| 34 |
- **[2025-02-10 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_02_10)**: Initial release with O*NET task mappings, automation vs. augmentation data, and more
|
| 35 |
-
|
| 36 |
|
| 37 |
## Resources
|
| 38 |
|
| 39 |
- [Index Home Page](https://www.anthropic.com/economic-index)
|
| 40 |
-
- [
|
| 41 |
-
- [2nd report](https://www.anthropic.com/news/anthropic-economic-index-insights-from-claude-sonnet-3-7)
|
| 42 |
-
- [1st report](https://www.anthropic.com/news/the-anthropic-economic-index)
|
| 43 |
|
| 44 |
|
| 45 |
## License
|
|
@@ -48,24 +40,10 @@ Data released under CC-BY, code released under MIT License
|
|
| 48 |
|
| 49 |
## Contact
|
| 50 |
|
| 51 |
-
For inquiries, contact
|
| 52 |
|
| 53 |
## Citation
|
| 54 |
|
| 55 |
-
### Third release
|
| 56 |
-
|
| 57 |
-
```
|
| 58 |
-
@online{appelmccrorytamkin2025geoapi,
|
| 59 |
-
author = {Ruth Appel and Peter McCrory and Alex Tamkin and Michael Stern and Miles McCain and Tyler Neylon],
|
| 60 |
-
title = {Anthropic Economic Index Report: Uneven Geographic and Enterprise AI Adoption},
|
| 61 |
-
date = {2025-09-15},
|
| 62 |
-
year = {2025},
|
| 63 |
-
url = {www.anthropic.com/research/anthropic-economic-index-september-2025-report},
|
| 64 |
-
}
|
| 65 |
-
```
|
| 66 |
-
|
| 67 |
-
### Second release
|
| 68 |
-
|
| 69 |
```
|
| 70 |
@misc{handa2025economictasksperformedai,
|
| 71 |
title={Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations},
|
|
|
|
| 9 |
viewer: true
|
| 10 |
license: mit
|
| 11 |
configs:
|
| 12 |
+
- config_name: default
|
| 13 |
data_files:
|
| 14 |
+
- split: train
|
| 15 |
+
path: "release_2025_03_27/automation_vs_augmentation_by_task.csv"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
---
|
| 17 |
|
| 18 |
# The Anthropic Economic Index
|
|
|
|
| 25 |
|
| 26 |
This repository contains multiple data releases, each with its own documentation:
|
| 27 |
|
|
|
|
|
|
|
| 28 |
- **[2025-02-10 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_02_10)**: Initial release with O*NET task mappings, automation vs. augmentation data, and more
|
| 29 |
+
- **[2025-03-27 Release](https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_03_27)**: Updated analysis with Claude 3.7 Sonnet data and cluster-level insights
|
| 30 |
|
| 31 |
## Resources
|
| 32 |
|
| 33 |
- [Index Home Page](https://www.anthropic.com/economic-index)
|
| 34 |
+
- [Research Paper](https://assets.anthropic.com/m/2e23255f1e84ca97/original/Economic_Tasks_AI_Paper.pdf)
|
|
|
|
|
|
|
| 35 |
|
| 36 |
|
| 37 |
## License
|
|
|
|
| 40 |
|
| 41 |
## Contact
|
| 42 |
|
| 43 |
+
For inquiries, contact kunal@anthropic.com or atamkin@anthropic.com. We invite researchers to provide input on potential future data releases using [this form](https://docs.google.com/forms/d/e/1FAIpQLSfDEdY-mT5lcXPaDSv-0Ci1rSXGlbIJierxkUbNB7_07-kddw/viewform?usp=dialog).
|
| 44 |
|
| 45 |
## Citation
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
```
|
| 48 |
@misc{handa2025economictasksperformedai,
|
| 49 |
title={Which Economic Tasks are Performed with AI? Evidence from Millions of Claude Conversations},
|
release_2025_09_15/README.md
DELETED
|
@@ -1,72 +0,0 @@
|
|
| 1 |
-
# Anthropic Economic Index September 2025 Report Replication
|
| 2 |
-
|
| 3 |
-
## Folder Structure
|
| 4 |
-
|
| 5 |
-
```
|
| 6 |
-
.
|
| 7 |
-
├── code/ # Analysis scripts
|
| 8 |
-
├── data/
|
| 9 |
-
│ ├── input/ # Raw data files (from external sources or prior releases)
|
| 10 |
-
│ ├── intermediate/ # Processed data files
|
| 11 |
-
│ └── output/ # Final outputs (plots, tables, etc.)
|
| 12 |
-
├── data_documentation.md # Documentation of all data sources and datasets
|
| 13 |
-
└── README.md
|
| 14 |
-
```
|
| 15 |
-
|
| 16 |
-
## Data Processing Pipeline
|
| 17 |
-
|
| 18 |
-
**Note:** Since all preprocessed data files are provided, you can skip directly to the Analysis section (Section 2) if you want to replicate the results without re-running the preprocessing steps. Please refer to `data_documentation.md` for details on the different data used.
|
| 19 |
-
|
| 20 |
-
Run the following scripts in order from the `code/` directory:
|
| 21 |
-
|
| 22 |
-
### 1. Data Preprocessing
|
| 23 |
-
|
| 24 |
-
1. **`preprocess_iso_codes.py`**
|
| 25 |
-
- Processes ISO country codes
|
| 26 |
-
- Creates standardized country code mappings
|
| 27 |
-
|
| 28 |
-
2. **`preprocess_population.py`**
|
| 29 |
-
- Processes country-level population data
|
| 30 |
-
- Processes US state-level population data
|
| 31 |
-
- Outputs working age population statistics
|
| 32 |
-
|
| 33 |
-
3. **`preprocess_gdp.py`**
|
| 34 |
-
- Downloads and processes IMF country GDP data
|
| 35 |
-
- Processes BEA US state GDP data
|
| 36 |
-
- Creates standardized GDP datasets
|
| 37 |
-
|
| 38 |
-
4. **`preprocess_onet.py`**
|
| 39 |
-
- Processes O*NET occupation and task data
|
| 40 |
-
- Creates SOC occupation mappings
|
| 41 |
-
|
| 42 |
-
5. **`aei_report_v3_preprocessing_1p_api.ipynb`**
|
| 43 |
-
- Jupyter notebook for preprocessing API and Claude.ai usage data
|
| 44 |
-
- Prepares data for analysis
|
| 45 |
-
|
| 46 |
-
### 2. Analysis
|
| 47 |
-
|
| 48 |
-
#### Analysis Scripts
|
| 49 |
-
|
| 50 |
-
1. **`aei_report_v3_change_over_time_claude_ai.py`**
|
| 51 |
-
- Analyzes automation trends across report versions (V1, V2, V3)
|
| 52 |
-
- Generates comparison figures showing evolution of automation estimates
|
| 53 |
-
|
| 54 |
-
2. **`aei_report_v3_analysis_claude_ai.ipynb`**
|
| 55 |
-
- Analysis notebook for Claude.ai usage patterns
|
| 56 |
-
- Generates figures specific to Claude.ai usage
|
| 57 |
-
- Uses functions from `aei_analysis_functions_claude_ai.py`
|
| 58 |
-
|
| 59 |
-
3. **`aei_report_v3_analysis_1p_api.ipynb`**
|
| 60 |
-
- Main analysis notebook for API usage patterns
|
| 61 |
-
- Generates figures for occupational usage, collaboration patterns, and regression analyses
|
| 62 |
-
- Uses functions from `aei_analysis_functions_1p_api.py`
|
| 63 |
-
|
| 64 |
-
#### Supporting Function Files
|
| 65 |
-
|
| 66 |
-
- **`aei_analysis_functions_claude_ai.py`**
|
| 67 |
-
- Core analysis functions for Claude.ai data
|
| 68 |
-
- Platform-specific analysis and visualization functions
|
| 69 |
-
|
| 70 |
-
- **`aei_analysis_functions_1p_api.py`**
|
| 71 |
-
- Core analysis functions for API data
|
| 72 |
-
- Includes regression models, plotting functions, and data transformations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/code/aei_analysis_functions_1p_api.py
DELETED
|
@@ -1,2339 +0,0 @@
|
|
| 1 |
-
# AEI 1P API Analysis Functions
|
| 2 |
-
# This module contains the core analysis functions for the AEI report API chapter
|
| 3 |
-
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
from textwrap import wrap
|
| 6 |
-
|
| 7 |
-
import matplotlib.pyplot as plt
|
| 8 |
-
import numpy as np
|
| 9 |
-
import pandas as pd
|
| 10 |
-
import plotly.graph_objects as go
|
| 11 |
-
import statsmodels.api as sm
|
| 12 |
-
from plotly.subplots import make_subplots
|
| 13 |
-
|
| 14 |
-
# Define the tier colors
|
| 15 |
-
CUSTOM_COLORS_LIST = ["#E6DBD0", "#E5C5AB", "#E4AF86", "#E39961", "#D97757"]
|
| 16 |
-
|
| 17 |
-
# Define the color cycle for charts
|
| 18 |
-
COLOR_CYCLE = [
|
| 19 |
-
"#D97757",
|
| 20 |
-
"#656565",
|
| 21 |
-
"#40668C",
|
| 22 |
-
"#E39961",
|
| 23 |
-
"#E4AF86",
|
| 24 |
-
"#C65A3F",
|
| 25 |
-
"#8778AB",
|
| 26 |
-
"#E5C5AB",
|
| 27 |
-
"#B04F35",
|
| 28 |
-
]
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def setup_plot_style():
|
| 32 |
-
"""Configure matplotlib for publication-quality figures."""
|
| 33 |
-
plt.style.use("default")
|
| 34 |
-
plt.rcParams.update(
|
| 35 |
-
{
|
| 36 |
-
"figure.dpi": 100,
|
| 37 |
-
"savefig.dpi": 300,
|
| 38 |
-
"font.size": 10,
|
| 39 |
-
"axes.labelsize": 11,
|
| 40 |
-
"axes.titlesize": 12,
|
| 41 |
-
"xtick.labelsize": 9,
|
| 42 |
-
"ytick.labelsize": 9,
|
| 43 |
-
"legend.fontsize": 9,
|
| 44 |
-
"figure.facecolor": "white",
|
| 45 |
-
"axes.facecolor": "white",
|
| 46 |
-
"savefig.facecolor": "white",
|
| 47 |
-
"axes.edgecolor": "#333333",
|
| 48 |
-
"axes.linewidth": 0.8,
|
| 49 |
-
"axes.grid": True,
|
| 50 |
-
"grid.alpha": 0.3,
|
| 51 |
-
"grid.linestyle": "-",
|
| 52 |
-
"grid.linewidth": 0.5,
|
| 53 |
-
"axes.axisbelow": True,
|
| 54 |
-
"text.usetex": False,
|
| 55 |
-
"mathtext.default": "regular",
|
| 56 |
-
"axes.titlecolor": "#B86046",
|
| 57 |
-
"figure.titlesize": 16,
|
| 58 |
-
}
|
| 59 |
-
)
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
# Initialize style
|
| 63 |
-
setup_plot_style()
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
def load_preprocessed_data(input_file):
|
| 67 |
-
"""
|
| 68 |
-
Load preprocessed API data from CSV or Parquet file.
|
| 69 |
-
|
| 70 |
-
Args:
|
| 71 |
-
input_file: Path to preprocessed data file
|
| 72 |
-
|
| 73 |
-
Returns:
|
| 74 |
-
DataFrame with preprocessed API data
|
| 75 |
-
"""
|
| 76 |
-
input_path = Path(input_file)
|
| 77 |
-
|
| 78 |
-
if not input_path.exists():
|
| 79 |
-
raise FileNotFoundError(f"Input file not found: {input_path}")
|
| 80 |
-
|
| 81 |
-
df = pd.read_csv(input_path)
|
| 82 |
-
return df
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
def create_top_requests_bar_chart(df, output_dir):
|
| 86 |
-
"""
|
| 87 |
-
Create bar chart showing top 15 request categories (level 2) by count share.
|
| 88 |
-
|
| 89 |
-
Args:
|
| 90 |
-
df: Preprocessed data DataFrame
|
| 91 |
-
output_dir: Directory to save the figure
|
| 92 |
-
"""
|
| 93 |
-
# Get request data at level 2 (global only) using percentages
|
| 94 |
-
request_data = df[
|
| 95 |
-
(df["facet"] == "request")
|
| 96 |
-
& (df["geo_id"] == "GLOBAL")
|
| 97 |
-
& (df["level"] == 2)
|
| 98 |
-
& (df["variable"] == "request_pct")
|
| 99 |
-
].copy()
|
| 100 |
-
|
| 101 |
-
# Filter out not_classified (but don't renormalize)
|
| 102 |
-
request_data = request_data[request_data["cluster_name"] != "not_classified"]
|
| 103 |
-
|
| 104 |
-
# Use the percentage values directly (already calculated in preprocessing)
|
| 105 |
-
request_data["request_pct"] = request_data["value"]
|
| 106 |
-
|
| 107 |
-
# Get top 15 requests by percentage share
|
| 108 |
-
top_requests = request_data.nlargest(15, "request_pct").sort_values(
|
| 109 |
-
"request_pct", ascending=True
|
| 110 |
-
)
|
| 111 |
-
|
| 112 |
-
# Create figure
|
| 113 |
-
fig, ax = plt.subplots(figsize=(14, 10))
|
| 114 |
-
|
| 115 |
-
# Create horizontal bar chart with tier color gradient
|
| 116 |
-
y_pos = np.arange(len(top_requests))
|
| 117 |
-
|
| 118 |
-
# Use tier colors based on ranking (top categories get darker colors)
|
| 119 |
-
colors = []
|
| 120 |
-
for i in range(len(top_requests)):
|
| 121 |
-
# Map position to tier color (top bars = darker, bottom bars = lighter)
|
| 122 |
-
# Since bars are sorted ascending, higher index = higher value = darker color
|
| 123 |
-
rank_position = i / (len(top_requests) - 1)
|
| 124 |
-
tier_index = int(rank_position * (len(CUSTOM_COLORS_LIST) - 1))
|
| 125 |
-
colors.append(CUSTOM_COLORS_LIST[tier_index])
|
| 126 |
-
|
| 127 |
-
ax.barh(
|
| 128 |
-
y_pos,
|
| 129 |
-
top_requests["request_pct"],
|
| 130 |
-
color=colors,
|
| 131 |
-
alpha=0.9,
|
| 132 |
-
edgecolor="#333333",
|
| 133 |
-
linewidth=0.5,
|
| 134 |
-
)
|
| 135 |
-
|
| 136 |
-
# Add value labels on bars
|
| 137 |
-
for i, (idx, row) in enumerate(top_requests.iterrows()):
|
| 138 |
-
ax.text(
|
| 139 |
-
row["request_pct"] + 0.1,
|
| 140 |
-
i,
|
| 141 |
-
f"{row['request_pct']:.1f}%",
|
| 142 |
-
va="center",
|
| 143 |
-
fontsize=11,
|
| 144 |
-
fontweight="bold",
|
| 145 |
-
)
|
| 146 |
-
|
| 147 |
-
# Clean up request names for y-axis labels
|
| 148 |
-
labels = []
|
| 149 |
-
for name in top_requests["cluster_name"]:
|
| 150 |
-
# Truncate long names and add line breaks
|
| 151 |
-
if len(name) > 60:
|
| 152 |
-
# Find good break point around middle
|
| 153 |
-
mid = len(name) // 2
|
| 154 |
-
break_point = name.find(" ", mid)
|
| 155 |
-
if break_point == -1: # No space found, just break at middle
|
| 156 |
-
break_point = mid
|
| 157 |
-
clean_name = name[:break_point] + "\n" + name[break_point:].strip()
|
| 158 |
-
else:
|
| 159 |
-
clean_name = name
|
| 160 |
-
labels.append(clean_name)
|
| 161 |
-
|
| 162 |
-
ax.set_yticks(y_pos)
|
| 163 |
-
ax.set_yticklabels(labels, fontsize=10)
|
| 164 |
-
|
| 165 |
-
# Formatting
|
| 166 |
-
ax.set_xlabel("Percentage of total request count", fontsize=14)
|
| 167 |
-
ax.set_title(
|
| 168 |
-
"Top use cases among 1P API transcripts by usage share \n (broad grouping, bottom-up classification)",
|
| 169 |
-
fontsize=14,
|
| 170 |
-
fontweight="bold",
|
| 171 |
-
pad=20,
|
| 172 |
-
)
|
| 173 |
-
|
| 174 |
-
# Add grid
|
| 175 |
-
ax.grid(True, alpha=0.3, axis="x")
|
| 176 |
-
ax.set_axisbelow(True)
|
| 177 |
-
|
| 178 |
-
# Remove top and right spines
|
| 179 |
-
ax.spines["top"].set_visible(False)
|
| 180 |
-
ax.spines["right"].set_visible(False)
|
| 181 |
-
|
| 182 |
-
# Increase tick label font size
|
| 183 |
-
ax.tick_params(axis="x", which="major", labelsize=12)
|
| 184 |
-
|
| 185 |
-
plt.tight_layout()
|
| 186 |
-
|
| 187 |
-
# Save plot
|
| 188 |
-
output_path = Path(output_dir) / "top_requests_level2_bar_chart.png"
|
| 189 |
-
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
| 190 |
-
plt.show()
|
| 191 |
-
return str(output_path)
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
def load_onet_mappings():
|
| 195 |
-
"""
|
| 196 |
-
Load ONET task statements and SOC structure for occupational category mapping.
|
| 197 |
-
|
| 198 |
-
Returns:
|
| 199 |
-
Tuple of (task_statements_df, soc_structure_df)
|
| 200 |
-
"""
|
| 201 |
-
# Load from local files
|
| 202 |
-
task_path = Path("../data/intermediate/onet_task_statements.csv")
|
| 203 |
-
soc_path = Path("../data/intermediate/soc_structure.csv")
|
| 204 |
-
|
| 205 |
-
# Load CSV files directly
|
| 206 |
-
task_statements = pd.read_csv(task_path)
|
| 207 |
-
soc_structure = pd.read_csv(soc_path)
|
| 208 |
-
|
| 209 |
-
return task_statements, soc_structure
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
def map_to_occupational_categories(df, task_statements, soc_structure):
|
| 213 |
-
"""
|
| 214 |
-
Map ONET task data to major occupational categories.
|
| 215 |
-
|
| 216 |
-
Args:
|
| 217 |
-
df: Preprocessed data DataFrame
|
| 218 |
-
task_statements: ONET task statements DataFrame
|
| 219 |
-
soc_structure: SOC structure DataFrame
|
| 220 |
-
|
| 221 |
-
Returns:
|
| 222 |
-
DataFrame with occupational category mappings
|
| 223 |
-
"""
|
| 224 |
-
# Filter for ONET task data
|
| 225 |
-
onet_data = df[df["facet"] == "onet_task"].copy()
|
| 226 |
-
|
| 227 |
-
# Handle not_classified and none tasks first
|
| 228 |
-
not_classified_mask = onet_data["cluster_name"].isin(["not_classified", "none"])
|
| 229 |
-
not_classified_data = onet_data[not_classified_mask].copy()
|
| 230 |
-
not_classified_data["soc_major"] = "99"
|
| 231 |
-
not_classified_data["occupational_category"] = "Not Classified"
|
| 232 |
-
|
| 233 |
-
# Process regular tasks
|
| 234 |
-
regular_data = onet_data[~not_classified_mask].copy()
|
| 235 |
-
|
| 236 |
-
# Standardize task descriptions for matching
|
| 237 |
-
# Create standardized task mapping from ONET statements
|
| 238 |
-
task_statements["task_standardized"] = (
|
| 239 |
-
task_statements["Task"].str.strip().str.lower()
|
| 240 |
-
)
|
| 241 |
-
regular_data["cluster_name_standardized"] = (
|
| 242 |
-
regular_data["cluster_name"].str.strip().str.lower()
|
| 243 |
-
)
|
| 244 |
-
|
| 245 |
-
# Create mapping from standardized task to major groups (allowing multiple)
|
| 246 |
-
task_to_major_groups = {}
|
| 247 |
-
for _, row in task_statements.iterrows():
|
| 248 |
-
if pd.notna(row["Task"]) and pd.notna(row["soc_major_group"]):
|
| 249 |
-
std_task = row["task_standardized"]
|
| 250 |
-
major_group = str(int(row["soc_major_group"]))
|
| 251 |
-
if std_task not in task_to_major_groups:
|
| 252 |
-
task_to_major_groups[std_task] = []
|
| 253 |
-
if major_group not in task_to_major_groups[std_task]:
|
| 254 |
-
task_to_major_groups[std_task].append(major_group)
|
| 255 |
-
|
| 256 |
-
# Expand rows for tasks that belong to multiple groups
|
| 257 |
-
expanded_rows = []
|
| 258 |
-
for _, row in regular_data.iterrows():
|
| 259 |
-
std_task = row["cluster_name_standardized"]
|
| 260 |
-
if std_task in task_to_major_groups:
|
| 261 |
-
groups = task_to_major_groups[std_task]
|
| 262 |
-
# Assign full value to each group (creates duplicates)
|
| 263 |
-
for group in groups:
|
| 264 |
-
new_row = row.copy()
|
| 265 |
-
new_row["soc_major"] = group
|
| 266 |
-
new_row["value"] = row["value"] # Keep full value for each group
|
| 267 |
-
expanded_rows.append(new_row)
|
| 268 |
-
|
| 269 |
-
# Create new dataframe from expanded rows
|
| 270 |
-
if expanded_rows:
|
| 271 |
-
regular_data = pd.DataFrame(expanded_rows)
|
| 272 |
-
else:
|
| 273 |
-
regular_data["soc_major"] = None
|
| 274 |
-
|
| 275 |
-
# Get major occupational groups from SOC structure
|
| 276 |
-
# Filter for rows where 'Major Group' is not null (these are the major groups)
|
| 277 |
-
major_groups = soc_structure[soc_structure["Major Group"].notna()].copy()
|
| 278 |
-
|
| 279 |
-
# Extract major group code and title
|
| 280 |
-
major_groups["soc_major"] = major_groups["Major Group"].astype(str).str[:2]
|
| 281 |
-
major_groups["title"] = major_groups["SOC or O*NET-SOC 2019 Title"]
|
| 282 |
-
|
| 283 |
-
# Create a clean mapping from major group code to title
|
| 284 |
-
major_group_mapping = (
|
| 285 |
-
major_groups[["soc_major", "title"]]
|
| 286 |
-
.drop_duplicates()
|
| 287 |
-
.set_index("soc_major")["title"]
|
| 288 |
-
.to_dict()
|
| 289 |
-
)
|
| 290 |
-
|
| 291 |
-
# Map major group codes to titles for regular data
|
| 292 |
-
regular_data["occupational_category"] = regular_data["soc_major"].map(
|
| 293 |
-
major_group_mapping
|
| 294 |
-
)
|
| 295 |
-
|
| 296 |
-
# Keep only successfully mapped regular data
|
| 297 |
-
regular_mapped = regular_data[regular_data["occupational_category"].notna()].copy()
|
| 298 |
-
|
| 299 |
-
# Combine regular mapped data with not_classified data
|
| 300 |
-
onet_mapped = pd.concat([regular_mapped, not_classified_data], ignore_index=True)
|
| 301 |
-
|
| 302 |
-
# Renormalize percentages to sum to 100 since we may have created duplicates
|
| 303 |
-
total = onet_mapped["value"].sum()
|
| 304 |
-
|
| 305 |
-
onet_mapped["value"] = (onet_mapped["value"] / total) * 100
|
| 306 |
-
|
| 307 |
-
return onet_mapped
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
def create_platform_occupational_comparison(api_df, cai_df, output_dir):
|
| 311 |
-
"""
|
| 312 |
-
Create horizontal bar chart comparing occupational categories between Claude.ai and 1P API.
|
| 313 |
-
|
| 314 |
-
Args:
|
| 315 |
-
api_df: API preprocessed data DataFrame
|
| 316 |
-
cai_df: Claude.ai preprocessed data DataFrame
|
| 317 |
-
output_dir: Directory to save the figure
|
| 318 |
-
"""
|
| 319 |
-
# Load ONET mappings for occupational categories
|
| 320 |
-
task_statements, soc_structure = load_onet_mappings()
|
| 321 |
-
|
| 322 |
-
# Process both datasets to get occupational categories
|
| 323 |
-
def get_occupational_data(df, platform_name):
|
| 324 |
-
# Get ONET task percentage data (global level only)
|
| 325 |
-
onet_data = df[
|
| 326 |
-
(df["facet"] == "onet_task")
|
| 327 |
-
& (df["geo_id"] == "GLOBAL")
|
| 328 |
-
& (df["variable"] == "onet_task_pct")
|
| 329 |
-
].copy()
|
| 330 |
-
|
| 331 |
-
# Map to occupational categories using existing function
|
| 332 |
-
onet_mapped = map_to_occupational_categories(
|
| 333 |
-
onet_data, task_statements, soc_structure
|
| 334 |
-
)
|
| 335 |
-
|
| 336 |
-
# Sum percentages by occupational category
|
| 337 |
-
category_percentages = (
|
| 338 |
-
onet_mapped.groupby("occupational_category")["value"].sum().reset_index()
|
| 339 |
-
)
|
| 340 |
-
|
| 341 |
-
# Exclude "Not Classified" category from visualization
|
| 342 |
-
category_percentages = category_percentages[
|
| 343 |
-
category_percentages["occupational_category"] != "Not Classified"
|
| 344 |
-
]
|
| 345 |
-
|
| 346 |
-
category_percentages.columns = ["category", f"{platform_name.lower()}_pct"]
|
| 347 |
-
|
| 348 |
-
return category_percentages
|
| 349 |
-
|
| 350 |
-
# Get data for both platforms
|
| 351 |
-
api_categories = get_occupational_data(api_df, "API")
|
| 352 |
-
claude_categories = get_occupational_data(cai_df, "Claude")
|
| 353 |
-
|
| 354 |
-
# Merge the datasets
|
| 355 |
-
category_comparison = pd.merge(
|
| 356 |
-
claude_categories, api_categories, on="category", how="outer"
|
| 357 |
-
).fillna(0)
|
| 358 |
-
|
| 359 |
-
# Filter to substantial categories (>0.5% in either platform)
|
| 360 |
-
category_comparison = category_comparison[
|
| 361 |
-
(category_comparison["claude_pct"] > 0.5)
|
| 362 |
-
| (category_comparison["api_pct"] > 0.5)
|
| 363 |
-
].copy()
|
| 364 |
-
|
| 365 |
-
# Calculate difference and total
|
| 366 |
-
category_comparison["difference"] = (
|
| 367 |
-
category_comparison["api_pct"] - category_comparison["claude_pct"]
|
| 368 |
-
)
|
| 369 |
-
category_comparison["total_pct"] = (
|
| 370 |
-
category_comparison["claude_pct"] + category_comparison["api_pct"]
|
| 371 |
-
)
|
| 372 |
-
|
| 373 |
-
# Get top 8 categories by total usage
|
| 374 |
-
top_categories = category_comparison.nlargest(8, "total_pct").sort_values(
|
| 375 |
-
"total_pct", ascending=True
|
| 376 |
-
)
|
| 377 |
-
|
| 378 |
-
# Create figure
|
| 379 |
-
fig, ax = plt.subplots(figsize=(12, 8))
|
| 380 |
-
|
| 381 |
-
y_pos = np.arange(len(top_categories))
|
| 382 |
-
bar_height = 0.35
|
| 383 |
-
|
| 384 |
-
# Create side-by-side bars
|
| 385 |
-
ax.barh(
|
| 386 |
-
y_pos - bar_height / 2,
|
| 387 |
-
top_categories["claude_pct"],
|
| 388 |
-
bar_height,
|
| 389 |
-
label="Claude.ai",
|
| 390 |
-
color=COLOR_CYCLE[2],
|
| 391 |
-
alpha=0.8,
|
| 392 |
-
)
|
| 393 |
-
ax.barh(
|
| 394 |
-
y_pos + bar_height / 2,
|
| 395 |
-
top_categories["api_pct"],
|
| 396 |
-
bar_height,
|
| 397 |
-
label="1P API",
|
| 398 |
-
color=COLOR_CYCLE[0],
|
| 399 |
-
alpha=0.8,
|
| 400 |
-
)
|
| 401 |
-
|
| 402 |
-
# Add value labels with difference percentages
|
| 403 |
-
for i, (idx, row) in enumerate(top_categories.iterrows()):
|
| 404 |
-
# Claude.ai label
|
| 405 |
-
if row["claude_pct"] > 0.1:
|
| 406 |
-
ax.text(
|
| 407 |
-
row["claude_pct"] + 0.2,
|
| 408 |
-
i - bar_height / 2,
|
| 409 |
-
f"{row['claude_pct']:.0f}%",
|
| 410 |
-
va="center",
|
| 411 |
-
fontsize=9,
|
| 412 |
-
)
|
| 413 |
-
|
| 414 |
-
# 1P API label with difference
|
| 415 |
-
if row["api_pct"] > 0.1:
|
| 416 |
-
ax.text(
|
| 417 |
-
row["api_pct"] + 0.2,
|
| 418 |
-
i + bar_height / 2,
|
| 419 |
-
f"{row['api_pct']:.0f}%",
|
| 420 |
-
va="center",
|
| 421 |
-
fontsize=9,
|
| 422 |
-
color=COLOR_CYCLE[0] if row["difference"] > 0 else COLOR_CYCLE[2],
|
| 423 |
-
)
|
| 424 |
-
|
| 425 |
-
# Clean up category labels
|
| 426 |
-
labels = []
|
| 427 |
-
for cat in top_categories["category"]:
|
| 428 |
-
# Remove "Occupations" suffix and wrap long names
|
| 429 |
-
clean_cat = cat.replace(" Occupations", "").replace(", and ", " & ")
|
| 430 |
-
wrapped = "\n".join(wrap(clean_cat, 40))
|
| 431 |
-
labels.append(wrapped)
|
| 432 |
-
|
| 433 |
-
ax.set_yticks(y_pos)
|
| 434 |
-
ax.set_yticklabels(labels, fontsize=10)
|
| 435 |
-
|
| 436 |
-
ax.set_xlabel("Percentage of usage", fontsize=12)
|
| 437 |
-
ax.set_title(
|
| 438 |
-
"Usage shares across top occupational categories: Claude.ai vs 1P API",
|
| 439 |
-
fontsize=14,
|
| 440 |
-
fontweight="bold",
|
| 441 |
-
pad=20,
|
| 442 |
-
)
|
| 443 |
-
ax.legend(loc="lower right", fontsize=11)
|
| 444 |
-
ax.grid(True, alpha=0.3, axis="x")
|
| 445 |
-
ax.set_axisbelow(True)
|
| 446 |
-
|
| 447 |
-
# Remove top and right spines
|
| 448 |
-
ax.spines["top"].set_visible(False)
|
| 449 |
-
ax.spines["right"].set_visible(False)
|
| 450 |
-
|
| 451 |
-
plt.tight_layout()
|
| 452 |
-
|
| 453 |
-
# Save plot
|
| 454 |
-
output_path = Path(output_dir) / "platform_occupational_comparison.png"
|
| 455 |
-
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
| 456 |
-
plt.show()
|
| 457 |
-
return str(output_path)
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
def create_platform_lorenz_curves(api_df, cai_df, output_dir):
|
| 461 |
-
"""
|
| 462 |
-
Create Lorenz curves showing task usage concentration by platform.
|
| 463 |
-
|
| 464 |
-
Args:
|
| 465 |
-
api_df: API preprocessed data DataFrame
|
| 466 |
-
cai_df: Claude.ai preprocessed data DataFrame
|
| 467 |
-
output_dir: Directory to save the figure
|
| 468 |
-
"""
|
| 469 |
-
|
| 470 |
-
def gini_coefficient(values):
|
| 471 |
-
"""Calculate Gini coefficient for a series of values."""
|
| 472 |
-
sorted_values = np.sort(values)
|
| 473 |
-
n = len(sorted_values)
|
| 474 |
-
cumulative = np.cumsum(sorted_values)
|
| 475 |
-
gini = (2 * np.sum(np.arange(1, n + 1) * sorted_values)) / (
|
| 476 |
-
n * cumulative[-1]
|
| 477 |
-
) - (n + 1) / n
|
| 478 |
-
return gini
|
| 479 |
-
|
| 480 |
-
def get_task_usage_data(df, platform_name):
|
| 481 |
-
# Get ONET task percentage data (global level only)
|
| 482 |
-
onet_data = df[
|
| 483 |
-
(df["facet"] == "onet_task")
|
| 484 |
-
& (df["geo_id"] == "GLOBAL")
|
| 485 |
-
& (df["variable"] == "onet_task_pct")
|
| 486 |
-
].copy()
|
| 487 |
-
|
| 488 |
-
# Filter out none and not_classified
|
| 489 |
-
onet_data = onet_data[
|
| 490 |
-
~onet_data["cluster_name"].isin(["none", "not_classified"])
|
| 491 |
-
]
|
| 492 |
-
|
| 493 |
-
# Use the percentage values directly
|
| 494 |
-
onet_data["percentage"] = onet_data["value"]
|
| 495 |
-
|
| 496 |
-
return onet_data[["cluster_name", "percentage"]].copy()
|
| 497 |
-
|
| 498 |
-
api_tasks = get_task_usage_data(api_df, "1P API")
|
| 499 |
-
claude_tasks = get_task_usage_data(cai_df, "Claude.ai")
|
| 500 |
-
|
| 501 |
-
# Sort by percentage for each platform
|
| 502 |
-
api_tasks = api_tasks.sort_values("percentage")
|
| 503 |
-
claude_tasks = claude_tasks.sort_values("percentage")
|
| 504 |
-
|
| 505 |
-
# Calculate cumulative percentages of usage
|
| 506 |
-
api_cumulative = np.cumsum(api_tasks["percentage"])
|
| 507 |
-
claude_cumulative = np.cumsum(claude_tasks["percentage"])
|
| 508 |
-
|
| 509 |
-
# Calculate cumulative percentage of tasks
|
| 510 |
-
api_task_cumulative = np.arange(1, len(api_tasks) + 1) / len(api_tasks) * 100
|
| 511 |
-
claude_task_cumulative = (
|
| 512 |
-
np.arange(1, len(claude_tasks) + 1) / len(claude_tasks) * 100
|
| 513 |
-
)
|
| 514 |
-
|
| 515 |
-
# Interpolate to ensure curves reach 100%
|
| 516 |
-
# Add final points to reach (100, 100)
|
| 517 |
-
api_cumulative = np.append(api_cumulative, 100)
|
| 518 |
-
claude_cumulative = np.append(claude_cumulative, 100)
|
| 519 |
-
api_task_cumulative = np.append(api_task_cumulative, 100)
|
| 520 |
-
claude_task_cumulative = np.append(claude_task_cumulative, 100)
|
| 521 |
-
|
| 522 |
-
# Calculate Gini coefficients
|
| 523 |
-
api_gini = gini_coefficient(api_tasks["percentage"].values)
|
| 524 |
-
claude_gini = gini_coefficient(claude_tasks["percentage"].values)
|
| 525 |
-
|
| 526 |
-
# Create panel figure
|
| 527 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8))
|
| 528 |
-
|
| 529 |
-
# LEFT PANEL: Lorenz Curves
|
| 530 |
-
# Plot Lorenz curves
|
| 531 |
-
ax1.plot(
|
| 532 |
-
api_task_cumulative,
|
| 533 |
-
api_cumulative,
|
| 534 |
-
color=COLOR_CYCLE[1],
|
| 535 |
-
linewidth=2.5,
|
| 536 |
-
label=f"1P API (Gini = {api_gini:.3f})",
|
| 537 |
-
)
|
| 538 |
-
|
| 539 |
-
ax1.plot(
|
| 540 |
-
claude_task_cumulative,
|
| 541 |
-
claude_cumulative,
|
| 542 |
-
color=COLOR_CYCLE[0],
|
| 543 |
-
linewidth=2.5,
|
| 544 |
-
label=f"Claude.ai (Gini = {claude_gini:.3f})",
|
| 545 |
-
)
|
| 546 |
-
|
| 547 |
-
# Add perfect equality line (diagonal)
|
| 548 |
-
ax1.plot(
|
| 549 |
-
[0, 100],
|
| 550 |
-
[0, 100],
|
| 551 |
-
"k--",
|
| 552 |
-
linewidth=1.5,
|
| 553 |
-
alpha=0.7,
|
| 554 |
-
label="Perfect Equality",
|
| 555 |
-
)
|
| 556 |
-
|
| 557 |
-
# Calculate 80th percentile values
|
| 558 |
-
api_80th_usage = np.interp(80, api_task_cumulative, api_cumulative)
|
| 559 |
-
claude_80th_usage = np.interp(80, claude_task_cumulative, claude_cumulative)
|
| 560 |
-
|
| 561 |
-
# Add markers at 80th percentile
|
| 562 |
-
ax1.scatter(
|
| 563 |
-
80,
|
| 564 |
-
api_80th_usage,
|
| 565 |
-
alpha=0.5,
|
| 566 |
-
s=100,
|
| 567 |
-
color=COLOR_CYCLE[1],
|
| 568 |
-
edgecolors="white",
|
| 569 |
-
linewidth=1,
|
| 570 |
-
zorder=5,
|
| 571 |
-
)
|
| 572 |
-
ax1.scatter(
|
| 573 |
-
80,
|
| 574 |
-
claude_80th_usage,
|
| 575 |
-
alpha=0.5,
|
| 576 |
-
s=100,
|
| 577 |
-
color=COLOR_CYCLE[0],
|
| 578 |
-
edgecolors="white",
|
| 579 |
-
linewidth=1,
|
| 580 |
-
zorder=5,
|
| 581 |
-
)
|
| 582 |
-
|
| 583 |
-
# Add annotations
|
| 584 |
-
ax1.text(
|
| 585 |
-
82,
|
| 586 |
-
api_80th_usage - 2,
|
| 587 |
-
f"{api_80th_usage:.1f}% of usage",
|
| 588 |
-
ha="left",
|
| 589 |
-
va="center",
|
| 590 |
-
fontsize=10,
|
| 591 |
-
color=COLOR_CYCLE[1],
|
| 592 |
-
)
|
| 593 |
-
|
| 594 |
-
ax1.text(
|
| 595 |
-
78.5,
|
| 596 |
-
claude_80th_usage + 1,
|
| 597 |
-
f"{claude_80th_usage:.1f}% of usage",
|
| 598 |
-
ha="right",
|
| 599 |
-
va="center",
|
| 600 |
-
fontsize=10,
|
| 601 |
-
color=COLOR_CYCLE[0],
|
| 602 |
-
)
|
| 603 |
-
|
| 604 |
-
# Add text box
|
| 605 |
-
ax1.text(
|
| 606 |
-
0.05,
|
| 607 |
-
0.95,
|
| 608 |
-
f"The bottom 80% of tasks account for:\n• 1P API: {api_80th_usage:.1f}% of usage\n• Claude.ai: {claude_80th_usage:.1f}% of usage",
|
| 609 |
-
transform=ax1.transAxes,
|
| 610 |
-
va="top",
|
| 611 |
-
ha="left",
|
| 612 |
-
bbox=dict(
|
| 613 |
-
boxstyle="round,pad=0.3",
|
| 614 |
-
facecolor="white",
|
| 615 |
-
alpha=0.8,
|
| 616 |
-
edgecolor="black",
|
| 617 |
-
linewidth=1,
|
| 618 |
-
),
|
| 619 |
-
fontsize=10,
|
| 620 |
-
)
|
| 621 |
-
|
| 622 |
-
# Styling for Lorenz curves
|
| 623 |
-
ax1.set_xlabel("Cumulative percentage of tasks", fontsize=12)
|
| 624 |
-
ax1.set_ylabel("Cumulative percentage of usage", fontsize=12)
|
| 625 |
-
ax1.set_title("Lorenz curves", fontsize=14, fontweight="bold", pad=20)
|
| 626 |
-
ax1.set_xlim(0, 100)
|
| 627 |
-
ax1.set_ylim(0, 100)
|
| 628 |
-
ax1.grid(True, alpha=0.3, linestyle="--")
|
| 629 |
-
ax1.set_axisbelow(True)
|
| 630 |
-
ax1.legend(loc=(0.05, 0.65), fontsize=11, frameon=True, facecolor="white")
|
| 631 |
-
ax1.spines["top"].set_visible(False)
|
| 632 |
-
ax1.spines["right"].set_visible(False)
|
| 633 |
-
|
| 634 |
-
# RIGHT PANEL: Zipf's Law Analysis
|
| 635 |
-
min_share = 0.1
|
| 636 |
-
|
| 637 |
-
# Filter for minimum share
|
| 638 |
-
api_filtered = api_tasks[api_tasks["percentage"] > min_share]["percentage"].copy()
|
| 639 |
-
claude_filtered = claude_tasks[claude_tasks["percentage"] > min_share][
|
| 640 |
-
"percentage"
|
| 641 |
-
].copy()
|
| 642 |
-
|
| 643 |
-
# Calculate ranks and log transforms
|
| 644 |
-
ln_rank_api = np.log(api_filtered.rank(ascending=False))
|
| 645 |
-
ln_share_api = np.log(api_filtered)
|
| 646 |
-
|
| 647 |
-
ln_rank_claude = np.log(claude_filtered.rank(ascending=False))
|
| 648 |
-
ln_share_claude = np.log(claude_filtered)
|
| 649 |
-
|
| 650 |
-
# Fit regressions
|
| 651 |
-
api_model = sm.OLS(ln_rank_api, sm.add_constant(ln_share_api)).fit()
|
| 652 |
-
api_slope = api_model.params.iloc[1]
|
| 653 |
-
api_intercept = api_model.params.iloc[0]
|
| 654 |
-
|
| 655 |
-
claude_model = sm.OLS(ln_rank_claude, sm.add_constant(ln_share_claude)).fit()
|
| 656 |
-
claude_slope = claude_model.params.iloc[1]
|
| 657 |
-
claude_intercept = claude_model.params.iloc[0]
|
| 658 |
-
|
| 659 |
-
# Plot scatter points
|
| 660 |
-
ax2.scatter(
|
| 661 |
-
ln_share_api,
|
| 662 |
-
ln_rank_api,
|
| 663 |
-
alpha=0.5,
|
| 664 |
-
s=100,
|
| 665 |
-
color=COLOR_CYCLE[1],
|
| 666 |
-
label=f"1P API: y = {api_slope:.2f}x + {api_intercept:.2f}",
|
| 667 |
-
)
|
| 668 |
-
|
| 669 |
-
ax2.scatter(
|
| 670 |
-
ln_share_claude,
|
| 671 |
-
ln_rank_claude,
|
| 672 |
-
alpha=0.5,
|
| 673 |
-
s=100,
|
| 674 |
-
color=COLOR_CYCLE[0],
|
| 675 |
-
label=f"Claude.ai: y = {claude_slope:.2f}x + {claude_intercept:.2f}",
|
| 676 |
-
)
|
| 677 |
-
|
| 678 |
-
# Add Zipf's law reference line (slope = -1)
|
| 679 |
-
x_range = np.linspace(
|
| 680 |
-
min(ln_share_api.min(), ln_share_claude.min()),
|
| 681 |
-
max(ln_share_api.max(), ln_share_claude.max()),
|
| 682 |
-
100,
|
| 683 |
-
)
|
| 684 |
-
avg_intercept = (api_intercept + claude_intercept) / 2
|
| 685 |
-
y_line = -1 * x_range + avg_intercept
|
| 686 |
-
|
| 687 |
-
ax2.plot(
|
| 688 |
-
x_range,
|
| 689 |
-
y_line,
|
| 690 |
-
color="black",
|
| 691 |
-
linestyle="--",
|
| 692 |
-
linewidth=2,
|
| 693 |
-
label=f"Zipf's Law: y = -1.00x + {avg_intercept:.2f}",
|
| 694 |
-
zorder=0,
|
| 695 |
-
)
|
| 696 |
-
|
| 697 |
-
# Styling for Zipf's law plot
|
| 698 |
-
ax2.set_xlabel("ln(Share of usage)", fontsize=12)
|
| 699 |
-
ax2.set_ylabel("ln(Rank by usage)", fontsize=12)
|
| 700 |
-
ax2.set_title(
|
| 701 |
-
"Task rank versus usage share", fontsize=14, fontweight="bold", pad=20
|
| 702 |
-
)
|
| 703 |
-
ax2.grid(True, alpha=0.3, linestyle="--")
|
| 704 |
-
ax2.set_axisbelow(True)
|
| 705 |
-
ax2.legend(fontsize=11)
|
| 706 |
-
ax2.spines["top"].set_visible(False)
|
| 707 |
-
ax2.spines["right"].set_visible(False)
|
| 708 |
-
|
| 709 |
-
# Overall title
|
| 710 |
-
fig.suptitle(
|
| 711 |
-
"Lorenz curves and power law analysis across tasks: 1P API vs Claude.ai",
|
| 712 |
-
fontsize=16,
|
| 713 |
-
fontweight="bold",
|
| 714 |
-
y=0.95,
|
| 715 |
-
color="#B86046",
|
| 716 |
-
)
|
| 717 |
-
|
| 718 |
-
plt.tight_layout()
|
| 719 |
-
plt.subplots_adjust(top=0.85) # More room for suptitle
|
| 720 |
-
|
| 721 |
-
# Save plot
|
| 722 |
-
output_path = Path(output_dir) / "platform_lorenz_zipf_panel.png"
|
| 723 |
-
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
| 724 |
-
plt.show()
|
| 725 |
-
return str(output_path)
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
def create_collaboration_alluvial(api_df, cai_df, output_dir):
|
| 729 |
-
"""
|
| 730 |
-
Create alluvial diagram showing collaboration pattern flows between platforms.
|
| 731 |
-
|
| 732 |
-
Args:
|
| 733 |
-
api_df: API preprocessed data DataFrame
|
| 734 |
-
cai_df: Claude.ai preprocessed data DataFrame
|
| 735 |
-
output_dir: Directory to save the figure
|
| 736 |
-
"""
|
| 737 |
-
|
| 738 |
-
def get_collaboration_data(df, platform_name):
|
| 739 |
-
# Get collaboration facet data (global level only)
|
| 740 |
-
collab_data = df[
|
| 741 |
-
(df["facet"] == "collaboration")
|
| 742 |
-
& (df["geo_id"] == "GLOBAL")
|
| 743 |
-
& (df["variable"] == "collaboration_pct")
|
| 744 |
-
].copy()
|
| 745 |
-
|
| 746 |
-
# Use cluster_name directly as the collaboration pattern
|
| 747 |
-
collab_data["pattern"] = collab_data["cluster_name"]
|
| 748 |
-
|
| 749 |
-
# Filter out not_classified
|
| 750 |
-
collab_data = collab_data[collab_data["pattern"] != "not_classified"]
|
| 751 |
-
|
| 752 |
-
# Use the percentage values directly
|
| 753 |
-
result = collab_data[["pattern", "value"]].copy()
|
| 754 |
-
result.columns = ["pattern", "percentage"]
|
| 755 |
-
result["platform"] = platform_name
|
| 756 |
-
|
| 757 |
-
return result
|
| 758 |
-
|
| 759 |
-
api_collab = get_collaboration_data(api_df, "1P API")
|
| 760 |
-
claude_collab = get_collaboration_data(cai_df, "Claude.ai")
|
| 761 |
-
|
| 762 |
-
# Combine collaboration data
|
| 763 |
-
collab_df = pd.concat([claude_collab, api_collab], ignore_index=True)
|
| 764 |
-
|
| 765 |
-
# Define categories
|
| 766 |
-
augmentation_types = ["learning", "task iteration", "validation"]
|
| 767 |
-
automation_types = ["directive", "feedback loop"]
|
| 768 |
-
|
| 769 |
-
# Colors matching the original
|
| 770 |
-
pattern_colors = {
|
| 771 |
-
"validation": "#2c3e67",
|
| 772 |
-
"task iteration": "#4f76c7",
|
| 773 |
-
"learning": "#79a7e0",
|
| 774 |
-
"feedback loop": "#614980",
|
| 775 |
-
"directive": "#8e6bb1",
|
| 776 |
-
}
|
| 777 |
-
|
| 778 |
-
# Extract flows
|
| 779 |
-
flows_claude = {}
|
| 780 |
-
flows_api = {}
|
| 781 |
-
|
| 782 |
-
for pattern in augmentation_types + automation_types:
|
| 783 |
-
claude_mask = (collab_df["pattern"] == pattern) & (
|
| 784 |
-
collab_df["platform"] == "Claude.ai"
|
| 785 |
-
)
|
| 786 |
-
if claude_mask.any():
|
| 787 |
-
flows_claude[pattern] = collab_df.loc[claude_mask, "percentage"].values[0]
|
| 788 |
-
|
| 789 |
-
api_mask = (collab_df["pattern"] == pattern) & (
|
| 790 |
-
collab_df["platform"] == "1P API"
|
| 791 |
-
)
|
| 792 |
-
if api_mask.any():
|
| 793 |
-
flows_api[pattern] = collab_df.loc[api_mask, "percentage"].values[0]
|
| 794 |
-
|
| 795 |
-
# Create figure with subplots
|
| 796 |
-
fig = make_subplots(
|
| 797 |
-
rows=2,
|
| 798 |
-
cols=1,
|
| 799 |
-
row_heights=[0.5, 0.5],
|
| 800 |
-
vertical_spacing=0.15,
|
| 801 |
-
subplot_titles=("<b>Augmentation Patterns</b>", "<b>Automation Patterns</b>"),
|
| 802 |
-
)
|
| 803 |
-
|
| 804 |
-
# Update subplot title colors and font
|
| 805 |
-
for annotation in fig.layout.annotations:
|
| 806 |
-
annotation.update(font=dict(color="#B86046", size=14, family="Styrene B LC"))
|
| 807 |
-
|
| 808 |
-
def create_alluvial_traces(patterns, row):
|
| 809 |
-
"""Create traces for alluvial diagram"""
|
| 810 |
-
# Sort by size on Claude.ai side
|
| 811 |
-
patterns_sorted = sorted(
|
| 812 |
-
[p for p in patterns if p in flows_claude],
|
| 813 |
-
key=lambda p: flows_claude.get(p, 0),
|
| 814 |
-
reverse=True,
|
| 815 |
-
)
|
| 816 |
-
|
| 817 |
-
# Calculate total heights first to determine centering
|
| 818 |
-
total_claude = sum(
|
| 819 |
-
flows_claude.get(p, 0) for p in patterns if p in flows_claude
|
| 820 |
-
)
|
| 821 |
-
total_api = sum(flows_api.get(p, 0) for p in patterns if p in flows_api)
|
| 822 |
-
gap_count = max(
|
| 823 |
-
len([p for p in patterns if p in flows_claude and flows_claude[p] > 0]) - 1,
|
| 824 |
-
0,
|
| 825 |
-
)
|
| 826 |
-
gap_count_api = max(
|
| 827 |
-
len([p for p in patterns if p in flows_api and flows_api[p] > 0]) - 1, 0
|
| 828 |
-
)
|
| 829 |
-
|
| 830 |
-
total_height_claude = total_claude + (gap_count * 2)
|
| 831 |
-
total_height_api = total_api + (gap_count_api * 2)
|
| 832 |
-
|
| 833 |
-
# Calculate offset to center the smaller side
|
| 834 |
-
offset_claude = 0
|
| 835 |
-
offset_api = 0
|
| 836 |
-
if total_height_claude < total_height_api:
|
| 837 |
-
offset_claude = (total_height_api - total_height_claude) / 2
|
| 838 |
-
else:
|
| 839 |
-
offset_api = (total_height_claude - total_height_api) / 2
|
| 840 |
-
|
| 841 |
-
# Calculate positions for Claude.ai (left side)
|
| 842 |
-
y_pos_claude = offset_claude
|
| 843 |
-
claude_positions = {}
|
| 844 |
-
for pattern in patterns_sorted:
|
| 845 |
-
if pattern in flows_claude and flows_claude[pattern] > 0:
|
| 846 |
-
height = flows_claude[pattern]
|
| 847 |
-
claude_positions[pattern] = {
|
| 848 |
-
"bottom": y_pos_claude,
|
| 849 |
-
"top": y_pos_claude + height,
|
| 850 |
-
"center": y_pos_claude + height / 2,
|
| 851 |
-
}
|
| 852 |
-
y_pos_claude += height + 2 # Add gap
|
| 853 |
-
|
| 854 |
-
# Calculate positions for 1P API (right side)
|
| 855 |
-
patterns_sorted_api = sorted(
|
| 856 |
-
[p for p in patterns if p in flows_api],
|
| 857 |
-
key=lambda p: flows_api.get(p, 0),
|
| 858 |
-
reverse=True,
|
| 859 |
-
)
|
| 860 |
-
y_pos_api = offset_api
|
| 861 |
-
api_positions = {}
|
| 862 |
-
for pattern in patterns_sorted_api:
|
| 863 |
-
if pattern in flows_api and flows_api[pattern] > 0:
|
| 864 |
-
height = flows_api[pattern]
|
| 865 |
-
api_positions[pattern] = {
|
| 866 |
-
"bottom": y_pos_api,
|
| 867 |
-
"top": y_pos_api + height,
|
| 868 |
-
"center": y_pos_api + height / 2,
|
| 869 |
-
}
|
| 870 |
-
y_pos_api += height + 2 # Add gap
|
| 871 |
-
|
| 872 |
-
# Create shapes for flows
|
| 873 |
-
shapes = []
|
| 874 |
-
for pattern in patterns:
|
| 875 |
-
if pattern in claude_positions and pattern in api_positions:
|
| 876 |
-
# Create a quadrilateral connecting the two sides
|
| 877 |
-
x_left = 0.2
|
| 878 |
-
x_right = 0.8
|
| 879 |
-
|
| 880 |
-
claude_bottom = claude_positions[pattern]["bottom"]
|
| 881 |
-
claude_top = claude_positions[pattern]["top"]
|
| 882 |
-
api_bottom = api_positions[pattern]["bottom"]
|
| 883 |
-
api_top = api_positions[pattern]["top"]
|
| 884 |
-
|
| 885 |
-
# Create path for the flow
|
| 886 |
-
path = f"M {x_left} {claude_bottom} L {x_left} {claude_top} L {x_right} {api_top} L {x_right} {api_bottom} Z"
|
| 887 |
-
|
| 888 |
-
hex_color = pattern_colors[pattern]
|
| 889 |
-
r = int(hex_color[1:3], 16)
|
| 890 |
-
g = int(hex_color[3:5], 16)
|
| 891 |
-
b = int(hex_color[5:7], 16)
|
| 892 |
-
|
| 893 |
-
shapes.append(
|
| 894 |
-
dict(
|
| 895 |
-
type="path",
|
| 896 |
-
path=path,
|
| 897 |
-
fillcolor=f"rgba({r},{g},{b},0.5)",
|
| 898 |
-
line=dict(color=f"rgba({r},{g},{b},1)", width=1),
|
| 899 |
-
)
|
| 900 |
-
)
|
| 901 |
-
|
| 902 |
-
# Create text annotations
|
| 903 |
-
annotations = []
|
| 904 |
-
|
| 905 |
-
# Claude.ai labels
|
| 906 |
-
for pattern in patterns_sorted:
|
| 907 |
-
if pattern in claude_positions:
|
| 908 |
-
annotations.append(
|
| 909 |
-
dict(
|
| 910 |
-
x=x_left - 0.02,
|
| 911 |
-
y=claude_positions[pattern]["center"],
|
| 912 |
-
text=f"{pattern.replace('_', ' ').title()}<br>{flows_claude[pattern]:.1f}%",
|
| 913 |
-
showarrow=False,
|
| 914 |
-
xanchor="right",
|
| 915 |
-
yanchor="middle",
|
| 916 |
-
font=dict(size=10),
|
| 917 |
-
)
|
| 918 |
-
)
|
| 919 |
-
|
| 920 |
-
# 1P API labels
|
| 921 |
-
for pattern in patterns_sorted_api:
|
| 922 |
-
if pattern in api_positions:
|
| 923 |
-
annotations.append(
|
| 924 |
-
dict(
|
| 925 |
-
x=x_right + 0.02,
|
| 926 |
-
y=api_positions[pattern]["center"],
|
| 927 |
-
text=f"{pattern.replace('_', ' ').title()}<br>{flows_api[pattern]:.1f}%",
|
| 928 |
-
showarrow=False,
|
| 929 |
-
xanchor="left",
|
| 930 |
-
yanchor="middle",
|
| 931 |
-
font=dict(size=10),
|
| 932 |
-
)
|
| 933 |
-
)
|
| 934 |
-
|
| 935 |
-
# Platform labels
|
| 936 |
-
annotations.extend(
|
| 937 |
-
[
|
| 938 |
-
dict(
|
| 939 |
-
x=x_left,
|
| 940 |
-
y=max(y_pos_claude, y_pos_api) + 5,
|
| 941 |
-
text="Claude.ai",
|
| 942 |
-
showarrow=False,
|
| 943 |
-
xanchor="center",
|
| 944 |
-
font=dict(size=14, color="black"),
|
| 945 |
-
),
|
| 946 |
-
dict(
|
| 947 |
-
x=x_right,
|
| 948 |
-
y=max(y_pos_claude, y_pos_api) + 5,
|
| 949 |
-
text="1P API",
|
| 950 |
-
showarrow=False,
|
| 951 |
-
xanchor="center",
|
| 952 |
-
font=dict(size=14, color="black"),
|
| 953 |
-
),
|
| 954 |
-
]
|
| 955 |
-
)
|
| 956 |
-
|
| 957 |
-
return shapes, annotations, max(y_pos_claude, y_pos_api)
|
| 958 |
-
|
| 959 |
-
# Create augmentation diagram
|
| 960 |
-
aug_shapes, aug_annotations, aug_height = create_alluvial_traces(
|
| 961 |
-
augmentation_types, 1
|
| 962 |
-
)
|
| 963 |
-
|
| 964 |
-
# Create automation diagram
|
| 965 |
-
auto_shapes, auto_annotations, auto_height = create_alluvial_traces(
|
| 966 |
-
automation_types, 2
|
| 967 |
-
)
|
| 968 |
-
|
| 969 |
-
# Add invisible traces to create subplots
|
| 970 |
-
fig.add_trace(
|
| 971 |
-
go.Scatter(x=[0], y=[0], mode="markers", marker=dict(size=0)), row=1, col=1
|
| 972 |
-
)
|
| 973 |
-
fig.add_trace(
|
| 974 |
-
go.Scatter(x=[0], y=[0], mode="markers", marker=dict(size=0)), row=2, col=1
|
| 975 |
-
)
|
| 976 |
-
|
| 977 |
-
# Update layout with shapes and annotations
|
| 978 |
-
fig.update_layout(
|
| 979 |
-
title=dict(
|
| 980 |
-
text="<b>Collaboration Modes: Claude.ai Conversations vs 1P API Transcripts</b>",
|
| 981 |
-
font=dict(size=16, family="Styrene B LC", color="#B86046"),
|
| 982 |
-
x=0.5,
|
| 983 |
-
xanchor="center",
|
| 984 |
-
),
|
| 985 |
-
height=800,
|
| 986 |
-
width=1200,
|
| 987 |
-
paper_bgcolor="white",
|
| 988 |
-
plot_bgcolor="white",
|
| 989 |
-
showlegend=False,
|
| 990 |
-
)
|
| 991 |
-
|
| 992 |
-
# Ensure white background for both subplots
|
| 993 |
-
fig.update_xaxes(showgrid=False, zeroline=False, showticklabels=False, row=1, col=1)
|
| 994 |
-
fig.update_xaxes(showgrid=False, zeroline=False, showticklabels=False, row=2, col=1)
|
| 995 |
-
fig.update_yaxes(showgrid=False, zeroline=False, showticklabels=False, row=1, col=1)
|
| 996 |
-
fig.update_yaxes(showgrid=False, zeroline=False, showticklabels=False, row=2, col=1)
|
| 997 |
-
|
| 998 |
-
# Add shapes and annotations to each subplot
|
| 999 |
-
for shape in aug_shapes:
|
| 1000 |
-
fig.add_shape(shape, row=1, col=1)
|
| 1001 |
-
for shape in auto_shapes:
|
| 1002 |
-
fig.add_shape(shape, row=2, col=1)
|
| 1003 |
-
|
| 1004 |
-
for ann in aug_annotations:
|
| 1005 |
-
fig.add_annotation(ann, row=1, col=1)
|
| 1006 |
-
for ann in auto_annotations:
|
| 1007 |
-
fig.add_annotation(ann, row=2, col=1)
|
| 1008 |
-
|
| 1009 |
-
# Set axis ranges and ensure white background
|
| 1010 |
-
fig.update_xaxes(
|
| 1011 |
-
range=[0, 1],
|
| 1012 |
-
showgrid=False,
|
| 1013 |
-
zeroline=False,
|
| 1014 |
-
showticklabels=False,
|
| 1015 |
-
row=1,
|
| 1016 |
-
col=1,
|
| 1017 |
-
)
|
| 1018 |
-
fig.update_xaxes(
|
| 1019 |
-
range=[0, 1],
|
| 1020 |
-
showgrid=False,
|
| 1021 |
-
zeroline=False,
|
| 1022 |
-
showticklabels=False,
|
| 1023 |
-
row=2,
|
| 1024 |
-
col=1,
|
| 1025 |
-
)
|
| 1026 |
-
|
| 1027 |
-
fig.update_yaxes(
|
| 1028 |
-
range=[0, aug_height + 10],
|
| 1029 |
-
showgrid=False,
|
| 1030 |
-
zeroline=False,
|
| 1031 |
-
showticklabels=False,
|
| 1032 |
-
row=1,
|
| 1033 |
-
col=1,
|
| 1034 |
-
)
|
| 1035 |
-
fig.update_yaxes(
|
| 1036 |
-
range=[0, auto_height + 10],
|
| 1037 |
-
showgrid=False,
|
| 1038 |
-
zeroline=False,
|
| 1039 |
-
showticklabels=False,
|
| 1040 |
-
row=2,
|
| 1041 |
-
col=1,
|
| 1042 |
-
)
|
| 1043 |
-
|
| 1044 |
-
# Save plot
|
| 1045 |
-
output_path = Path(output_dir) / "collaboration_alluvial.png"
|
| 1046 |
-
fig.write_image(str(output_path), width=1200, height=800, scale=2)
|
| 1047 |
-
fig.show()
|
| 1048 |
-
return str(output_path)
|
| 1049 |
-
|
| 1050 |
-
|
| 1051 |
-
def get_collaboration_shares(df):
|
| 1052 |
-
"""
|
| 1053 |
-
Extract collaboration mode shares for each ONET task from intersection data.
|
| 1054 |
-
|
| 1055 |
-
Args:
|
| 1056 |
-
df: Preprocessed data DataFrame
|
| 1057 |
-
|
| 1058 |
-
Returns:
|
| 1059 |
-
dict: {task_name: {mode: percentage}}
|
| 1060 |
-
"""
|
| 1061 |
-
# Filter to GLOBAL data only and use pre-calculated percentages
|
| 1062 |
-
collab_data = df[
|
| 1063 |
-
(df["geo_id"] == "GLOBAL")
|
| 1064 |
-
& (df["facet"] == "onet_task::collaboration")
|
| 1065 |
-
& (df["variable"] == "onet_task_collaboration_pct")
|
| 1066 |
-
].copy()
|
| 1067 |
-
|
| 1068 |
-
# Split the cluster_name into task and collaboration mode
|
| 1069 |
-
collab_data[["task", "mode"]] = collab_data["cluster_name"].str.rsplit(
|
| 1070 |
-
"::", n=1, expand=True
|
| 1071 |
-
)
|
| 1072 |
-
|
| 1073 |
-
# Filter out 'none' and 'not_classified' modes
|
| 1074 |
-
collab_data = collab_data[~collab_data["mode"].isin(["none", "not_classified"])]
|
| 1075 |
-
|
| 1076 |
-
# Use pre-calculated percentages directly
|
| 1077 |
-
collaboration_modes = [
|
| 1078 |
-
"directive",
|
| 1079 |
-
"feedback loop",
|
| 1080 |
-
"learning",
|
| 1081 |
-
"task iteration",
|
| 1082 |
-
"validation",
|
| 1083 |
-
]
|
| 1084 |
-
result = {}
|
| 1085 |
-
|
| 1086 |
-
for _, row in collab_data.iterrows():
|
| 1087 |
-
task = row["task"]
|
| 1088 |
-
mode = row["mode"]
|
| 1089 |
-
|
| 1090 |
-
if mode in collaboration_modes:
|
| 1091 |
-
if task not in result:
|
| 1092 |
-
result[task] = {}
|
| 1093 |
-
result[task][mode] = float(row["value"])
|
| 1094 |
-
|
| 1095 |
-
return result
|
| 1096 |
-
|
| 1097 |
-
|
| 1098 |
-
def create_automation_augmentation_panel(api_df, cai_df, output_dir):
|
| 1099 |
-
"""
|
| 1100 |
-
Create combined panel figure showing automation vs augmentation for both platforms.
|
| 1101 |
-
|
| 1102 |
-
Args:
|
| 1103 |
-
api_df: API preprocessed data DataFrame
|
| 1104 |
-
cai_df: Claude.ai preprocessed data DataFrame
|
| 1105 |
-
output_dir: Directory to save the figure
|
| 1106 |
-
"""
|
| 1107 |
-
# Create figure with subplots
|
| 1108 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8))
|
| 1109 |
-
|
| 1110 |
-
def create_automation_augmentation_subplot(df, ax, title, platform_name):
|
| 1111 |
-
"""Helper function to create one automation vs augmentation subplot"""
|
| 1112 |
-
# Get collaboration shares for each task
|
| 1113 |
-
collab_shares = get_collaboration_shares(df)
|
| 1114 |
-
|
| 1115 |
-
# Get task usage counts for bubble sizing
|
| 1116 |
-
df_global = df[df["geo_id"] == "GLOBAL"]
|
| 1117 |
-
task_counts = (
|
| 1118 |
-
df_global[
|
| 1119 |
-
(df_global["facet"] == "onet_task")
|
| 1120 |
-
& (df_global["variable"] == "onet_task_count")
|
| 1121 |
-
& (~df_global["cluster_name"].isin(["none", "not_classified"]))
|
| 1122 |
-
]
|
| 1123 |
-
.set_index("cluster_name")["value"]
|
| 1124 |
-
.to_dict()
|
| 1125 |
-
)
|
| 1126 |
-
|
| 1127 |
-
# Prepare data for plotting
|
| 1128 |
-
tasks = []
|
| 1129 |
-
automation_scores = []
|
| 1130 |
-
augmentation_scores = []
|
| 1131 |
-
bubble_sizes = []
|
| 1132 |
-
|
| 1133 |
-
for task_name, shares in collab_shares.items():
|
| 1134 |
-
if task_name in task_counts:
|
| 1135 |
-
# Calculate automation score (directive + feedback loop)
|
| 1136 |
-
automation = shares.get("directive", 0) + shares.get("feedback loop", 0)
|
| 1137 |
-
|
| 1138 |
-
# Calculate augmentation score (learning + task iteration + validation)
|
| 1139 |
-
augmentation = (
|
| 1140 |
-
shares.get("learning", 0)
|
| 1141 |
-
+ shares.get("task iteration", 0)
|
| 1142 |
-
+ shares.get("validation", 0)
|
| 1143 |
-
)
|
| 1144 |
-
|
| 1145 |
-
# Only include tasks with some collaboration data
|
| 1146 |
-
if automation + augmentation > 0:
|
| 1147 |
-
tasks.append(task_name)
|
| 1148 |
-
automation_scores.append(automation)
|
| 1149 |
-
augmentation_scores.append(augmentation)
|
| 1150 |
-
bubble_sizes.append(task_counts[task_name])
|
| 1151 |
-
|
| 1152 |
-
# Convert to numpy arrays for plotting
|
| 1153 |
-
automation_scores = np.array(automation_scores)
|
| 1154 |
-
augmentation_scores = np.array(augmentation_scores)
|
| 1155 |
-
bubble_sizes = np.array(bubble_sizes)
|
| 1156 |
-
|
| 1157 |
-
# Scale bubble sizes
|
| 1158 |
-
bubble_sizes_scaled = (bubble_sizes / bubble_sizes.max()) * 800 + 40
|
| 1159 |
-
|
| 1160 |
-
# Color points based on whether automation or augmentation dominates
|
| 1161 |
-
colors = []
|
| 1162 |
-
for auto, aug in zip(automation_scores, augmentation_scores, strict=True):
|
| 1163 |
-
if auto > aug:
|
| 1164 |
-
colors.append("#8e6bb1") # Automation dominant
|
| 1165 |
-
else:
|
| 1166 |
-
colors.append("#4f76c7") # Augmentation dominant
|
| 1167 |
-
|
| 1168 |
-
# Create scatter plot
|
| 1169 |
-
ax.scatter(
|
| 1170 |
-
automation_scores,
|
| 1171 |
-
augmentation_scores,
|
| 1172 |
-
s=bubble_sizes_scaled,
|
| 1173 |
-
c=colors,
|
| 1174 |
-
alpha=0.7,
|
| 1175 |
-
edgecolors="black",
|
| 1176 |
-
linewidth=0.5,
|
| 1177 |
-
)
|
| 1178 |
-
|
| 1179 |
-
# Add diagonal line (automation = augmentation)
|
| 1180 |
-
max_val = max(automation_scores.max(), augmentation_scores.max())
|
| 1181 |
-
ax.plot([0, max_val], [0, max_val], "--", color="gray", alpha=0.5, linewidth=2)
|
| 1182 |
-
|
| 1183 |
-
# Labels and formatting (increased font sizes)
|
| 1184 |
-
ax.set_xlabel("Automation Share (%)", fontsize=14)
|
| 1185 |
-
ax.set_ylabel(
|
| 1186 |
-
"Augmentation Score (%)",
|
| 1187 |
-
fontsize=14,
|
| 1188 |
-
)
|
| 1189 |
-
ax.set_title(title, fontsize=14, fontweight="bold", pad=15)
|
| 1190 |
-
|
| 1191 |
-
# Calculate percentages for legend
|
| 1192 |
-
automation_dominant_count = sum(
|
| 1193 |
-
1
|
| 1194 |
-
for auto, aug in zip(automation_scores, augmentation_scores, strict=True)
|
| 1195 |
-
if auto > aug
|
| 1196 |
-
)
|
| 1197 |
-
augmentation_dominant_count = len(automation_scores) - automation_dominant_count
|
| 1198 |
-
total_tasks = len(automation_scores)
|
| 1199 |
-
|
| 1200 |
-
automation_pct = (automation_dominant_count / total_tasks) * 100
|
| 1201 |
-
augmentation_pct = (augmentation_dominant_count / total_tasks) * 100
|
| 1202 |
-
|
| 1203 |
-
# Add legend with percentages centered at top
|
| 1204 |
-
automation_patch = plt.scatter(
|
| 1205 |
-
[],
|
| 1206 |
-
[],
|
| 1207 |
-
c="#8e6bb1",
|
| 1208 |
-
alpha=0.7,
|
| 1209 |
-
s=100,
|
| 1210 |
-
label=f"Automation dominant ({automation_pct:.1f}% of Tasks)",
|
| 1211 |
-
)
|
| 1212 |
-
augmentation_patch = plt.scatter(
|
| 1213 |
-
[],
|
| 1214 |
-
[],
|
| 1215 |
-
c="#4f76c7",
|
| 1216 |
-
alpha=0.7,
|
| 1217 |
-
s=100,
|
| 1218 |
-
label=f"Augmentation dominant ({augmentation_pct:.1f}% of Tasks)",
|
| 1219 |
-
)
|
| 1220 |
-
ax.legend(
|
| 1221 |
-
handles=[automation_patch, augmentation_patch],
|
| 1222 |
-
loc="upper center",
|
| 1223 |
-
bbox_to_anchor=(0.5, 0.95),
|
| 1224 |
-
fontsize=12,
|
| 1225 |
-
frameon=True,
|
| 1226 |
-
facecolor="white",
|
| 1227 |
-
)
|
| 1228 |
-
|
| 1229 |
-
# Grid and styling
|
| 1230 |
-
ax.grid(True, alpha=0.3)
|
| 1231 |
-
ax.set_axisbelow(True)
|
| 1232 |
-
ax.tick_params(axis="both", which="major", labelsize=12)
|
| 1233 |
-
|
| 1234 |
-
return len(tasks), automation_pct, augmentation_pct
|
| 1235 |
-
|
| 1236 |
-
# Create API subplot
|
| 1237 |
-
create_automation_augmentation_subplot(api_df, ax1, "1P API", "1P API")
|
| 1238 |
-
|
| 1239 |
-
# Create Claude.ai subplot
|
| 1240 |
-
create_automation_augmentation_subplot(cai_df, ax2, "Claude.ai", "Claude.ai")
|
| 1241 |
-
|
| 1242 |
-
# Add overall title
|
| 1243 |
-
fig.suptitle(
|
| 1244 |
-
"Automation and augmentation dominance across tasks: Claude.ai vs. 1P API",
|
| 1245 |
-
fontsize=16,
|
| 1246 |
-
fontweight="bold",
|
| 1247 |
-
y=0.95,
|
| 1248 |
-
color="#B86046",
|
| 1249 |
-
)
|
| 1250 |
-
|
| 1251 |
-
plt.tight_layout()
|
| 1252 |
-
plt.subplots_adjust(top=0.85) # More room for suptitle
|
| 1253 |
-
|
| 1254 |
-
# Save plot
|
| 1255 |
-
output_path = Path(output_dir) / "automation_vs_augmentation_panel.png"
|
| 1256 |
-
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
| 1257 |
-
plt.show()
|
| 1258 |
-
return str(output_path)
|
| 1259 |
-
|
| 1260 |
-
|
| 1261 |
-
def extract_token_metrics_from_intersections(df):
|
| 1262 |
-
"""
|
| 1263 |
-
Extract token metrics from preprocessed intersection data.
|
| 1264 |
-
|
| 1265 |
-
Args:
|
| 1266 |
-
df: Preprocessed dataframe with intersection facets
|
| 1267 |
-
|
| 1268 |
-
Returns:
|
| 1269 |
-
DataFrame with token metrics for analysis
|
| 1270 |
-
"""
|
| 1271 |
-
# Extract data using new variable names from mean value intersections
|
| 1272 |
-
cost_data = df[
|
| 1273 |
-
(df.facet == "onet_task::cost") & (df.variable == "cost_index")
|
| 1274 |
-
].copy()
|
| 1275 |
-
cost_data["base_task"] = cost_data["cluster_name"].str.replace("::index", "")
|
| 1276 |
-
onet_cost = cost_data.set_index("base_task")["value"].copy()
|
| 1277 |
-
|
| 1278 |
-
prompt_data = df[
|
| 1279 |
-
(df.facet == "onet_task::prompt_tokens")
|
| 1280 |
-
& (df.variable == "prompt_tokens_index")
|
| 1281 |
-
].copy()
|
| 1282 |
-
prompt_data["base_task"] = prompt_data["cluster_name"].str.replace("::index", "")
|
| 1283 |
-
onet_prompt = prompt_data.set_index("base_task")["value"].copy()
|
| 1284 |
-
|
| 1285 |
-
completion_data = df[
|
| 1286 |
-
(df.facet == "onet_task::completion_tokens")
|
| 1287 |
-
& (df.variable == "completion_tokens_index")
|
| 1288 |
-
].copy()
|
| 1289 |
-
completion_data["base_task"] = completion_data["cluster_name"].str.replace(
|
| 1290 |
-
"::index", ""
|
| 1291 |
-
)
|
| 1292 |
-
onet_completion = completion_data.set_index("base_task")["value"].copy()
|
| 1293 |
-
|
| 1294 |
-
# Get API call counts for bubble sizing and WLS weights
|
| 1295 |
-
api_records_data = df[
|
| 1296 |
-
(df.facet == "onet_task::prompt_tokens")
|
| 1297 |
-
& (df.variable == "prompt_tokens_count")
|
| 1298 |
-
].copy()
|
| 1299 |
-
api_records_data["base_task"] = api_records_data["cluster_name"].str.replace(
|
| 1300 |
-
"::count", ""
|
| 1301 |
-
)
|
| 1302 |
-
onet_api_records = api_records_data.set_index("base_task")["value"].copy()
|
| 1303 |
-
|
| 1304 |
-
# Create metrics DataFrame - values are already re-indexed during preprocessing
|
| 1305 |
-
metrics = pd.DataFrame(
|
| 1306 |
-
{
|
| 1307 |
-
"cluster_name": onet_cost.index,
|
| 1308 |
-
"cost_per_record": onet_cost, # Already indexed (1.0 = average)
|
| 1309 |
-
"avg_prompt_tokens": onet_prompt.reindex(
|
| 1310 |
-
onet_cost.index
|
| 1311 |
-
), # Already indexed
|
| 1312 |
-
"avg_completion_tokens": onet_completion.reindex(
|
| 1313 |
-
onet_cost.index
|
| 1314 |
-
), # Already indexed
|
| 1315 |
-
}
|
| 1316 |
-
)
|
| 1317 |
-
|
| 1318 |
-
# Get task usage percentages
|
| 1319 |
-
usage_pct_data = df[
|
| 1320 |
-
(df.facet == "onet_task") & (df.variable == "onet_task_pct")
|
| 1321 |
-
].copy()
|
| 1322 |
-
usage_pct_data["base_task"] = usage_pct_data["cluster_name"]
|
| 1323 |
-
onet_usage_pct = usage_pct_data.set_index("base_task")["value"].copy()
|
| 1324 |
-
|
| 1325 |
-
# Add API records and usage percentages
|
| 1326 |
-
metrics["api_records"] = onet_api_records.reindex(onet_cost.index)
|
| 1327 |
-
metrics["usage_pct"] = onet_usage_pct.reindex(onet_cost.index)
|
| 1328 |
-
|
| 1329 |
-
# Calculate derived metrics
|
| 1330 |
-
metrics["output_input_ratio"] = (
|
| 1331 |
-
metrics["avg_completion_tokens"] / metrics["avg_prompt_tokens"]
|
| 1332 |
-
)
|
| 1333 |
-
metrics["total_tokens"] = (
|
| 1334 |
-
metrics["avg_prompt_tokens"] + metrics["avg_completion_tokens"]
|
| 1335 |
-
)
|
| 1336 |
-
|
| 1337 |
-
return metrics
|
| 1338 |
-
|
| 1339 |
-
|
| 1340 |
-
def add_occupational_categories_to_metrics(
|
| 1341 |
-
task_metrics, task_statements, soc_structure
|
| 1342 |
-
):
|
| 1343 |
-
"""
|
| 1344 |
-
Add occupational categories to task metrics based on ONET mappings.
|
| 1345 |
-
|
| 1346 |
-
Args:
|
| 1347 |
-
task_metrics: DataFrame with task metrics
|
| 1348 |
-
task_statements: ONET task statements DataFrame
|
| 1349 |
-
soc_structure: SOC structure DataFrame
|
| 1350 |
-
|
| 1351 |
-
Returns:
|
| 1352 |
-
DataFrame with occupational categories added
|
| 1353 |
-
"""
|
| 1354 |
-
# Standardize task descriptions for matching
|
| 1355 |
-
task_statements["task_standardized"] = (
|
| 1356 |
-
task_statements["Task"].str.strip().str.lower()
|
| 1357 |
-
)
|
| 1358 |
-
task_metrics["cluster_name_standardized"] = (
|
| 1359 |
-
task_metrics["cluster_name"].str.strip().str.lower()
|
| 1360 |
-
)
|
| 1361 |
-
|
| 1362 |
-
# Create mapping from standardized task to major group
|
| 1363 |
-
task_to_major_group = {}
|
| 1364 |
-
for _, row in task_statements.iterrows():
|
| 1365 |
-
if pd.notna(row["Task"]) and pd.notna(row["soc_major_group"]):
|
| 1366 |
-
std_task = row["task_standardized"]
|
| 1367 |
-
major_group = str(int(row["soc_major_group"]))
|
| 1368 |
-
task_to_major_group[std_task] = major_group
|
| 1369 |
-
|
| 1370 |
-
# Map cluster names to major groups
|
| 1371 |
-
task_metrics["soc_major"] = task_metrics["cluster_name_standardized"].map(
|
| 1372 |
-
task_to_major_group
|
| 1373 |
-
)
|
| 1374 |
-
|
| 1375 |
-
# Get major occupational groups from SOC structure
|
| 1376 |
-
major_groups = soc_structure[soc_structure["Major Group"].notna()].copy()
|
| 1377 |
-
major_groups["soc_major"] = major_groups["Major Group"].astype(str).str[:2]
|
| 1378 |
-
major_groups["title"] = major_groups["SOC or O*NET-SOC 2019 Title"]
|
| 1379 |
-
|
| 1380 |
-
# Create a clean mapping from major group code to title
|
| 1381 |
-
major_group_mapping = (
|
| 1382 |
-
major_groups[["soc_major", "title"]]
|
| 1383 |
-
.drop_duplicates()
|
| 1384 |
-
.set_index("soc_major")["title"]
|
| 1385 |
-
.to_dict()
|
| 1386 |
-
)
|
| 1387 |
-
|
| 1388 |
-
# Map major group codes to titles
|
| 1389 |
-
task_metrics["occupational_category"] = task_metrics["soc_major"].map(
|
| 1390 |
-
major_group_mapping
|
| 1391 |
-
)
|
| 1392 |
-
|
| 1393 |
-
# Remove unmapped/not classified tasks from analysis
|
| 1394 |
-
task_metrics = task_metrics[task_metrics["occupational_category"].notna()].copy()
|
| 1395 |
-
|
| 1396 |
-
# Find top 6 categories by usage share (API calls) and group others as "All Other"
|
| 1397 |
-
category_usage = (
|
| 1398 |
-
task_metrics.groupby("occupational_category")["api_records"]
|
| 1399 |
-
.sum()
|
| 1400 |
-
.sort_values(ascending=False)
|
| 1401 |
-
)
|
| 1402 |
-
top_6_categories = list(category_usage.head(6).index)
|
| 1403 |
-
|
| 1404 |
-
# Group smaller categories as "All Other"
|
| 1405 |
-
task_metrics["occupational_category"] = task_metrics["occupational_category"].apply(
|
| 1406 |
-
lambda x: x if x in top_6_categories else "All Other"
|
| 1407 |
-
)
|
| 1408 |
-
|
| 1409 |
-
return task_metrics
|
| 1410 |
-
|
| 1411 |
-
|
| 1412 |
-
def create_token_output_bar_chart(df, output_dir):
|
| 1413 |
-
"""
|
| 1414 |
-
Create bar chart showing average output (completion) tokens by occupational category.
|
| 1415 |
-
|
| 1416 |
-
Args:
|
| 1417 |
-
df: Preprocessed data DataFrame
|
| 1418 |
-
output_dir: Directory to save the figure
|
| 1419 |
-
"""
|
| 1420 |
-
# Load ONET mappings for occupational categories
|
| 1421 |
-
task_statements, soc_structure = load_onet_mappings()
|
| 1422 |
-
|
| 1423 |
-
# Use preprocessed intersection data
|
| 1424 |
-
task_metrics = extract_token_metrics_from_intersections(df)
|
| 1425 |
-
|
| 1426 |
-
# Add occupational categories
|
| 1427 |
-
task_metrics = add_occupational_categories_to_metrics(
|
| 1428 |
-
task_metrics, task_statements, soc_structure
|
| 1429 |
-
)
|
| 1430 |
-
|
| 1431 |
-
# Calculate average output tokens by occupational category
|
| 1432 |
-
category_stats = (
|
| 1433 |
-
task_metrics.groupby("occupational_category")
|
| 1434 |
-
.agg(
|
| 1435 |
-
{
|
| 1436 |
-
"avg_completion_tokens": "mean", # Average across tasks
|
| 1437 |
-
"api_records": "sum", # Total API calls for ranking
|
| 1438 |
-
}
|
| 1439 |
-
)
|
| 1440 |
-
.reset_index()
|
| 1441 |
-
)
|
| 1442 |
-
|
| 1443 |
-
# Find top 6 categories by total API calls
|
| 1444 |
-
top_6_categories = category_stats.nlargest(6, "api_records")[
|
| 1445 |
-
"occupational_category"
|
| 1446 |
-
].tolist()
|
| 1447 |
-
|
| 1448 |
-
# Group smaller categories as "All Other"
|
| 1449 |
-
def categorize(cat):
|
| 1450 |
-
return cat if cat in top_6_categories else "All Other"
|
| 1451 |
-
|
| 1452 |
-
task_metrics["category_group"] = task_metrics["occupational_category"].apply(
|
| 1453 |
-
categorize
|
| 1454 |
-
)
|
| 1455 |
-
|
| 1456 |
-
# Recalculate stats with grouped categories
|
| 1457 |
-
final_stats = (
|
| 1458 |
-
task_metrics.groupby("category_group")
|
| 1459 |
-
.agg(
|
| 1460 |
-
{
|
| 1461 |
-
"avg_completion_tokens": "mean", # Average output tokens across tasks
|
| 1462 |
-
"api_records": "sum", # Total usage for reference
|
| 1463 |
-
}
|
| 1464 |
-
)
|
| 1465 |
-
.reset_index()
|
| 1466 |
-
)
|
| 1467 |
-
|
| 1468 |
-
# Sort by output tokens (descending)
|
| 1469 |
-
final_stats = final_stats.sort_values("avg_completion_tokens", ascending=True)
|
| 1470 |
-
|
| 1471 |
-
# Create figure
|
| 1472 |
-
fig, ax = plt.subplots(figsize=(12, 8))
|
| 1473 |
-
|
| 1474 |
-
# Create horizontal bar chart
|
| 1475 |
-
y_pos = np.arange(len(final_stats))
|
| 1476 |
-
colors = [COLOR_CYCLE[i % len(COLOR_CYCLE)] for i in range(len(final_stats))]
|
| 1477 |
-
|
| 1478 |
-
ax.barh(
|
| 1479 |
-
y_pos,
|
| 1480 |
-
final_stats["avg_completion_tokens"],
|
| 1481 |
-
color=colors,
|
| 1482 |
-
alpha=0.8,
|
| 1483 |
-
edgecolor="#333333",
|
| 1484 |
-
linewidth=0.5,
|
| 1485 |
-
)
|
| 1486 |
-
|
| 1487 |
-
# Add value labels
|
| 1488 |
-
for i, (idx, row) in enumerate(final_stats.iterrows()):
|
| 1489 |
-
ax.text(
|
| 1490 |
-
row["avg_completion_tokens"] + 0.02,
|
| 1491 |
-
i,
|
| 1492 |
-
f"{row['avg_completion_tokens']:.2f}",
|
| 1493 |
-
va="center",
|
| 1494 |
-
fontsize=11,
|
| 1495 |
-
fontweight="bold",
|
| 1496 |
-
)
|
| 1497 |
-
|
| 1498 |
-
# Clean up category labels
|
| 1499 |
-
labels = []
|
| 1500 |
-
for cat in final_stats["category_group"]:
|
| 1501 |
-
clean_cat = cat.replace(" Occupations", "").replace(", and ", " & ")
|
| 1502 |
-
labels.append(clean_cat)
|
| 1503 |
-
|
| 1504 |
-
ax.set_yticks(y_pos)
|
| 1505 |
-
ax.set_yticklabels(labels, fontsize=10)
|
| 1506 |
-
|
| 1507 |
-
# Formatting
|
| 1508 |
-
ax.set_xlabel(
|
| 1509 |
-
"Average output token index for observed tasks in a given category",
|
| 1510 |
-
fontsize=12,
|
| 1511 |
-
)
|
| 1512 |
-
ax.set_title(
|
| 1513 |
-
"Average output token index across leading occupational categories",
|
| 1514 |
-
fontsize=14,
|
| 1515 |
-
fontweight="bold",
|
| 1516 |
-
pad=20,
|
| 1517 |
-
)
|
| 1518 |
-
|
| 1519 |
-
# Grid and styling
|
| 1520 |
-
ax.grid(True, alpha=0.3, axis="x")
|
| 1521 |
-
ax.set_axisbelow(True)
|
| 1522 |
-
ax.spines["top"].set_visible(False)
|
| 1523 |
-
ax.spines["right"].set_visible(False)
|
| 1524 |
-
ax.tick_params(axis="x", which="major", labelsize=11)
|
| 1525 |
-
|
| 1526 |
-
plt.tight_layout()
|
| 1527 |
-
|
| 1528 |
-
# Save plot
|
| 1529 |
-
output_path = Path(output_dir) / "token_output_bar_chart.png"
|
| 1530 |
-
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
| 1531 |
-
plt.show()
|
| 1532 |
-
return str(output_path)
|
| 1533 |
-
|
| 1534 |
-
|
| 1535 |
-
def create_completion_vs_input_tokens_scatter(df, output_dir):
|
| 1536 |
-
"""
|
| 1537 |
-
Create scatter plot of ln(completion tokens) vs ln(input tokens) by occupational category.
|
| 1538 |
-
|
| 1539 |
-
Args:
|
| 1540 |
-
df: Preprocessed data DataFrame
|
| 1541 |
-
output_dir: Directory to save the figure
|
| 1542 |
-
"""
|
| 1543 |
-
# Use preprocessed intersection data
|
| 1544 |
-
task_metrics = extract_token_metrics_from_intersections(df)
|
| 1545 |
-
|
| 1546 |
-
# Create figure
|
| 1547 |
-
fig, ax = plt.subplots(figsize=(12, 8))
|
| 1548 |
-
|
| 1549 |
-
# Transform to natural log
|
| 1550 |
-
ln_input = np.log(task_metrics["avg_prompt_tokens"])
|
| 1551 |
-
ln_output = np.log(task_metrics["avg_completion_tokens"])
|
| 1552 |
-
|
| 1553 |
-
# Load ONET mappings for occupational categories
|
| 1554 |
-
task_statements, soc_structure = load_onet_mappings()
|
| 1555 |
-
|
| 1556 |
-
# Add occupational categories
|
| 1557 |
-
# Standardize task descriptions for matching
|
| 1558 |
-
task_statements["task_standardized"] = (
|
| 1559 |
-
task_statements["Task"].str.strip().str.lower()
|
| 1560 |
-
)
|
| 1561 |
-
task_metrics["cluster_name_standardized"] = (
|
| 1562 |
-
task_metrics.index.str.strip().str.lower()
|
| 1563 |
-
)
|
| 1564 |
-
|
| 1565 |
-
# Create mapping from standardized task to major group
|
| 1566 |
-
task_to_major_group = {}
|
| 1567 |
-
for _, row in task_statements.iterrows():
|
| 1568 |
-
if pd.notna(row["Task"]) and pd.notna(row["soc_major_group"]):
|
| 1569 |
-
std_task = row["task_standardized"]
|
| 1570 |
-
major_group = str(int(row["soc_major_group"]))[:2]
|
| 1571 |
-
task_to_major_group[std_task] = major_group
|
| 1572 |
-
|
| 1573 |
-
# Map cluster names to major groups
|
| 1574 |
-
task_metrics["soc_major"] = task_metrics["cluster_name_standardized"].map(
|
| 1575 |
-
task_to_major_group
|
| 1576 |
-
)
|
| 1577 |
-
|
| 1578 |
-
# Get major occupational groups from SOC structure
|
| 1579 |
-
major_groups = soc_structure[soc_structure["Major Group"].notna()].copy()
|
| 1580 |
-
major_groups["soc_major"] = major_groups["Major Group"].astype(str).str[:2]
|
| 1581 |
-
major_groups["title"] = major_groups["SOC or O*NET-SOC 2019 Title"]
|
| 1582 |
-
|
| 1583 |
-
# Create mapping from major group code to title
|
| 1584 |
-
major_group_mapping = (
|
| 1585 |
-
major_groups[["soc_major", "title"]]
|
| 1586 |
-
.drop_duplicates()
|
| 1587 |
-
.set_index("soc_major")["title"]
|
| 1588 |
-
.to_dict()
|
| 1589 |
-
)
|
| 1590 |
-
|
| 1591 |
-
# Map major group codes to titles
|
| 1592 |
-
task_metrics["occupational_category"] = task_metrics["soc_major"].map(
|
| 1593 |
-
major_group_mapping
|
| 1594 |
-
)
|
| 1595 |
-
|
| 1596 |
-
# Remove unmapped tasks
|
| 1597 |
-
task_metrics = task_metrics[task_metrics["occupational_category"].notna()].copy()
|
| 1598 |
-
|
| 1599 |
-
# Find top 6 categories by total API calls and group others as "All Other"
|
| 1600 |
-
category_usage = (
|
| 1601 |
-
task_metrics.groupby("occupational_category")["api_records"]
|
| 1602 |
-
.sum()
|
| 1603 |
-
.sort_values(ascending=False)
|
| 1604 |
-
)
|
| 1605 |
-
top_6_categories = list(category_usage.head(6).index)
|
| 1606 |
-
|
| 1607 |
-
# Group smaller categories as "All Other"
|
| 1608 |
-
task_metrics["occupational_category"] = task_metrics["occupational_category"].apply(
|
| 1609 |
-
lambda x: x if x in top_6_categories else "All Other"
|
| 1610 |
-
)
|
| 1611 |
-
|
| 1612 |
-
# Transform to natural log
|
| 1613 |
-
ln_input = np.log(task_metrics["avg_prompt_tokens"])
|
| 1614 |
-
ln_output = np.log(task_metrics["avg_completion_tokens"])
|
| 1615 |
-
|
| 1616 |
-
# Create scatter plot with same color scheme as bar chart
|
| 1617 |
-
# Use exact same logic as token output bar chart for consistent colors
|
| 1618 |
-
category_stats = (
|
| 1619 |
-
task_metrics.groupby("occupational_category")
|
| 1620 |
-
.agg(
|
| 1621 |
-
{
|
| 1622 |
-
"avg_completion_tokens": "mean",
|
| 1623 |
-
"api_records": "sum",
|
| 1624 |
-
}
|
| 1625 |
-
)
|
| 1626 |
-
.reset_index()
|
| 1627 |
-
)
|
| 1628 |
-
|
| 1629 |
-
# Find top 6 categories by total API calls
|
| 1630 |
-
top_6_categories = category_stats.nlargest(6, "api_records")[
|
| 1631 |
-
"occupational_category"
|
| 1632 |
-
].tolist()
|
| 1633 |
-
|
| 1634 |
-
# Group smaller categories as "All Other"
|
| 1635 |
-
def categorize(cat):
|
| 1636 |
-
return cat if cat in top_6_categories else "All Other"
|
| 1637 |
-
|
| 1638 |
-
task_metrics["category_group"] = task_metrics["occupational_category"].apply(
|
| 1639 |
-
categorize
|
| 1640 |
-
)
|
| 1641 |
-
|
| 1642 |
-
# Recalculate final stats with grouped categories
|
| 1643 |
-
final_stats = (
|
| 1644 |
-
task_metrics.groupby("category_group")
|
| 1645 |
-
.agg({"avg_completion_tokens": "mean"})
|
| 1646 |
-
.reset_index()
|
| 1647 |
-
.sort_values("avg_completion_tokens", ascending=True)
|
| 1648 |
-
)
|
| 1649 |
-
|
| 1650 |
-
# Use exact same color assignment as bar chart
|
| 1651 |
-
categories_ordered = final_stats["category_group"].tolist()
|
| 1652 |
-
category_colors = {}
|
| 1653 |
-
for i, category in enumerate(categories_ordered):
|
| 1654 |
-
category_colors[category] = COLOR_CYCLE[i % len(COLOR_CYCLE)]
|
| 1655 |
-
|
| 1656 |
-
for category in categories_ordered:
|
| 1657 |
-
category_data = task_metrics[task_metrics["category_group"] == category]
|
| 1658 |
-
if not category_data.empty:
|
| 1659 |
-
ln_input_cat = np.log(category_data["avg_prompt_tokens"])
|
| 1660 |
-
ln_output_cat = np.log(category_data["avg_completion_tokens"])
|
| 1661 |
-
bubble_sizes_cat = np.sqrt(category_data["api_records"]) * 2
|
| 1662 |
-
|
| 1663 |
-
# Clean up category name for legend
|
| 1664 |
-
clean_name = category.replace(" Occupations", "").replace(", and ", " & ")
|
| 1665 |
-
|
| 1666 |
-
ax.scatter(
|
| 1667 |
-
ln_input_cat,
|
| 1668 |
-
ln_output_cat,
|
| 1669 |
-
s=bubble_sizes_cat,
|
| 1670 |
-
alpha=0.8,
|
| 1671 |
-
c=category_colors[category],
|
| 1672 |
-
edgecolors="black",
|
| 1673 |
-
linewidth=0.2,
|
| 1674 |
-
)
|
| 1675 |
-
|
| 1676 |
-
# Create uniform legend entries
|
| 1677 |
-
legend_elements = []
|
| 1678 |
-
for category in categories_ordered:
|
| 1679 |
-
clean_name = category.replace(" Occupations", "").replace(", and ", " & ")
|
| 1680 |
-
# Get count for this category
|
| 1681 |
-
category_count = len(task_metrics[task_metrics["category_group"] == category])
|
| 1682 |
-
legend_elements.append(
|
| 1683 |
-
plt.scatter(
|
| 1684 |
-
[],
|
| 1685 |
-
[],
|
| 1686 |
-
s=100,
|
| 1687 |
-
alpha=0.8,
|
| 1688 |
-
c=category_colors[category],
|
| 1689 |
-
edgecolors="black",
|
| 1690 |
-
linewidth=0.2,
|
| 1691 |
-
label=f"{clean_name} (N={category_count})",
|
| 1692 |
-
)
|
| 1693 |
-
)
|
| 1694 |
-
|
| 1695 |
-
# Add legend for occupational categories with uniform sizes
|
| 1696 |
-
ax.legend(
|
| 1697 |
-
bbox_to_anchor=(1.05, 1), loc="upper left", frameon=True, facecolor="white"
|
| 1698 |
-
)
|
| 1699 |
-
|
| 1700 |
-
# Add line of best fit
|
| 1701 |
-
model = sm.OLS(ln_output, sm.add_constant(ln_input)).fit()
|
| 1702 |
-
slope = model.params.iloc[1]
|
| 1703 |
-
intercept = model.params.iloc[0]
|
| 1704 |
-
r_squared = model.rsquared
|
| 1705 |
-
|
| 1706 |
-
line_x = np.linspace(ln_input.min(), ln_input.max(), 100)
|
| 1707 |
-
line_y = slope * line_x + intercept
|
| 1708 |
-
ax.plot(
|
| 1709 |
-
line_x,
|
| 1710 |
-
line_y,
|
| 1711 |
-
"k--",
|
| 1712 |
-
alpha=0.7,
|
| 1713 |
-
linewidth=2,
|
| 1714 |
-
label=f"Best fit (R² = {r_squared:.3f}, $\\beta$ = {slope:.3f})",
|
| 1715 |
-
)
|
| 1716 |
-
ax.legend()
|
| 1717 |
-
|
| 1718 |
-
# Customize plot
|
| 1719 |
-
ax.set_xlabel("ln(Input Token Index)", fontsize=12)
|
| 1720 |
-
ax.set_ylabel("ln(Output Token Index)", fontsize=12)
|
| 1721 |
-
ax.set_title(
|
| 1722 |
-
"Output Token Index vs Input Token Index across tasks",
|
| 1723 |
-
fontsize=14,
|
| 1724 |
-
fontweight="bold",
|
| 1725 |
-
pad=20,
|
| 1726 |
-
)
|
| 1727 |
-
ax.grid(True, alpha=0.3)
|
| 1728 |
-
|
| 1729 |
-
plt.tight_layout()
|
| 1730 |
-
|
| 1731 |
-
# Save plot
|
| 1732 |
-
output_path = Path(output_dir) / "completion_vs_input_tokens_scatter.png"
|
| 1733 |
-
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
| 1734 |
-
plt.show()
|
| 1735 |
-
return str(output_path)
|
| 1736 |
-
|
| 1737 |
-
|
| 1738 |
-
def create_occupational_usage_cost_scatter(df, output_dir):
|
| 1739 |
-
"""
|
| 1740 |
-
Create aggregated scatter plot of usage share vs average cost per API call by occupational category.
|
| 1741 |
-
|
| 1742 |
-
Args:
|
| 1743 |
-
df: Preprocessed data DataFrame
|
| 1744 |
-
output_dir: Directory to save the figure
|
| 1745 |
-
"""
|
| 1746 |
-
# Load ONET mappings for occupational categories
|
| 1747 |
-
task_statements, soc_structure = load_onet_mappings()
|
| 1748 |
-
|
| 1749 |
-
# Use preprocessed intersection data
|
| 1750 |
-
task_metrics = extract_token_metrics_from_intersections(df)
|
| 1751 |
-
|
| 1752 |
-
# Add occupational categories without grouping into "All Other"
|
| 1753 |
-
# Standardize task descriptions for matching
|
| 1754 |
-
task_statements["task_standardized"] = (
|
| 1755 |
-
task_statements["Task"].str.strip().str.lower()
|
| 1756 |
-
)
|
| 1757 |
-
task_metrics["cluster_name_standardized"] = (
|
| 1758 |
-
task_metrics["cluster_name"].str.strip().str.lower()
|
| 1759 |
-
)
|
| 1760 |
-
|
| 1761 |
-
# Create mapping from standardized task to major group
|
| 1762 |
-
task_to_major_group = {}
|
| 1763 |
-
for _, row in task_statements.iterrows():
|
| 1764 |
-
if pd.notna(row["Task"]) and pd.notna(row["soc_major_group"]):
|
| 1765 |
-
std_task = row["task_standardized"]
|
| 1766 |
-
major_group = str(int(row["soc_major_group"]))
|
| 1767 |
-
task_to_major_group[std_task] = major_group
|
| 1768 |
-
|
| 1769 |
-
# Map cluster names to major groups
|
| 1770 |
-
task_metrics["soc_major"] = task_metrics["cluster_name_standardized"].map(
|
| 1771 |
-
task_to_major_group
|
| 1772 |
-
)
|
| 1773 |
-
|
| 1774 |
-
# Get major occupational groups from SOC structure
|
| 1775 |
-
major_groups = soc_structure[soc_structure["Major Group"].notna()].copy()
|
| 1776 |
-
major_groups["soc_major"] = major_groups["Major Group"].astype(str).str[:2]
|
| 1777 |
-
major_groups["title"] = major_groups["SOC or O*NET-SOC 2019 Title"]
|
| 1778 |
-
|
| 1779 |
-
# Create a clean mapping from major group code to title
|
| 1780 |
-
major_group_mapping = (
|
| 1781 |
-
major_groups[["soc_major", "title"]]
|
| 1782 |
-
.drop_duplicates()
|
| 1783 |
-
.set_index("soc_major")["title"]
|
| 1784 |
-
.to_dict()
|
| 1785 |
-
)
|
| 1786 |
-
|
| 1787 |
-
# Map major group codes to titles
|
| 1788 |
-
task_metrics["occupational_category"] = task_metrics["soc_major"].map(
|
| 1789 |
-
major_group_mapping
|
| 1790 |
-
)
|
| 1791 |
-
|
| 1792 |
-
# Remove unmapped/not classified tasks from analysis
|
| 1793 |
-
task_metrics = task_metrics[task_metrics["occupational_category"].notna()].copy()
|
| 1794 |
-
|
| 1795 |
-
# Aggregate by occupational category using pre-calculated percentages
|
| 1796 |
-
category_aggregates = (
|
| 1797 |
-
task_metrics.groupby("occupational_category")
|
| 1798 |
-
.agg(
|
| 1799 |
-
{
|
| 1800 |
-
"usage_pct": "sum", # Sum of pre-calculated task percentages within category
|
| 1801 |
-
"cost_per_record": "mean", # Average cost per API call for this category
|
| 1802 |
-
}
|
| 1803 |
-
)
|
| 1804 |
-
.reset_index()
|
| 1805 |
-
)
|
| 1806 |
-
|
| 1807 |
-
# Usage share is already calculated from preprocessing
|
| 1808 |
-
category_aggregates["usage_share"] = category_aggregates["usage_pct"]
|
| 1809 |
-
|
| 1810 |
-
# Create figure
|
| 1811 |
-
fig, ax = plt.subplots(figsize=(12, 8))
|
| 1812 |
-
|
| 1813 |
-
# Transform variables to natural log
|
| 1814 |
-
ln_cost = np.log(category_aggregates["cost_per_record"])
|
| 1815 |
-
ln_usage = np.log(category_aggregates["usage_share"])
|
| 1816 |
-
|
| 1817 |
-
# Get colors for each category - use same logic as token output bar chart
|
| 1818 |
-
# Sort by a metric to ensure consistent ordering (using usage_share descending)
|
| 1819 |
-
category_aggregates_sorted = category_aggregates.sort_values(
|
| 1820 |
-
"usage_share", ascending=False
|
| 1821 |
-
)
|
| 1822 |
-
|
| 1823 |
-
category_colors = {}
|
| 1824 |
-
for i, category in enumerate(category_aggregates_sorted["occupational_category"]):
|
| 1825 |
-
category_colors[category] = COLOR_CYCLE[i % len(COLOR_CYCLE)]
|
| 1826 |
-
|
| 1827 |
-
# Create invisible scatter plot to maintain axis limits
|
| 1828 |
-
ax.scatter(
|
| 1829 |
-
ln_cost,
|
| 1830 |
-
ln_usage,
|
| 1831 |
-
s=0, # Invisible markers
|
| 1832 |
-
alpha=0,
|
| 1833 |
-
)
|
| 1834 |
-
|
| 1835 |
-
# Add line of best fit
|
| 1836 |
-
model = sm.OLS(ln_usage, sm.add_constant(ln_cost)).fit()
|
| 1837 |
-
slope = model.params.iloc[1]
|
| 1838 |
-
intercept = model.params.iloc[0]
|
| 1839 |
-
r_squared = model.rsquared
|
| 1840 |
-
|
| 1841 |
-
# Generate line points
|
| 1842 |
-
x_line = np.linspace(ln_cost.min(), ln_cost.max(), 50)
|
| 1843 |
-
y_line = slope * x_line + intercept
|
| 1844 |
-
|
| 1845 |
-
# Plot the line of best fit
|
| 1846 |
-
ax.plot(
|
| 1847 |
-
x_line,
|
| 1848 |
-
y_line,
|
| 1849 |
-
"--",
|
| 1850 |
-
color="black",
|
| 1851 |
-
linewidth=2,
|
| 1852 |
-
alpha=0.8,
|
| 1853 |
-
label=f"Best fit (R² = {r_squared:.3f}, $\\beta$ = {slope:.3f})",
|
| 1854 |
-
)
|
| 1855 |
-
|
| 1856 |
-
# Add legend
|
| 1857 |
-
legend = ax.legend(loc="best", frameon=True, facecolor="white")
|
| 1858 |
-
legend.get_frame().set_alpha(0.9)
|
| 1859 |
-
|
| 1860 |
-
# Add category labels centered at data points with text wrapping
|
| 1861 |
-
for i, row in category_aggregates.iterrows():
|
| 1862 |
-
# Clean up and wrap category names
|
| 1863 |
-
clean_name = (
|
| 1864 |
-
row["occupational_category"]
|
| 1865 |
-
.replace(" Occupations", "")
|
| 1866 |
-
.replace(", and ", " & ")
|
| 1867 |
-
)
|
| 1868 |
-
# Wrap long category names to multiple lines
|
| 1869 |
-
wrapped_name = "\n".join(wrap(clean_name, 20))
|
| 1870 |
-
|
| 1871 |
-
ax.text(
|
| 1872 |
-
ln_cost.iloc[i],
|
| 1873 |
-
ln_usage.iloc[i],
|
| 1874 |
-
wrapped_name,
|
| 1875 |
-
ha="center",
|
| 1876 |
-
va="center",
|
| 1877 |
-
fontsize=8,
|
| 1878 |
-
alpha=0.9,
|
| 1879 |
-
)
|
| 1880 |
-
|
| 1881 |
-
# Set labels and title
|
| 1882 |
-
ax.set_xlabel("ln(Average API Cost Index across tasks)", fontsize=12)
|
| 1883 |
-
ax.set_ylabel("ln(Usage share (%))", fontsize=12)
|
| 1884 |
-
ax.set_title(
|
| 1885 |
-
"Usage share and average API cost index by occupational category",
|
| 1886 |
-
fontsize=14,
|
| 1887 |
-
fontweight="bold",
|
| 1888 |
-
pad=20,
|
| 1889 |
-
)
|
| 1890 |
-
|
| 1891 |
-
# Add grid
|
| 1892 |
-
ax.grid(True, alpha=0.3)
|
| 1893 |
-
|
| 1894 |
-
# Adjust layout and save
|
| 1895 |
-
plt.tight_layout()
|
| 1896 |
-
|
| 1897 |
-
output_path = Path(output_dir) / "occupational_usage_cost_scatter.png"
|
| 1898 |
-
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
| 1899 |
-
plt.show()
|
| 1900 |
-
return str(output_path)
|
| 1901 |
-
|
| 1902 |
-
|
| 1903 |
-
def get_merged_api_claude_task_data(api_df, cai_df):
|
| 1904 |
-
"""
|
| 1905 |
-
Create merged dataset with API cost/usage data and Claude.ai collaboration modes.
|
| 1906 |
-
|
| 1907 |
-
Args:
|
| 1908 |
-
api_df: API preprocessed data DataFrame
|
| 1909 |
-
cai_df: Claude.ai preprocessed data DataFrame
|
| 1910 |
-
|
| 1911 |
-
Returns:
|
| 1912 |
-
DataFrame with API cost data + Claude.ai collaboration patterns for common tasks
|
| 1913 |
-
"""
|
| 1914 |
-
# Extract API token metrics
|
| 1915 |
-
api_metrics = extract_token_metrics_from_intersections(api_df)
|
| 1916 |
-
|
| 1917 |
-
# Get Claude.ai collaboration shares
|
| 1918 |
-
claude_collab_shares = get_collaboration_shares(cai_df)
|
| 1919 |
-
|
| 1920 |
-
# Find common tasks between both platforms
|
| 1921 |
-
api_tasks = set(api_metrics.index)
|
| 1922 |
-
claude_tasks = set(claude_collab_shares.keys())
|
| 1923 |
-
common_tasks = api_tasks.intersection(claude_tasks)
|
| 1924 |
-
|
| 1925 |
-
# Create merged dataset
|
| 1926 |
-
merged_data = []
|
| 1927 |
-
|
| 1928 |
-
for task_name in common_tasks:
|
| 1929 |
-
# Get API metrics for this task
|
| 1930 |
-
api_row = api_metrics.loc[task_name]
|
| 1931 |
-
|
| 1932 |
-
# Get Claude.ai collaboration for this task
|
| 1933 |
-
claude_collab = claude_collab_shares[task_name]
|
| 1934 |
-
|
| 1935 |
-
# Create merged row
|
| 1936 |
-
merged_row = {
|
| 1937 |
-
"cluster_name": task_name,
|
| 1938 |
-
"cost_per_record": api_row["cost_per_record"],
|
| 1939 |
-
"avg_prompt_tokens": api_row["avg_prompt_tokens"],
|
| 1940 |
-
"avg_completion_tokens": api_row["avg_completion_tokens"],
|
| 1941 |
-
"api_records": api_row["api_records"],
|
| 1942 |
-
"output_input_ratio": api_row["output_input_ratio"],
|
| 1943 |
-
"total_tokens": api_row["total_tokens"],
|
| 1944 |
-
# Claude.ai collaboration modes
|
| 1945 |
-
"collab_directive": claude_collab.get("directive", 0),
|
| 1946 |
-
"collab_feedback_loop": claude_collab.get("feedback loop", 0),
|
| 1947 |
-
"collab_learning": claude_collab.get("learning", 0),
|
| 1948 |
-
"collab_task_iteration": claude_collab.get("task iteration", 0),
|
| 1949 |
-
"collab_validation": claude_collab.get("validation", 0),
|
| 1950 |
-
}
|
| 1951 |
-
merged_data.append(merged_row)
|
| 1952 |
-
|
| 1953 |
-
merged_df = pd.DataFrame(merged_data)
|
| 1954 |
-
merged_df.set_index("cluster_name", inplace=True)
|
| 1955 |
-
|
| 1956 |
-
return merged_df
|
| 1957 |
-
|
| 1958 |
-
|
| 1959 |
-
def reg_build_df(api_df, cai_df):
|
| 1960 |
-
"""
|
| 1961 |
-
Build complete regression dataset for partial regression and full regression analysis.
|
| 1962 |
-
Each row is an ONET task with all variables needed for figures and regression.
|
| 1963 |
-
|
| 1964 |
-
Args:
|
| 1965 |
-
api_df: API preprocessed data DataFrame
|
| 1966 |
-
cai_df: Claude.ai preprocessed data DataFrame
|
| 1967 |
-
|
| 1968 |
-
Returns:
|
| 1969 |
-
DataFrame with complete regression dataset
|
| 1970 |
-
"""
|
| 1971 |
-
# Load ONET mappings
|
| 1972 |
-
task_statements, soc_structure = load_onet_mappings()
|
| 1973 |
-
|
| 1974 |
-
# Use merged dataset with API metrics + Claude.ai collaboration
|
| 1975 |
-
task_metrics = get_merged_api_claude_task_data(api_df, cai_df)
|
| 1976 |
-
|
| 1977 |
-
# Add occupational categories (includes "All Other" grouping)
|
| 1978 |
-
task_metrics_with_names = task_metrics.reset_index()
|
| 1979 |
-
task_metrics_with_names = add_occupational_categories_to_metrics(
|
| 1980 |
-
task_metrics_with_names, task_statements, soc_structure
|
| 1981 |
-
)
|
| 1982 |
-
task_metrics = task_metrics_with_names.set_index("cluster_name")
|
| 1983 |
-
|
| 1984 |
-
# Add collaboration missing dummies
|
| 1985 |
-
collaboration_modes = [
|
| 1986 |
-
"directive",
|
| 1987 |
-
"feedback_loop",
|
| 1988 |
-
"learning",
|
| 1989 |
-
"task_iteration",
|
| 1990 |
-
"validation",
|
| 1991 |
-
]
|
| 1992 |
-
|
| 1993 |
-
for mode in collaboration_modes:
|
| 1994 |
-
collab_col = f"collab_{mode}"
|
| 1995 |
-
missing_col = f"collab_{mode}_missing"
|
| 1996 |
-
if collab_col in task_metrics.columns:
|
| 1997 |
-
task_metrics[missing_col] = (task_metrics[collab_col] == 0).astype(int)
|
| 1998 |
-
else:
|
| 1999 |
-
task_metrics[missing_col] = 1
|
| 2000 |
-
|
| 2001 |
-
# Calculate usage variables
|
| 2002 |
-
total_api_records = task_metrics["api_records"].sum()
|
| 2003 |
-
task_metrics["usage_share"] = (
|
| 2004 |
-
task_metrics["api_records"] / total_api_records
|
| 2005 |
-
) * 100
|
| 2006 |
-
task_metrics["ln_usage_share"] = np.log(task_metrics["usage_share"])
|
| 2007 |
-
task_metrics["ln_cost_per_task"] = np.log(task_metrics["cost_per_record"])
|
| 2008 |
-
|
| 2009 |
-
# Use all data
|
| 2010 |
-
valid_data = task_metrics
|
| 2011 |
-
|
| 2012 |
-
# Create occupational category dummies while preserving original column
|
| 2013 |
-
valid_data = pd.get_dummies(
|
| 2014 |
-
valid_data, columns=["occupational_category"], prefix="occ"
|
| 2015 |
-
)
|
| 2016 |
-
|
| 2017 |
-
# Restore the original occupational_category column for grouping operations
|
| 2018 |
-
# Extract category name from the dummy columns that are 1
|
| 2019 |
-
occ_cols = [col for col in valid_data.columns if col.startswith("occ_")]
|
| 2020 |
-
valid_data["occupational_category"] = ""
|
| 2021 |
-
for col in occ_cols:
|
| 2022 |
-
category_name = col.replace("occ_", "")
|
| 2023 |
-
mask = valid_data[col] == 1
|
| 2024 |
-
valid_data.loc[mask, "occupational_category"] = category_name
|
| 2025 |
-
|
| 2026 |
-
return valid_data
|
| 2027 |
-
|
| 2028 |
-
|
| 2029 |
-
def create_partial_regression_plot(api_df, cai_df, output_dir):
|
| 2030 |
-
"""
|
| 2031 |
-
Create partial regression scatter plot of usage share vs cost, controlling for occupational categories.
|
| 2032 |
-
|
| 2033 |
-
Args:
|
| 2034 |
-
api_df: API preprocessed data DataFrame
|
| 2035 |
-
cai_df: Claude.ai preprocessed data DataFrame
|
| 2036 |
-
output_dir: Directory to save the figure
|
| 2037 |
-
|
| 2038 |
-
Returns:
|
| 2039 |
-
Tuple of (output_path, regression_results_dict)
|
| 2040 |
-
"""
|
| 2041 |
-
# Use centralized data preparation (includes occupational dummies)
|
| 2042 |
-
valid_metrics = reg_build_df(api_df, cai_df)
|
| 2043 |
-
|
| 2044 |
-
# Extract occupational dummies and collaboration variables
|
| 2045 |
-
occ_cols = [col for col in valid_metrics.columns if col.startswith("occ_")]
|
| 2046 |
-
collab_vars = [
|
| 2047 |
-
"collab_directive",
|
| 2048 |
-
"collab_feedback_loop",
|
| 2049 |
-
"collab_learning",
|
| 2050 |
-
"collab_task_iteration",
|
| 2051 |
-
"collab_validation",
|
| 2052 |
-
]
|
| 2053 |
-
collab_missing_vars = [
|
| 2054 |
-
"collab_directive_missing",
|
| 2055 |
-
"collab_feedback_loop_missing",
|
| 2056 |
-
"collab_learning_missing",
|
| 2057 |
-
"collab_task_iteration_missing",
|
| 2058 |
-
"collab_validation_missing",
|
| 2059 |
-
]
|
| 2060 |
-
|
| 2061 |
-
# Control variables (all occupational dummies + collaboration modes)
|
| 2062 |
-
control_vars = valid_metrics[occ_cols + collab_vars + collab_missing_vars].astype(
|
| 2063 |
-
float
|
| 2064 |
-
)
|
| 2065 |
-
|
| 2066 |
-
# Ensure dependent variables are float
|
| 2067 |
-
y_usage = valid_metrics["ln_usage_share"].astype(float)
|
| 2068 |
-
y_cost = valid_metrics["ln_cost_per_task"].astype(float)
|
| 2069 |
-
|
| 2070 |
-
# Step 1: Regress ln(usage_share) on controls (no constant)
|
| 2071 |
-
usage_model = sm.OLS(y_usage, control_vars).fit()
|
| 2072 |
-
usage_residuals = usage_model.resid
|
| 2073 |
-
|
| 2074 |
-
# Step 2: Regress ln(cost) on controls (no constant)
|
| 2075 |
-
cost_model = sm.OLS(y_cost, control_vars).fit()
|
| 2076 |
-
cost_residuals = cost_model.resid
|
| 2077 |
-
|
| 2078 |
-
# Find top 6 categories by usage share for coloring
|
| 2079 |
-
category_usage = (
|
| 2080 |
-
valid_metrics.groupby("occupational_category")["api_records"]
|
| 2081 |
-
.sum()
|
| 2082 |
-
.sort_values(ascending=False)
|
| 2083 |
-
)
|
| 2084 |
-
top_6_categories = list(category_usage.head(6).index)
|
| 2085 |
-
|
| 2086 |
-
# Create category grouping for coloring
|
| 2087 |
-
valid_metrics["category_group"] = valid_metrics["occupational_category"].apply(
|
| 2088 |
-
lambda x: x if x in top_6_categories else "All Other"
|
| 2089 |
-
)
|
| 2090 |
-
|
| 2091 |
-
# Create figure
|
| 2092 |
-
fig, ax = plt.subplots(figsize=(14, 10))
|
| 2093 |
-
|
| 2094 |
-
# Create color mapping for top 6 + "All Other"
|
| 2095 |
-
unique_groups = valid_metrics["category_group"].unique()
|
| 2096 |
-
group_colors = {}
|
| 2097 |
-
color_idx = 0
|
| 2098 |
-
|
| 2099 |
-
# Assign colors to top 6 categories first
|
| 2100 |
-
for cat in top_6_categories:
|
| 2101 |
-
if cat in unique_groups:
|
| 2102 |
-
group_colors[cat] = COLOR_CYCLE[color_idx % len(COLOR_CYCLE)]
|
| 2103 |
-
color_idx += 1
|
| 2104 |
-
|
| 2105 |
-
# Assign color to "All Other"
|
| 2106 |
-
if "All Other" in unique_groups:
|
| 2107 |
-
group_colors["All Other"] = "#999999" # Gray for all other
|
| 2108 |
-
|
| 2109 |
-
# Create single scatter plot (no color by group)
|
| 2110 |
-
ax.scatter(
|
| 2111 |
-
cost_residuals,
|
| 2112 |
-
usage_residuals,
|
| 2113 |
-
s=100,
|
| 2114 |
-
alpha=0.8,
|
| 2115 |
-
color=COLOR_CYCLE[0],
|
| 2116 |
-
edgecolors="black",
|
| 2117 |
-
linewidth=0.2,
|
| 2118 |
-
)
|
| 2119 |
-
|
| 2120 |
-
# Add overall trend line for residuals
|
| 2121 |
-
model = sm.OLS(usage_residuals, sm.add_constant(cost_residuals)).fit()
|
| 2122 |
-
slope = model.params.iloc[1]
|
| 2123 |
-
intercept = model.params.iloc[0]
|
| 2124 |
-
r_squared = model.rsquared
|
| 2125 |
-
|
| 2126 |
-
line_x = np.linspace(cost_residuals.min(), cost_residuals.max(), 100)
|
| 2127 |
-
line_y = slope * line_x + intercept
|
| 2128 |
-
ax.plot(
|
| 2129 |
-
line_x,
|
| 2130 |
-
line_y,
|
| 2131 |
-
"k--",
|
| 2132 |
-
alpha=0.8,
|
| 2133 |
-
linewidth=2,
|
| 2134 |
-
label=f"Partial relationship (R² = {r_squared:.3f})",
|
| 2135 |
-
)
|
| 2136 |
-
|
| 2137 |
-
# Customize plot
|
| 2138 |
-
ax.set_xlabel("Residual ln(API Cost Index)")
|
| 2139 |
-
ax.set_ylabel("Residual ln(Usage share (%))")
|
| 2140 |
-
ax.set_title(
|
| 2141 |
-
"Task usage share vs API Cost Index \n(partial regression after controlling for task characteristics)",
|
| 2142 |
-
fontsize=16,
|
| 2143 |
-
fontweight="bold",
|
| 2144 |
-
pad=20,
|
| 2145 |
-
)
|
| 2146 |
-
ax.grid(True, alpha=0.3)
|
| 2147 |
-
|
| 2148 |
-
# Simple legend with just the trend line
|
| 2149 |
-
ax.legend(loc="best", frameon=True, facecolor="white", framealpha=0.9, fontsize=11)
|
| 2150 |
-
|
| 2151 |
-
plt.tight_layout()
|
| 2152 |
-
|
| 2153 |
-
# Save plot
|
| 2154 |
-
output_path = Path(output_dir) / "partial_regression_plot.png"
|
| 2155 |
-
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
| 2156 |
-
plt.show()
|
| 2157 |
-
|
| 2158 |
-
# Save regression results
|
| 2159 |
-
regression_results = {
|
| 2160 |
-
"partial_correlation": np.sqrt(r_squared),
|
| 2161 |
-
"partial_r_squared": r_squared,
|
| 2162 |
-
"slope": slope,
|
| 2163 |
-
"intercept": intercept,
|
| 2164 |
-
"n_observations": len(valid_metrics),
|
| 2165 |
-
"usage_model_summary": str(usage_model.summary()),
|
| 2166 |
-
"cost_model_summary": str(cost_model.summary()),
|
| 2167 |
-
}
|
| 2168 |
-
|
| 2169 |
-
# Print regression results instead of saving to file
|
| 2170 |
-
print("Partial Regression Analysis Results")
|
| 2171 |
-
print("=" * 50)
|
| 2172 |
-
print(f"Partial correlation: {np.sqrt(r_squared):.4f}")
|
| 2173 |
-
print(f"Partial R-squared: {r_squared:.4f}")
|
| 2174 |
-
print(f"Slope: {slope:.4f}")
|
| 2175 |
-
print(f"Intercept: {intercept:.4f}")
|
| 2176 |
-
print(f"Number of observations: {len(valid_metrics)}")
|
| 2177 |
-
print("\nUsage Model Summary:")
|
| 2178 |
-
print("-" * 30)
|
| 2179 |
-
print(usage_model.summary())
|
| 2180 |
-
print("\nCost Model Summary:")
|
| 2181 |
-
print("-" * 30)
|
| 2182 |
-
print(cost_model.summary())
|
| 2183 |
-
|
| 2184 |
-
return str(output_path), regression_results
|
| 2185 |
-
|
| 2186 |
-
|
| 2187 |
-
def perform_usage_share_regression_unweighted(api_df, cai_df, output_dir):
|
| 2188 |
-
"""
|
| 2189 |
-
Perform unweighted usage share regression analysis using Claude.ai collaboration modes.
|
| 2190 |
-
|
| 2191 |
-
Args:
|
| 2192 |
-
api_df: API preprocessed data DataFrame
|
| 2193 |
-
cai_df: Claude.ai preprocessed data DataFrame
|
| 2194 |
-
output_dir: Directory to save regression results
|
| 2195 |
-
|
| 2196 |
-
Returns:
|
| 2197 |
-
OLS model results
|
| 2198 |
-
"""
|
| 2199 |
-
# Use centralized data preparation (includes all dummies)
|
| 2200 |
-
valid_data = reg_build_df(api_df, cai_df)
|
| 2201 |
-
|
| 2202 |
-
# Extract all regression variables
|
| 2203 |
-
X_cols = ["ln_cost_per_task"]
|
| 2204 |
-
X_cols.extend(
|
| 2205 |
-
[
|
| 2206 |
-
f"collab_{mode}"
|
| 2207 |
-
for mode in [
|
| 2208 |
-
"directive",
|
| 2209 |
-
"feedback_loop",
|
| 2210 |
-
"learning",
|
| 2211 |
-
"task_iteration",
|
| 2212 |
-
"validation",
|
| 2213 |
-
]
|
| 2214 |
-
]
|
| 2215 |
-
)
|
| 2216 |
-
X_cols.extend(
|
| 2217 |
-
[
|
| 2218 |
-
f"collab_{mode}_missing"
|
| 2219 |
-
for mode in [
|
| 2220 |
-
"directive",
|
| 2221 |
-
"feedback_loop",
|
| 2222 |
-
"learning",
|
| 2223 |
-
"task_iteration",
|
| 2224 |
-
"validation",
|
| 2225 |
-
]
|
| 2226 |
-
]
|
| 2227 |
-
)
|
| 2228 |
-
X_cols.extend([col for col in valid_data.columns if col.startswith("occ_")])
|
| 2229 |
-
|
| 2230 |
-
# Ensure all columns are numeric
|
| 2231 |
-
X = valid_data[X_cols].astype(float)
|
| 2232 |
-
y = valid_data["ln_usage_share"].astype(float)
|
| 2233 |
-
|
| 2234 |
-
# Run unweighted OLS without constant (to include all occupational dummies)
|
| 2235 |
-
model = sm.OLS(y, X).fit()
|
| 2236 |
-
|
| 2237 |
-
# Get heteroskedasticity-robust standard errors (HC1)
|
| 2238 |
-
model_robust = model.get_robustcov_results(cov_type="HC1")
|
| 2239 |
-
|
| 2240 |
-
return model_robust
|
| 2241 |
-
|
| 2242 |
-
|
| 2243 |
-
def create_btos_ai_adoption_chart(btos_df, ref_dates_df, output_dir):
|
| 2244 |
-
"""
|
| 2245 |
-
Create BTOS AI adoption time series chart.
|
| 2246 |
-
|
| 2247 |
-
Args:
|
| 2248 |
-
btos_df: BTOS response estimates DataFrame
|
| 2249 |
-
ref_dates_df: Collection and reference dates DataFrame
|
| 2250 |
-
output_dir: Directory to save the figure
|
| 2251 |
-
"""
|
| 2252 |
-
# Filter for Question ID 7, Answer ID 1 (Yes response to AI usage)
|
| 2253 |
-
btos_filtered = btos_df[(btos_df["Question ID"] == 7) & (btos_df["Answer ID"] == 1)]
|
| 2254 |
-
|
| 2255 |
-
# Get date columns (string columns that look like YYYYWW)
|
| 2256 |
-
date_columns = [
|
| 2257 |
-
col for col in btos_df.columns[4:] if str(col).isdigit() and len(str(col)) == 6
|
| 2258 |
-
]
|
| 2259 |
-
|
| 2260 |
-
# Extract time series
|
| 2261 |
-
btos_ts = btos_filtered[date_columns].T
|
| 2262 |
-
btos_ts.columns = ["percentage"]
|
| 2263 |
-
|
| 2264 |
-
# Map to reference end dates
|
| 2265 |
-
ref_dates_df["Ref End"] = pd.to_datetime(ref_dates_df["Ref End"])
|
| 2266 |
-
btos_ts = btos_ts.reset_index()
|
| 2267 |
-
btos_ts["smpdt"] = btos_ts["index"].astype(int)
|
| 2268 |
-
btos_ts = btos_ts.merge(
|
| 2269 |
-
ref_dates_df[["Smpdt", "Ref End"]],
|
| 2270 |
-
left_on="smpdt",
|
| 2271 |
-
right_on="Smpdt",
|
| 2272 |
-
how="left",
|
| 2273 |
-
)
|
| 2274 |
-
btos_ts = btos_ts.set_index("Ref End")[["percentage"]]
|
| 2275 |
-
|
| 2276 |
-
# Convert percentage strings to numeric
|
| 2277 |
-
btos_ts["percentage"] = btos_ts["percentage"].str.rstrip("%").astype(float)
|
| 2278 |
-
btos_ts = btos_ts.sort_index().dropna()
|
| 2279 |
-
|
| 2280 |
-
# Calculate 3-period moving average
|
| 2281 |
-
btos_ts["moving_avg"] = btos_ts["percentage"].rolling(window=3).mean()
|
| 2282 |
-
|
| 2283 |
-
# Create figure
|
| 2284 |
-
fig, ax = plt.subplots(figsize=(14, 8))
|
| 2285 |
-
|
| 2286 |
-
# Plot main line
|
| 2287 |
-
ax.plot(
|
| 2288 |
-
btos_ts.index,
|
| 2289 |
-
btos_ts["percentage"],
|
| 2290 |
-
linewidth=3,
|
| 2291 |
-
marker="o",
|
| 2292 |
-
markersize=6,
|
| 2293 |
-
label="AI Adoption Rate Among US Businesses",
|
| 2294 |
-
zorder=3,
|
| 2295 |
-
)
|
| 2296 |
-
|
| 2297 |
-
# Plot moving average
|
| 2298 |
-
ax.plot(
|
| 2299 |
-
btos_ts.index,
|
| 2300 |
-
btos_ts["moving_avg"],
|
| 2301 |
-
linewidth=2,
|
| 2302 |
-
linestyle="--",
|
| 2303 |
-
alpha=0.8,
|
| 2304 |
-
label="3-Period Moving Average",
|
| 2305 |
-
zorder=2,
|
| 2306 |
-
)
|
| 2307 |
-
|
| 2308 |
-
# Styling
|
| 2309 |
-
ax.set_xlabel("Date", fontsize=14)
|
| 2310 |
-
ax.set_ylabel("AI adoption rate (%)", fontsize=14)
|
| 2311 |
-
ax.set_title(
|
| 2312 |
-
"Census reported AI adoption rates among US businesses from the Business Trends and Outlook Survey",
|
| 2313 |
-
fontsize=16,
|
| 2314 |
-
fontweight="bold",
|
| 2315 |
-
pad=20,
|
| 2316 |
-
)
|
| 2317 |
-
|
| 2318 |
-
# Format y-axis as percentage
|
| 2319 |
-
ax.set_ylim(0, max(btos_ts["percentage"]) * 1.1)
|
| 2320 |
-
|
| 2321 |
-
# Rotate x-axis labels
|
| 2322 |
-
ax.tick_params(axis="x", rotation=45)
|
| 2323 |
-
|
| 2324 |
-
# Grid and styling
|
| 2325 |
-
ax.grid(True, alpha=0.3, linestyle="--")
|
| 2326 |
-
ax.set_axisbelow(True)
|
| 2327 |
-
ax.spines["top"].set_visible(False)
|
| 2328 |
-
ax.spines["right"].set_visible(False)
|
| 2329 |
-
|
| 2330 |
-
# Legend
|
| 2331 |
-
ax.legend(loc="upper left", fontsize=11, frameon=True, facecolor="white")
|
| 2332 |
-
|
| 2333 |
-
plt.tight_layout()
|
| 2334 |
-
|
| 2335 |
-
# Save plot
|
| 2336 |
-
output_path = Path(output_dir) / "btos_ai_adoption_chart.png"
|
| 2337 |
-
plt.savefig(output_path, dpi=300, bbox_inches="tight")
|
| 2338 |
-
plt.show()
|
| 2339 |
-
return str(output_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/code/aei_analysis_functions_claude_ai.py
DELETED
|
@@ -1,2926 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""
|
| 3 |
-
Analysis functions for AEI Report v3 Claude.ai chapter
|
| 4 |
-
"""
|
| 5 |
-
|
| 6 |
-
import textwrap
|
| 7 |
-
|
| 8 |
-
import geopandas as gpd
|
| 9 |
-
import matplotlib.colors as mcolors
|
| 10 |
-
import matplotlib.patches as mpatches
|
| 11 |
-
import matplotlib.pyplot as plt
|
| 12 |
-
import numpy as np
|
| 13 |
-
import pandas as pd
|
| 14 |
-
import statsmodels.api as sm
|
| 15 |
-
from matplotlib.colors import LinearSegmentedColormap, Normalize, TwoSlopeNorm
|
| 16 |
-
from matplotlib.lines import Line2D
|
| 17 |
-
from matplotlib.patches import FancyBboxPatch, Patch
|
| 18 |
-
from mpl_toolkits.axes_grid1 import make_axes_locatable
|
| 19 |
-
|
| 20 |
-
# global list of excluded countries (ISO-3 codes)
|
| 21 |
-
EXCLUDED_COUNTRIES = [
|
| 22 |
-
"AFG",
|
| 23 |
-
"BLR",
|
| 24 |
-
"COD",
|
| 25 |
-
"CAF",
|
| 26 |
-
"CHN",
|
| 27 |
-
"CUB",
|
| 28 |
-
"ERI",
|
| 29 |
-
"ETH",
|
| 30 |
-
"HKG",
|
| 31 |
-
"IRN",
|
| 32 |
-
"PRK",
|
| 33 |
-
"LBY",
|
| 34 |
-
"MLI",
|
| 35 |
-
"MMR",
|
| 36 |
-
"MAC",
|
| 37 |
-
"NIC",
|
| 38 |
-
"RUS",
|
| 39 |
-
"SDN",
|
| 40 |
-
"SOM",
|
| 41 |
-
"SSD",
|
| 42 |
-
"SYR",
|
| 43 |
-
"VEN",
|
| 44 |
-
"YEM",
|
| 45 |
-
]
|
| 46 |
-
|
| 47 |
-
# Minimum observation thresholds
|
| 48 |
-
MIN_OBSERVATIONS_COUNTRY = 200 # Threshold for countries
|
| 49 |
-
MIN_OBSERVATIONS_US_STATE = 100 # Threshold for US states
|
| 50 |
-
|
| 51 |
-
# Define the tier colors
|
| 52 |
-
TIER_COLORS_LIST = ["#E6DBD0", "#E5C5AB", "#E4AF86", "#E39961", "#D97757"]
|
| 53 |
-
|
| 54 |
-
# Anthropic brand color for borders
|
| 55 |
-
ANTHROPIC_OAT = "#E3DACC"
|
| 56 |
-
AUGMENTATION_COLOR = "#00A078"
|
| 57 |
-
AUTOMATION_COLOR = "#FF9940"
|
| 58 |
-
|
| 59 |
-
# Standard tier color mapping used throughout
|
| 60 |
-
TIER_COLORS_DICT = {
|
| 61 |
-
"Minimal": TIER_COLORS_LIST[0], # Lightest
|
| 62 |
-
"Emerging (bottom 25%)": TIER_COLORS_LIST[1],
|
| 63 |
-
"Lower middle (25-50%)": TIER_COLORS_LIST[2],
|
| 64 |
-
"Upper middle (50-75%)": TIER_COLORS_LIST[3],
|
| 65 |
-
"Leading (top 25%)": TIER_COLORS_LIST[4], # Darkest
|
| 66 |
-
}
|
| 67 |
-
|
| 68 |
-
# Standard tier ordering
|
| 69 |
-
TIER_ORDER = [
|
| 70 |
-
"Leading (top 25%)",
|
| 71 |
-
"Upper middle (50-75%)",
|
| 72 |
-
"Lower middle (25-50%)",
|
| 73 |
-
"Emerging (bottom 25%)",
|
| 74 |
-
"Minimal",
|
| 75 |
-
]
|
| 76 |
-
|
| 77 |
-
# Numeric tier color mapping (for tier values 0-4)
|
| 78 |
-
TIER_COLORS_NUMERIC = {i: color for i, color in enumerate(TIER_COLORS_LIST)}
|
| 79 |
-
|
| 80 |
-
# Numeric tier name mapping (for tier values 1-4 in actual data)
|
| 81 |
-
TIER_NAMES_NUMERIC = {
|
| 82 |
-
1: "Emerging (bottom 25%)",
|
| 83 |
-
2: "Lower middle (25-50%)",
|
| 84 |
-
3: "Upper middle (50-75%)",
|
| 85 |
-
4: "Leading (top 25%)",
|
| 86 |
-
}
|
| 87 |
-
|
| 88 |
-
# Create a custom colormap that can be used for continuous variables
|
| 89 |
-
CUSTOM_CMAP = LinearSegmentedColormap.from_list("custom_tier", TIER_COLORS_LIST, N=256)
|
| 90 |
-
|
| 91 |
-
# Map layout constants
|
| 92 |
-
MAP_PADDING_X = 0.25 # Horizontal padding for legend space
|
| 93 |
-
MAP_PADDING_Y = 0.05 # Vertical padding
|
| 94 |
-
ALASKA_INSET_BOUNDS = [0.26, 0.18, 0.15, 0.15] # [left, bottom, width, height]
|
| 95 |
-
HAWAII_INSET_BOUNDS = [0.40, 0.18, 0.11, 0.11] # [left, bottom, width, height]
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
# Figure style and setup
|
| 99 |
-
def setup_plot_style():
|
| 100 |
-
"""Configure matplotlib."""
|
| 101 |
-
plt.style.use("default")
|
| 102 |
-
plt.rcParams.update(
|
| 103 |
-
{
|
| 104 |
-
"figure.dpi": 150,
|
| 105 |
-
"savefig.dpi": 150,
|
| 106 |
-
"font.size": 10,
|
| 107 |
-
"axes.labelsize": 11,
|
| 108 |
-
"axes.titlesize": 12,
|
| 109 |
-
"xtick.labelsize": 9,
|
| 110 |
-
"ytick.labelsize": 9,
|
| 111 |
-
"legend.fontsize": 9,
|
| 112 |
-
"figure.facecolor": "white",
|
| 113 |
-
"axes.facecolor": "white",
|
| 114 |
-
"savefig.facecolor": "white",
|
| 115 |
-
"axes.edgecolor": "#333333",
|
| 116 |
-
"axes.linewidth": 0.8,
|
| 117 |
-
"axes.grid": True,
|
| 118 |
-
"grid.alpha": 0.3,
|
| 119 |
-
"grid.linestyle": "-",
|
| 120 |
-
"grid.linewidth": 0.5,
|
| 121 |
-
"axes.axisbelow": True,
|
| 122 |
-
}
|
| 123 |
-
)
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
def create_figure(figsize=(12, 8), tight_layout=True, nrows=1, ncols=1):
|
| 127 |
-
"""Create a figure with consistent settings.
|
| 128 |
-
|
| 129 |
-
Args:
|
| 130 |
-
figsize: Figure size tuple
|
| 131 |
-
tight_layout: Whether to use tight layout
|
| 132 |
-
nrows: Number of subplot rows
|
| 133 |
-
ncols: Number of subplot columns
|
| 134 |
-
|
| 135 |
-
Returns:
|
| 136 |
-
fig, ax or fig, axes depending on subplot configuration
|
| 137 |
-
"""
|
| 138 |
-
fig, ax = plt.subplots(nrows, ncols, figsize=figsize)
|
| 139 |
-
if tight_layout:
|
| 140 |
-
fig.tight_layout()
|
| 141 |
-
else:
|
| 142 |
-
# Explicitly disable the layout engine to prevent warnings
|
| 143 |
-
fig.set_layout_engine(layout="none")
|
| 144 |
-
return fig, ax
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
def format_axis(
|
| 148 |
-
ax,
|
| 149 |
-
xlabel=None,
|
| 150 |
-
ylabel=None,
|
| 151 |
-
title=None,
|
| 152 |
-
xlabel_size=11,
|
| 153 |
-
ylabel_size=11,
|
| 154 |
-
title_size=13,
|
| 155 |
-
grid=True,
|
| 156 |
-
grid_alpha=0.3,
|
| 157 |
-
):
|
| 158 |
-
"""Apply consistent axis formatting."""
|
| 159 |
-
if xlabel:
|
| 160 |
-
ax.set_xlabel(xlabel, fontsize=xlabel_size)
|
| 161 |
-
if ylabel:
|
| 162 |
-
ax.set_ylabel(ylabel, fontsize=ylabel_size)
|
| 163 |
-
if title:
|
| 164 |
-
ax.set_title(title, fontsize=title_size, fontweight="bold", pad=15)
|
| 165 |
-
if grid:
|
| 166 |
-
ax.grid(True, alpha=grid_alpha)
|
| 167 |
-
return ax
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
def get_color_normalizer(values, center_at_one=False, vmin=None, vmax=None):
|
| 171 |
-
"""Create appropriate color normalizer for data."""
|
| 172 |
-
if center_at_one:
|
| 173 |
-
# Use TwoSlopeNorm for diverging around 1.0
|
| 174 |
-
if vmin is None:
|
| 175 |
-
vmin = min(values.min(), 0.1)
|
| 176 |
-
if vmax is None:
|
| 177 |
-
vmax = max(values.max(), 2.0)
|
| 178 |
-
return TwoSlopeNorm(vmin=vmin, vcenter=1.0, vmax=vmax)
|
| 179 |
-
else:
|
| 180 |
-
# Use regular normalization
|
| 181 |
-
if vmin is None:
|
| 182 |
-
vmin = values.min()
|
| 183 |
-
if vmax is None:
|
| 184 |
-
vmax = values.max()
|
| 185 |
-
return Normalize(vmin=vmin, vmax=vmax)
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
def create_tier_legend(
|
| 189 |
-
ax,
|
| 190 |
-
tier_colors,
|
| 191 |
-
tiers_in_data,
|
| 192 |
-
excluded_countries=False,
|
| 193 |
-
no_data=False,
|
| 194 |
-
loc="lower left",
|
| 195 |
-
title="Anthropic AI Usage Index tier",
|
| 196 |
-
):
|
| 197 |
-
"""Create a consistent tier legend for maps."""
|
| 198 |
-
legend_elements = []
|
| 199 |
-
for tier in TIER_ORDER:
|
| 200 |
-
if tier in tiers_in_data:
|
| 201 |
-
legend_elements.append(
|
| 202 |
-
mpatches.Patch(
|
| 203 |
-
facecolor=tier_colors[tier], edgecolor="none", label=tier
|
| 204 |
-
)
|
| 205 |
-
)
|
| 206 |
-
|
| 207 |
-
if excluded_countries:
|
| 208 |
-
legend_elements.append(
|
| 209 |
-
mpatches.Patch(
|
| 210 |
-
facecolor="#c0c0c0", edgecolor="white", label="Claude not available"
|
| 211 |
-
)
|
| 212 |
-
)
|
| 213 |
-
|
| 214 |
-
if no_data:
|
| 215 |
-
legend_elements.append(
|
| 216 |
-
mpatches.Patch(facecolor="#f0f0f0", edgecolor="white", label="No data")
|
| 217 |
-
)
|
| 218 |
-
|
| 219 |
-
if legend_elements:
|
| 220 |
-
ax.legend(
|
| 221 |
-
handles=legend_elements,
|
| 222 |
-
loc=loc,
|
| 223 |
-
fontsize=10,
|
| 224 |
-
bbox_to_anchor=(0, 0) if loc == "lower left" else None,
|
| 225 |
-
title=title,
|
| 226 |
-
title_fontsize=11,
|
| 227 |
-
frameon=True,
|
| 228 |
-
fancybox=True,
|
| 229 |
-
shadow=True,
|
| 230 |
-
)
|
| 231 |
-
|
| 232 |
-
return ax
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
# Data wrangling helpers
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
def filter_df(df, **kwargs):
|
| 239 |
-
"""Universal filter helper for dataframes.
|
| 240 |
-
|
| 241 |
-
Args:
|
| 242 |
-
df: DataFrame to filter
|
| 243 |
-
**kwargs: Column-value pairs to filter on
|
| 244 |
-
Lists are handled with .isin()
|
| 245 |
-
|
| 246 |
-
Returns:
|
| 247 |
-
Filtered DataFrame
|
| 248 |
-
"""
|
| 249 |
-
mask = pd.Series([True] * len(df), index=df.index)
|
| 250 |
-
|
| 251 |
-
for key, value in kwargs.items():
|
| 252 |
-
if value is None:
|
| 253 |
-
continue # Skip None values
|
| 254 |
-
if key in df.columns:
|
| 255 |
-
if isinstance(value, list):
|
| 256 |
-
mask = mask & df[key].isin(value)
|
| 257 |
-
else:
|
| 258 |
-
mask = mask & (df[key] == value)
|
| 259 |
-
|
| 260 |
-
return df[mask]
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
def get_filtered_geographies(df, min_obs_country=None, min_obs_state=None):
|
| 264 |
-
"""
|
| 265 |
-
Get lists of countries and states that meet MIN_OBSERVATIONS thresholds.
|
| 266 |
-
|
| 267 |
-
This function does NOT filter the dataframe - it only identifies which
|
| 268 |
-
geographies meet the thresholds. The full dataframe is preserved
|
| 269 |
-
so we can still report statistics for all geographies.
|
| 270 |
-
|
| 271 |
-
Args:
|
| 272 |
-
df: Input dataframe
|
| 273 |
-
min_obs_country: Minimum observations for countries (default: MIN_OBSERVATIONS_COUNTRY)
|
| 274 |
-
min_obs_state: Minimum observations for states (default: MIN_OBSERVATIONS_US_STATE)
|
| 275 |
-
|
| 276 |
-
Returns:
|
| 277 |
-
Tuple of (filtered_countries list, filtered_states list)
|
| 278 |
-
"""
|
| 279 |
-
# Use defaults if not specified
|
| 280 |
-
if min_obs_country is None:
|
| 281 |
-
min_obs_country = MIN_OBSERVATIONS_COUNTRY
|
| 282 |
-
if min_obs_state is None:
|
| 283 |
-
min_obs_state = MIN_OBSERVATIONS_US_STATE
|
| 284 |
-
|
| 285 |
-
# Get country usage counts
|
| 286 |
-
country_usage = filter_df(df, facet="country", variable="usage_count").set_index(
|
| 287 |
-
"geo_id"
|
| 288 |
-
)["value"]
|
| 289 |
-
|
| 290 |
-
# Get state usage counts
|
| 291 |
-
state_usage = filter_df(df, facet="state_us", variable="usage_count").set_index(
|
| 292 |
-
"geo_id"
|
| 293 |
-
)["value"]
|
| 294 |
-
|
| 295 |
-
# Get countries that meet threshold (excluding not_classified)
|
| 296 |
-
filtered_countries = country_usage[country_usage >= min_obs_country].index.tolist()
|
| 297 |
-
filtered_countries = [c for c in filtered_countries if c != "not_classified"]
|
| 298 |
-
|
| 299 |
-
# Get states that meet threshold (excluding not_classified)
|
| 300 |
-
filtered_states = state_usage[state_usage >= min_obs_state].index.tolist()
|
| 301 |
-
filtered_states = [s for s in filtered_states if s != "not_classified"]
|
| 302 |
-
|
| 303 |
-
return filtered_countries, filtered_states
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
def filter_requests_by_threshold(df, geography, geo_id, level=1, threshold=1.0):
|
| 307 |
-
"""
|
| 308 |
-
Filter requests to only include requests at a specific level that meet threshold requirements.
|
| 309 |
-
|
| 310 |
-
Args:
|
| 311 |
-
df: Long format dataframe with request data
|
| 312 |
-
geography: Current geography level ('country' or 'state_us')
|
| 313 |
-
geo_id: Current geography ID (e.g., 'USA', 'CA')
|
| 314 |
-
level: Request level to filter (default=1 for middle aggregated)
|
| 315 |
-
threshold: Minimum percentage threshold (default=1.0%)
|
| 316 |
-
|
| 317 |
-
Returns:
|
| 318 |
-
List of valid cluster_names that:
|
| 319 |
-
1. Are at the specified level (default level 1)
|
| 320 |
-
2. Have >= threshold % in the current geography
|
| 321 |
-
3. Have >= threshold % in the parent geography (USA for states, GLOBAL for countries)
|
| 322 |
-
"""
|
| 323 |
-
# Determine parent geography
|
| 324 |
-
if geography == "state_us":
|
| 325 |
-
parent_geo = "USA"
|
| 326 |
-
parent_geography = "country"
|
| 327 |
-
elif geography == "country":
|
| 328 |
-
parent_geo = "GLOBAL"
|
| 329 |
-
parent_geography = "global"
|
| 330 |
-
else: # global
|
| 331 |
-
# For global, no parent filtering needed
|
| 332 |
-
df_local = filter_df(
|
| 333 |
-
df,
|
| 334 |
-
geography=geography,
|
| 335 |
-
geo_id=geo_id,
|
| 336 |
-
facet="request",
|
| 337 |
-
level=level,
|
| 338 |
-
variable="request_pct",
|
| 339 |
-
)
|
| 340 |
-
return df_local[df_local["value"] >= threshold]["cluster_name"].tolist()
|
| 341 |
-
|
| 342 |
-
# Get local request percentages at specified level
|
| 343 |
-
df_local = filter_df(
|
| 344 |
-
df,
|
| 345 |
-
geography=geography,
|
| 346 |
-
geo_id=geo_id,
|
| 347 |
-
facet="request",
|
| 348 |
-
level=level,
|
| 349 |
-
variable="request_pct",
|
| 350 |
-
)
|
| 351 |
-
|
| 352 |
-
# Get parent request percentages at same level
|
| 353 |
-
df_parent = filter_df(
|
| 354 |
-
df,
|
| 355 |
-
geography=parent_geography,
|
| 356 |
-
geo_id=parent_geo,
|
| 357 |
-
facet="request",
|
| 358 |
-
level=level,
|
| 359 |
-
variable="request_pct",
|
| 360 |
-
)
|
| 361 |
-
|
| 362 |
-
# Filter by local threshold
|
| 363 |
-
local_valid = set(df_local[df_local["value"] >= threshold]["cluster_name"])
|
| 364 |
-
|
| 365 |
-
# Filter by parent threshold
|
| 366 |
-
parent_valid = set(df_parent[df_parent["value"] >= threshold]["cluster_name"])
|
| 367 |
-
|
| 368 |
-
# Return intersection (must meet both thresholds)
|
| 369 |
-
return list(local_valid & parent_valid)
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
# Data loading
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
def load_world_shapefile():
|
| 376 |
-
"""Load and prepare world shapefile for mapping."""
|
| 377 |
-
url = "https://naciscdn.org/naturalearth/10m/cultural/ne_10m_admin_0_countries_iso.zip"
|
| 378 |
-
world = gpd.read_file(url)
|
| 379 |
-
|
| 380 |
-
# Remove Antarctica from the dataset entirely
|
| 381 |
-
world = world[world["ISO_A3_EH"] != "ATA"]
|
| 382 |
-
|
| 383 |
-
# Use Robinson projection for better world map appearance
|
| 384 |
-
world = world.to_crs("+proj=robin")
|
| 385 |
-
|
| 386 |
-
# Mark excluded countries using global EXCLUDED_COUNTRIES
|
| 387 |
-
world["is_excluded"] = world["ISO_A3_EH"].isin(EXCLUDED_COUNTRIES)
|
| 388 |
-
|
| 389 |
-
return world
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
def load_us_states_shapefile():
|
| 393 |
-
"""Load and prepare US states shapefile for mapping."""
|
| 394 |
-
import ssl
|
| 395 |
-
|
| 396 |
-
# Create unverified SSL context to handle Census Bureau cert issues
|
| 397 |
-
ssl._create_default_https_context = ssl._create_unverified_context
|
| 398 |
-
|
| 399 |
-
states_url = (
|
| 400 |
-
"https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_state_20m.zip"
|
| 401 |
-
)
|
| 402 |
-
states = gpd.read_file(states_url)
|
| 403 |
-
|
| 404 |
-
# Filter out territories but keep all 50 states and DC
|
| 405 |
-
states = states[~states["STUSPS"].isin(["PR", "VI", "MP", "GU", "AS"])]
|
| 406 |
-
|
| 407 |
-
return states
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
def merge_geo_data(shapefile, df_data, geo_column, columns_to_merge, is_tier=False):
|
| 411 |
-
"""Merge data with geographic shapefile.
|
| 412 |
-
|
| 413 |
-
Args:
|
| 414 |
-
shapefile: GeoDataFrame (world or states)
|
| 415 |
-
df_data: DataFrame with data to merge
|
| 416 |
-
geo_column: Column in shapefile to join on (e.g., 'ISO_A3_EH', 'STUSPS')
|
| 417 |
-
columns_to_merge: List of columns to merge from df_data
|
| 418 |
-
is_tier: Whether this is tier data (includes cluster_name)
|
| 419 |
-
|
| 420 |
-
Returns:
|
| 421 |
-
Merged GeoDataFrame
|
| 422 |
-
"""
|
| 423 |
-
if is_tier and "cluster_name" not in columns_to_merge:
|
| 424 |
-
columns_to_merge = columns_to_merge + ["cluster_name"]
|
| 425 |
-
|
| 426 |
-
return shapefile.merge(
|
| 427 |
-
df_data[columns_to_merge], left_on=geo_column, right_on="geo_id", how="left"
|
| 428 |
-
)
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
def prepare_map_data(
|
| 432 |
-
geo_df,
|
| 433 |
-
value_column="value",
|
| 434 |
-
center_at_one=False,
|
| 435 |
-
excluded_mask=None,
|
| 436 |
-
):
|
| 437 |
-
"""Prepare data and normalization for map plotting.
|
| 438 |
-
|
| 439 |
-
Args:
|
| 440 |
-
geo_df: GeoDataFrame with geographic data and values to plot
|
| 441 |
-
value_column: Name of column containing values to plot (default: "value")
|
| 442 |
-
center_at_one: If True, center color scale at 1.0 for diverging colormap (default: False)
|
| 443 |
-
excluded_mask: Boolean Series indicating which rows to exclude from normalization
|
| 444 |
-
(e.g., countries where service isn't available). If None, no exclusions.
|
| 445 |
-
|
| 446 |
-
Returns:
|
| 447 |
-
tuple: (plot_column_name, norm) where norm is the matplotlib Normalize object
|
| 448 |
-
"""
|
| 449 |
-
if excluded_mask is None:
|
| 450 |
-
excluded_mask = pd.Series([False] * len(geo_df), index=geo_df.index)
|
| 451 |
-
|
| 452 |
-
valid_data = geo_df[geo_df[value_column].notna() & ~excluded_mask][value_column]
|
| 453 |
-
|
| 454 |
-
vmin = valid_data.min() if len(valid_data) > 0 else 0
|
| 455 |
-
vmax = valid_data.max() if len(valid_data) > 0 else 1
|
| 456 |
-
norm = get_color_normalizer(
|
| 457 |
-
valid_data, center_at_one=center_at_one, vmin=vmin, vmax=vmax
|
| 458 |
-
)
|
| 459 |
-
|
| 460 |
-
return value_column, norm
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
# Main visualization functions
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
def plot_world_map(
|
| 467 |
-
ax, world, data_column="value", tier_colors=None, cmap=None, norm=None
|
| 468 |
-
):
|
| 469 |
-
"""Plot world map with data.
|
| 470 |
-
|
| 471 |
-
Args:
|
| 472 |
-
ax: matplotlib axis
|
| 473 |
-
world: GeoDataFrame with world data (already merged with values)
|
| 474 |
-
data_column: column name containing data to plot
|
| 475 |
-
tier_colors: dict mapping tier names to colors (for categorical)
|
| 476 |
-
cmap: colormap (for continuous)
|
| 477 |
-
norm: normalization (for continuous)
|
| 478 |
-
"""
|
| 479 |
-
if tier_colors:
|
| 480 |
-
# Plot each tier with its color
|
| 481 |
-
for tier, color in tier_colors.items():
|
| 482 |
-
tier_countries = world[
|
| 483 |
-
(world["cluster_name"] == tier) & (~world["is_excluded"])
|
| 484 |
-
]
|
| 485 |
-
tier_countries.plot(ax=ax, color=color, edgecolor="white", linewidth=0.5)
|
| 486 |
-
else:
|
| 487 |
-
# Plot continuous data
|
| 488 |
-
world_with_data = world[
|
| 489 |
-
world[data_column].notna() & (world["is_excluded"] == False)
|
| 490 |
-
]
|
| 491 |
-
world_with_data.plot(
|
| 492 |
-
column=data_column, ax=ax, cmap=cmap, norm=norm, legend=False
|
| 493 |
-
)
|
| 494 |
-
|
| 495 |
-
# Plot excluded countries
|
| 496 |
-
excluded = world[world["is_excluded"] == True]
|
| 497 |
-
if not excluded.empty:
|
| 498 |
-
excluded.plot(ax=ax, color="#c0c0c0", edgecolor="white", linewidth=0.5)
|
| 499 |
-
|
| 500 |
-
# Plot no-data countries
|
| 501 |
-
no_data = world[
|
| 502 |
-
(world[data_column if not tier_colors else "cluster_name"].isna())
|
| 503 |
-
& (~world["is_excluded"])
|
| 504 |
-
]
|
| 505 |
-
if not no_data.empty:
|
| 506 |
-
no_data.plot(ax=ax, color="#f0f0f0", edgecolor="white", linewidth=0.5)
|
| 507 |
-
|
| 508 |
-
# Set appropriate bounds for Robinson projection
|
| 509 |
-
ax.set_xlim(-17000000, 17000000)
|
| 510 |
-
ax.set_ylim(-8500000, 8500000)
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
def plot_us_states_map(
|
| 514 |
-
fig, ax, states, data_column="value", tier_colors=None, cmap=None, norm=None
|
| 515 |
-
):
|
| 516 |
-
"""Plot US states map with Alaska and Hawaii insets.
|
| 517 |
-
|
| 518 |
-
Args:
|
| 519 |
-
fig: matplotlib figure
|
| 520 |
-
ax: main axis for continental US
|
| 521 |
-
states: GeoDataFrame with state data (already merged with values)
|
| 522 |
-
data_column: column name containing data to plot
|
| 523 |
-
tier_colors: dict mapping tier names to colors (for categorical)
|
| 524 |
-
cmap: colormap (for continuous)
|
| 525 |
-
norm: normalization (for continuous)
|
| 526 |
-
"""
|
| 527 |
-
# Project to EPSG:2163 for US Albers Equal Area
|
| 528 |
-
states = states.to_crs("EPSG:2163")
|
| 529 |
-
|
| 530 |
-
# Plot continental US (everything except AK and HI)
|
| 531 |
-
continental = states[~states["STUSPS"].isin(["AK", "HI"])]
|
| 532 |
-
|
| 533 |
-
# First plot all continental states as no-data background
|
| 534 |
-
continental.plot(ax=ax, color="#f0f0f0", edgecolor="white", linewidth=0.5)
|
| 535 |
-
|
| 536 |
-
# Plot continental states with data
|
| 537 |
-
if tier_colors:
|
| 538 |
-
# Plot each tier with its color
|
| 539 |
-
for tier, color in tier_colors.items():
|
| 540 |
-
tier_states = continental[continental["cluster_name"] == tier]
|
| 541 |
-
if not tier_states.empty:
|
| 542 |
-
tier_states.plot(ax=ax, color=color, edgecolor="white", linewidth=0.5)
|
| 543 |
-
else:
|
| 544 |
-
# Plot continuous data
|
| 545 |
-
continental_with_data = continental[continental[data_column].notna()]
|
| 546 |
-
if not continental_with_data.empty:
|
| 547 |
-
continental_with_data.plot(
|
| 548 |
-
column=data_column, ax=ax, cmap=cmap, norm=norm, legend=False
|
| 549 |
-
)
|
| 550 |
-
|
| 551 |
-
# Set axis limits with padding for legend
|
| 552 |
-
xlim = ax.get_xlim()
|
| 553 |
-
ylim = ax.get_ylim()
|
| 554 |
-
x_padding = (xlim[1] - xlim[0]) * MAP_PADDING_X
|
| 555 |
-
y_padding = (ylim[1] - ylim[0]) * MAP_PADDING_Y
|
| 556 |
-
ax.set_xlim(xlim[0] - x_padding, xlim[1] + x_padding)
|
| 557 |
-
ax.set_ylim(ylim[0] - y_padding, ylim[1] + y_padding)
|
| 558 |
-
|
| 559 |
-
# Add Alaska inset
|
| 560 |
-
akax = fig.add_axes(ALASKA_INSET_BOUNDS)
|
| 561 |
-
akax.axis("off")
|
| 562 |
-
|
| 563 |
-
alaska = states[states["STUSPS"] == "AK"]
|
| 564 |
-
if not alaska.empty:
|
| 565 |
-
alaska.plot(ax=akax, color="#f0f0f0", edgecolor="white", linewidth=0.5)
|
| 566 |
-
|
| 567 |
-
if tier_colors and alaska["cluster_name"].notna().any():
|
| 568 |
-
tier_name = alaska["cluster_name"].iloc[0]
|
| 569 |
-
if tier_name in tier_colors:
|
| 570 |
-
alaska.plot(
|
| 571 |
-
ax=akax,
|
| 572 |
-
color=tier_colors[tier_name],
|
| 573 |
-
edgecolor="white",
|
| 574 |
-
linewidth=0.5,
|
| 575 |
-
)
|
| 576 |
-
elif not tier_colors and alaska[data_column].notna().any():
|
| 577 |
-
alaska.plot(column=data_column, ax=akax, cmap=cmap, norm=norm, legend=False)
|
| 578 |
-
|
| 579 |
-
# Add Hawaii inset
|
| 580 |
-
hiax = fig.add_axes(HAWAII_INSET_BOUNDS)
|
| 581 |
-
hiax.axis("off")
|
| 582 |
-
|
| 583 |
-
hawaii = states[states["STUSPS"] == "HI"]
|
| 584 |
-
if not hawaii.empty:
|
| 585 |
-
hawaii.plot(ax=hiax, color="#f0f0f0", edgecolor="white", linewidth=0.5)
|
| 586 |
-
|
| 587 |
-
if tier_colors and hawaii["cluster_name"].notna().any():
|
| 588 |
-
tier_name = hawaii["cluster_name"].iloc[0]
|
| 589 |
-
if tier_name in tier_colors:
|
| 590 |
-
hawaii.plot(
|
| 591 |
-
ax=hiax,
|
| 592 |
-
color=tier_colors[tier_name],
|
| 593 |
-
edgecolor="white",
|
| 594 |
-
linewidth=0.5,
|
| 595 |
-
)
|
| 596 |
-
elif not tier_colors and hawaii[data_column].notna().any():
|
| 597 |
-
hawaii.plot(column=data_column, ax=hiax, cmap=cmap, norm=norm, legend=False)
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
def plot_usage_index_bars(
|
| 601 |
-
df,
|
| 602 |
-
geography="country",
|
| 603 |
-
top_n=None,
|
| 604 |
-
figsize=(12, 8),
|
| 605 |
-
title=None,
|
| 606 |
-
filtered_entities=None,
|
| 607 |
-
show_usage_counts=True,
|
| 608 |
-
cmap=CUSTOM_CMAP,
|
| 609 |
-
):
|
| 610 |
-
"""
|
| 611 |
-
Create horizontal bar chart of Anthropic AI Usage Index.
|
| 612 |
-
|
| 613 |
-
Args:
|
| 614 |
-
df: Long format dataframe
|
| 615 |
-
geography: 'country' or 'state_us'
|
| 616 |
-
top_n: Number of top entities to show (None for all)
|
| 617 |
-
figsize: Figure size
|
| 618 |
-
title: Chart title
|
| 619 |
-
filtered_entities: List of geo_id values to include (if None, include all)
|
| 620 |
-
show_usage_counts: If True, show usage counts in labels (default: True)
|
| 621 |
-
"""
|
| 622 |
-
# Get data
|
| 623 |
-
df_metric = filter_df(
|
| 624 |
-
df, geography=geography, facet=geography, variable="usage_per_capita_index"
|
| 625 |
-
)
|
| 626 |
-
|
| 627 |
-
# Apply entity filtering if provided
|
| 628 |
-
if filtered_entities is not None:
|
| 629 |
-
df_metric = df_metric[df_metric["geo_id"].isin(filtered_entities)]
|
| 630 |
-
|
| 631 |
-
# Get usage counts for display if requested
|
| 632 |
-
if show_usage_counts:
|
| 633 |
-
df_usage = filter_df(
|
| 634 |
-
df, geography=geography, facet=geography, variable="usage_count"
|
| 635 |
-
)
|
| 636 |
-
# Merge to get usage counts
|
| 637 |
-
df_metric = df_metric.merge(
|
| 638 |
-
df_usage[["geo_id", "value"]],
|
| 639 |
-
on="geo_id",
|
| 640 |
-
suffixes=("", "_usage"),
|
| 641 |
-
how="left",
|
| 642 |
-
)
|
| 643 |
-
|
| 644 |
-
# Select entities to display
|
| 645 |
-
if top_n is None or top_n >= len(df_metric):
|
| 646 |
-
# Show all entities, sorted by lowest value first (will appear at bottom of chart)
|
| 647 |
-
df_top = df_metric.sort_values("value", ascending=True)
|
| 648 |
-
# Adjust figure height for many entities
|
| 649 |
-
if len(df_top) > 20:
|
| 650 |
-
figsize = (figsize[0], max(10, len(df_top) * 0.3))
|
| 651 |
-
else:
|
| 652 |
-
# Select top N entities, then sort ascending so highest values appear at top
|
| 653 |
-
df_top = df_metric.nlargest(top_n, "value")
|
| 654 |
-
df_top = df_top.sort_values("value", ascending=True)
|
| 655 |
-
|
| 656 |
-
# Create figure
|
| 657 |
-
fig, ax = create_figure(figsize=figsize)
|
| 658 |
-
|
| 659 |
-
# Get colormap and create diverging colors centered at 1
|
| 660 |
-
values = df_top["value"].values
|
| 661 |
-
min_val = values.min()
|
| 662 |
-
max_val = values.max()
|
| 663 |
-
|
| 664 |
-
# Determine the range for symmetric color scaling around 1
|
| 665 |
-
max_distance = max(abs(min_val - 1), abs(max_val - 1))
|
| 666 |
-
|
| 667 |
-
# Normalize values for color mapping
|
| 668 |
-
if max_distance > 0:
|
| 669 |
-
# Normalize to 0-1 centered at 0.5 for value 1
|
| 670 |
-
normalized = 0.5 + (values - 1) / (2 * max_distance)
|
| 671 |
-
# Truncate colormap to avoid too light colors
|
| 672 |
-
truncate_low = 0.2
|
| 673 |
-
truncate_high = 0.8
|
| 674 |
-
normalized = truncate_low + normalized * (truncate_high - truncate_low)
|
| 675 |
-
normalized = np.clip(normalized, truncate_low, truncate_high)
|
| 676 |
-
else:
|
| 677 |
-
normalized = np.ones_like(values) * 0.5
|
| 678 |
-
|
| 679 |
-
colors = cmap(normalized)
|
| 680 |
-
|
| 681 |
-
# Create horizontal bars
|
| 682 |
-
y_positions = range(len(df_top))
|
| 683 |
-
bars = ax.barh(y_positions, values, color=colors, height=0.7)
|
| 684 |
-
|
| 685 |
-
# Set y-tick labels
|
| 686 |
-
ax.set_yticks(y_positions)
|
| 687 |
-
ax.set_yticklabels(df_top["geo_name"].values)
|
| 688 |
-
|
| 689 |
-
# Set y-axis limits to reduce white space
|
| 690 |
-
ax.set_ylim(-0.5, len(df_top) - 0.5)
|
| 691 |
-
|
| 692 |
-
# Add baseline reference line at 1.0
|
| 693 |
-
ax.axvline(x=1.0, color="black", linestyle="--", alpha=0.5, linewidth=1)
|
| 694 |
-
|
| 695 |
-
# Calculate and set x-axis limits with extra space for labels
|
| 696 |
-
if max_val > 2:
|
| 697 |
-
ax.set_xlim(0, max_val * 1.25)
|
| 698 |
-
else:
|
| 699 |
-
ax.set_xlim(0, max_val * 1.2)
|
| 700 |
-
|
| 701 |
-
# Add value labels and usage counts
|
| 702 |
-
for i, bar in enumerate(bars):
|
| 703 |
-
width = bar.get_width()
|
| 704 |
-
# Always use 2 decimal places for consistency
|
| 705 |
-
label = f"{width:.2f}"
|
| 706 |
-
|
| 707 |
-
# Get usage count
|
| 708 |
-
usage_count = df_top.iloc[i]["value_usage"]
|
| 709 |
-
if usage_count >= 1000:
|
| 710 |
-
usage_str = f"{usage_count / 1000:.1f}k"
|
| 711 |
-
else:
|
| 712 |
-
usage_str = f"{int(usage_count)}"
|
| 713 |
-
|
| 714 |
-
# For top_n > 20, combine label with usage count to avoid overlap
|
| 715 |
-
if not top_n or top_n > 20:
|
| 716 |
-
combined_label = f"{label} (N={usage_str})"
|
| 717 |
-
ax.text(
|
| 718 |
-
width + 0.03,
|
| 719 |
-
bar.get_y() + bar.get_height() / 2.0,
|
| 720 |
-
combined_label,
|
| 721 |
-
ha="left",
|
| 722 |
-
va="center",
|
| 723 |
-
fontsize=8,
|
| 724 |
-
)
|
| 725 |
-
else:
|
| 726 |
-
# Add value label to the right of the bar
|
| 727 |
-
ax.text(
|
| 728 |
-
width + 0.03,
|
| 729 |
-
bar.get_y() + bar.get_height() / 2.0,
|
| 730 |
-
label,
|
| 731 |
-
ha="left",
|
| 732 |
-
va="center",
|
| 733 |
-
fontsize=9,
|
| 734 |
-
)
|
| 735 |
-
|
| 736 |
-
# Add usage count inside the bar
|
| 737 |
-
usage_str_full = f"N = {usage_str}"
|
| 738 |
-
ax.text(
|
| 739 |
-
0.05,
|
| 740 |
-
bar.get_y() + bar.get_height() / 2.0,
|
| 741 |
-
usage_str_full,
|
| 742 |
-
ha="left",
|
| 743 |
-
va="center",
|
| 744 |
-
fontsize=8,
|
| 745 |
-
color="white",
|
| 746 |
-
)
|
| 747 |
-
|
| 748 |
-
# Set labels and title
|
| 749 |
-
if top_n:
|
| 750 |
-
default_title = f"Top {top_n} {'countries' if geography == 'country' else 'US states'} by Anthropic AI Usage Index"
|
| 751 |
-
else:
|
| 752 |
-
default_title = f"Anthropic AI Usage Index by {'country' if geography == 'country' else 'US state'}"
|
| 753 |
-
|
| 754 |
-
format_axis(
|
| 755 |
-
ax,
|
| 756 |
-
xlabel="Anthropic AI Usage Index (usage % / working-age population %)",
|
| 757 |
-
title=title or default_title,
|
| 758 |
-
grid=True,
|
| 759 |
-
grid_alpha=0.3,
|
| 760 |
-
)
|
| 761 |
-
|
| 762 |
-
return fig
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
def plot_variable_bars(
|
| 766 |
-
df,
|
| 767 |
-
variable,
|
| 768 |
-
facet,
|
| 769 |
-
geography="country",
|
| 770 |
-
geo_id=None,
|
| 771 |
-
top_n=None,
|
| 772 |
-
figsize=(12, 8),
|
| 773 |
-
title=None,
|
| 774 |
-
xlabel=None,
|
| 775 |
-
filtered_entities=None,
|
| 776 |
-
cmap=CUSTOM_CMAP,
|
| 777 |
-
normalize=False,
|
| 778 |
-
exclude_not_classified=False,
|
| 779 |
-
):
|
| 780 |
-
"""
|
| 781 |
-
Create horizontal bar chart for any variable.
|
| 782 |
-
|
| 783 |
-
Args:
|
| 784 |
-
df: Long format dataframe
|
| 785 |
-
variable: Variable name to plot (e.g., 'soc_pct', 'gdp_per_capita')
|
| 786 |
-
facet: Facet to use
|
| 787 |
-
geography: 'country' or 'state_us'
|
| 788 |
-
geo_id: Optional specific geo_id to filter (e.g., 'USA' for SOC data)
|
| 789 |
-
top_n: Number of top entities to show (None for all)
|
| 790 |
-
figsize: Figure size
|
| 791 |
-
title: Chart title
|
| 792 |
-
xlabel: x-axis label
|
| 793 |
-
filtered_entities: List of cluster_name or geo_id values to include
|
| 794 |
-
cmap: Colormap to use
|
| 795 |
-
normalize: If True, rescale values to sum to 100% (useful for percentages)
|
| 796 |
-
exclude_not_classified: If True, exclude 'not_classified' entries before normalizing
|
| 797 |
-
"""
|
| 798 |
-
# Get data
|
| 799 |
-
df_metric = filter_df(
|
| 800 |
-
df, geography=geography, facet=facet, variable=variable, geo_id=geo_id
|
| 801 |
-
)
|
| 802 |
-
|
| 803 |
-
# Exclude not_classified if requested (before normalization)
|
| 804 |
-
if exclude_not_classified:
|
| 805 |
-
# Check both cluster_name and geo_id columns
|
| 806 |
-
if "cluster_name" in df_metric.columns:
|
| 807 |
-
df_metric = df_metric[
|
| 808 |
-
~df_metric["cluster_name"].isin(["not_classified", "none"])
|
| 809 |
-
]
|
| 810 |
-
if "geo_id" in df_metric.columns:
|
| 811 |
-
df_metric = df_metric[~df_metric["geo_id"].isin(["not_classified", "none"])]
|
| 812 |
-
|
| 813 |
-
# Normalize if requested (after filtering not_classified)
|
| 814 |
-
if normalize:
|
| 815 |
-
total_sum = df_metric["value"].sum()
|
| 816 |
-
if total_sum > 0:
|
| 817 |
-
df_metric["value"] = (df_metric["value"] / total_sum) * 100
|
| 818 |
-
|
| 819 |
-
# Apply entity filtering if provided
|
| 820 |
-
if filtered_entities is not None:
|
| 821 |
-
# Check if we're filtering by cluster_name or geo_id
|
| 822 |
-
if "cluster_name" in df_metric.columns:
|
| 823 |
-
df_metric = df_metric[df_metric["cluster_name"].isin(filtered_entities)]
|
| 824 |
-
else:
|
| 825 |
-
df_metric = df_metric[df_metric["geo_id"].isin(filtered_entities)]
|
| 826 |
-
|
| 827 |
-
# Select entities to display
|
| 828 |
-
if top_n is None or top_n >= len(df_metric):
|
| 829 |
-
# Show all entities, sorted by lowest value first
|
| 830 |
-
df_top = df_metric.sort_values("value", ascending=True)
|
| 831 |
-
# Adjust figure height for many entities
|
| 832 |
-
if len(df_top) > 20:
|
| 833 |
-
figsize = (figsize[0], max(10, len(df_top) * 0.3))
|
| 834 |
-
else:
|
| 835 |
-
# Select top N entities
|
| 836 |
-
df_top = df_metric.nlargest(top_n, "value")
|
| 837 |
-
df_top = df_top.sort_values("value", ascending=True)
|
| 838 |
-
|
| 839 |
-
# Create figure
|
| 840 |
-
fig, ax = create_figure(figsize=figsize)
|
| 841 |
-
|
| 842 |
-
# Get colormap and colors
|
| 843 |
-
values = df_top["value"].values
|
| 844 |
-
min_val = values.min()
|
| 845 |
-
max_val = values.max()
|
| 846 |
-
|
| 847 |
-
# Linear color mapping
|
| 848 |
-
if max_val > min_val:
|
| 849 |
-
normalized = (values - min_val) / (max_val - min_val)
|
| 850 |
-
# Truncate to avoid extremes
|
| 851 |
-
normalized = 0.2 + normalized * 0.6
|
| 852 |
-
else:
|
| 853 |
-
normalized = np.ones_like(values) * 0.5
|
| 854 |
-
|
| 855 |
-
colors = cmap(normalized)
|
| 856 |
-
|
| 857 |
-
# Create horizontal bars
|
| 858 |
-
y_positions = range(len(df_top))
|
| 859 |
-
bars = ax.barh(y_positions, values, color=colors, height=0.7)
|
| 860 |
-
|
| 861 |
-
# Set y-tick labels
|
| 862 |
-
ax.set_yticks(y_positions)
|
| 863 |
-
# Use cluster_name or geo_name depending on what's available
|
| 864 |
-
if "cluster_name" in df_top.columns:
|
| 865 |
-
labels = df_top["cluster_name"].values
|
| 866 |
-
elif "geo_name" in df_top.columns:
|
| 867 |
-
labels = df_top["geo_name"].values
|
| 868 |
-
else:
|
| 869 |
-
labels = df_top["geo_id"].values
|
| 870 |
-
ax.set_yticklabels(labels)
|
| 871 |
-
|
| 872 |
-
# Set y-axis limits to reduce white space
|
| 873 |
-
ax.set_ylim(-0.5, len(df_top) - 0.5)
|
| 874 |
-
|
| 875 |
-
# Calculate and set x-axis limits
|
| 876 |
-
x_range = max_val - min_val
|
| 877 |
-
if min_val < 0:
|
| 878 |
-
# Include negative values with some padding
|
| 879 |
-
ax.set_xlim(min_val - x_range * 0.1, max_val + x_range * 0.2)
|
| 880 |
-
else:
|
| 881 |
-
# Positive values only
|
| 882 |
-
ax.set_xlim(0, max_val * 1.2)
|
| 883 |
-
|
| 884 |
-
# Add value labels
|
| 885 |
-
for _, bar in enumerate(bars):
|
| 886 |
-
width = bar.get_width()
|
| 887 |
-
# Format based on value magnitude
|
| 888 |
-
if abs(width) >= 1000:
|
| 889 |
-
label = f"{width:.0f}"
|
| 890 |
-
elif abs(width) >= 10:
|
| 891 |
-
label = f"{width:.1f}"
|
| 892 |
-
else:
|
| 893 |
-
label = f"{width:.2f}"
|
| 894 |
-
|
| 895 |
-
# Position label
|
| 896 |
-
if width < 0:
|
| 897 |
-
ha = "right"
|
| 898 |
-
x_offset = -0.01 * (max_val - min_val)
|
| 899 |
-
else:
|
| 900 |
-
ha = "left"
|
| 901 |
-
x_offset = 0.01 * (max_val - min_val)
|
| 902 |
-
|
| 903 |
-
ax.text(
|
| 904 |
-
width + x_offset,
|
| 905 |
-
bar.get_y() + bar.get_height() / 2.0,
|
| 906 |
-
label,
|
| 907 |
-
ha=ha,
|
| 908 |
-
va="center",
|
| 909 |
-
fontsize=8 if len(df_top) > 20 else 9,
|
| 910 |
-
)
|
| 911 |
-
|
| 912 |
-
# Set labels and title
|
| 913 |
-
if not title:
|
| 914 |
-
if top_n:
|
| 915 |
-
title = f"Top {top_n} by {variable}"
|
| 916 |
-
else:
|
| 917 |
-
title = f"{variable} distribution"
|
| 918 |
-
|
| 919 |
-
format_axis(
|
| 920 |
-
ax,
|
| 921 |
-
xlabel=xlabel or variable,
|
| 922 |
-
title=title,
|
| 923 |
-
grid=True,
|
| 924 |
-
grid_alpha=0.3,
|
| 925 |
-
)
|
| 926 |
-
|
| 927 |
-
return fig
|
| 928 |
-
|
| 929 |
-
|
| 930 |
-
def plot_usage_share_bars(
|
| 931 |
-
df,
|
| 932 |
-
geography="country",
|
| 933 |
-
top_n=20,
|
| 934 |
-
figsize=(12, 8),
|
| 935 |
-
title=None,
|
| 936 |
-
filtered_entities=None,
|
| 937 |
-
cmap=CUSTOM_CMAP,
|
| 938 |
-
):
|
| 939 |
-
"""
|
| 940 |
-
Create bar chart showing share of global usage.
|
| 941 |
-
|
| 942 |
-
Args:
|
| 943 |
-
df: Long format dataframe
|
| 944 |
-
geography: Geographic level
|
| 945 |
-
top_n: Number of top entities
|
| 946 |
-
figsize: Figure size
|
| 947 |
-
title: Chart title
|
| 948 |
-
filtered_entities: List of geo_id values to include (if None, include all)
|
| 949 |
-
|
| 950 |
-
"""
|
| 951 |
-
# Get data
|
| 952 |
-
df_metric = filter_df(
|
| 953 |
-
df, geography=geography, facet=geography, variable="usage_pct"
|
| 954 |
-
)
|
| 955 |
-
|
| 956 |
-
# Exclude "not_classified" from the data
|
| 957 |
-
df_metric = df_metric[df_metric["geo_id"] != "not_classified"]
|
| 958 |
-
|
| 959 |
-
# Apply entity filtering if provided
|
| 960 |
-
if filtered_entities is not None:
|
| 961 |
-
df_metric = df_metric[df_metric["geo_id"].isin(filtered_entities)]
|
| 962 |
-
|
| 963 |
-
# Get top n
|
| 964 |
-
df_top = df_metric.nlargest(top_n, "value")
|
| 965 |
-
|
| 966 |
-
# Create figure
|
| 967 |
-
fig, ax = create_figure(figsize=figsize)
|
| 968 |
-
|
| 969 |
-
# Create bars
|
| 970 |
-
positions = range(len(df_top))
|
| 971 |
-
values = df_top["value"].values
|
| 972 |
-
names = df_top["geo_name"].values
|
| 973 |
-
|
| 974 |
-
# Use custom colormap
|
| 975 |
-
norm = get_color_normalizer(values, center_at_one=False)
|
| 976 |
-
colors = [cmap(norm(val)) for val in values]
|
| 977 |
-
|
| 978 |
-
bars = ax.bar(positions, values, color=colors, alpha=0.8)
|
| 979 |
-
|
| 980 |
-
# Customize
|
| 981 |
-
ax.set_xticks(positions)
|
| 982 |
-
ax.set_xticklabels(names, rotation=45, ha="right")
|
| 983 |
-
# Reduce horizontal margins to bring bars closer to plot borders
|
| 984 |
-
ax.margins(x=0.01)
|
| 985 |
-
|
| 986 |
-
default_title = f"Top {top_n} {'countries' if geography == 'country' else 'US states'} by share of global Claude usage"
|
| 987 |
-
format_axis(
|
| 988 |
-
ax, ylabel="Share of global usage (%)", title=title or default_title, grid=False
|
| 989 |
-
)
|
| 990 |
-
|
| 991 |
-
# Add value labels
|
| 992 |
-
for bar, value in zip(bars, values, strict=True):
|
| 993 |
-
label = f"{value:.1f}%"
|
| 994 |
-
|
| 995 |
-
# Add value label above the bar
|
| 996 |
-
ax.text(
|
| 997 |
-
bar.get_x() + bar.get_width() / 2,
|
| 998 |
-
value + 0.1,
|
| 999 |
-
label,
|
| 1000 |
-
ha="center",
|
| 1001 |
-
fontsize=8,
|
| 1002 |
-
)
|
| 1003 |
-
|
| 1004 |
-
# Grid
|
| 1005 |
-
ax.grid(True, axis="y", alpha=0.3)
|
| 1006 |
-
|
| 1007 |
-
return fig
|
| 1008 |
-
|
| 1009 |
-
|
| 1010 |
-
def plot_usage_index_histogram(
|
| 1011 |
-
df, geography="country", bins=30, figsize=(10, 6), title=None, cmap=CUSTOM_CMAP
|
| 1012 |
-
):
|
| 1013 |
-
"""
|
| 1014 |
-
Create histogram of Anthropic AI Usage Index distribution.
|
| 1015 |
-
|
| 1016 |
-
Args:
|
| 1017 |
-
df: Long format dataframe
|
| 1018 |
-
geography: Geographic level
|
| 1019 |
-
bins: Number of histogram bins
|
| 1020 |
-
figsize: Figure size
|
| 1021 |
-
title: Chart title
|
| 1022 |
-
"""
|
| 1023 |
-
# Get data
|
| 1024 |
-
df_metric = filter_df(
|
| 1025 |
-
df, geography=geography, facet=geography, variable="usage_per_capita_index"
|
| 1026 |
-
)
|
| 1027 |
-
|
| 1028 |
-
# Create figure
|
| 1029 |
-
fig, ax = create_figure(figsize=figsize)
|
| 1030 |
-
|
| 1031 |
-
# Create histogram
|
| 1032 |
-
values = df_metric["value"].values
|
| 1033 |
-
_, bins_edges, patches = ax.hist(
|
| 1034 |
-
values, bins=bins, edgecolor="white", linewidth=0.5
|
| 1035 |
-
)
|
| 1036 |
-
|
| 1037 |
-
# Color bars with custom gradient based on value
|
| 1038 |
-
norm = get_color_normalizer(
|
| 1039 |
-
values,
|
| 1040 |
-
center_at_one=False,
|
| 1041 |
-
vmin=min(bins_edges[0], 0),
|
| 1042 |
-
vmax=max(bins_edges[-1], 2),
|
| 1043 |
-
)
|
| 1044 |
-
|
| 1045 |
-
for patch, left_edge, right_edge in zip(
|
| 1046 |
-
patches, bins_edges[:-1], bins_edges[1:], strict=True
|
| 1047 |
-
):
|
| 1048 |
-
# Use the midpoint of the bin for color
|
| 1049 |
-
mid_val = (left_edge + right_edge) / 2
|
| 1050 |
-
color = cmap(norm(mid_val))
|
| 1051 |
-
patch.set_facecolor(color)
|
| 1052 |
-
|
| 1053 |
-
# Add vertical line at 1.0 (where usage and population shares match)
|
| 1054 |
-
ax.axvline(x=1.0, color="black", linestyle="--", alpha=0.5, linewidth=1)
|
| 1055 |
-
|
| 1056 |
-
# Add statistics
|
| 1057 |
-
mean_val = values.mean()
|
| 1058 |
-
median_val = np.median(values)
|
| 1059 |
-
|
| 1060 |
-
stats_text = f"Mean: {mean_val:.2f}\nMedian: {median_val:.2f}\nN = {len(values)}"
|
| 1061 |
-
ax.text(
|
| 1062 |
-
0.98,
|
| 1063 |
-
0.97,
|
| 1064 |
-
stats_text,
|
| 1065 |
-
transform=ax.transAxes,
|
| 1066 |
-
ha="right",
|
| 1067 |
-
va="top",
|
| 1068 |
-
fontsize=9,
|
| 1069 |
-
bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
|
| 1070 |
-
)
|
| 1071 |
-
|
| 1072 |
-
# Customize
|
| 1073 |
-
geo_label = "countries" if geography == "country" else "US states"
|
| 1074 |
-
default_title = f"Distribution of Anthropic AI Usage Index ({geo_label})"
|
| 1075 |
-
|
| 1076 |
-
format_axis(
|
| 1077 |
-
ax,
|
| 1078 |
-
xlabel="Anthropic AI Usage Index (usage % / working-age population %)",
|
| 1079 |
-
ylabel=f"Number of {geo_label}",
|
| 1080 |
-
title=title or default_title,
|
| 1081 |
-
)
|
| 1082 |
-
|
| 1083 |
-
return fig
|
| 1084 |
-
|
| 1085 |
-
|
| 1086 |
-
def plot_gdp_scatter(
|
| 1087 |
-
df,
|
| 1088 |
-
geography="country",
|
| 1089 |
-
figsize=(10, 8),
|
| 1090 |
-
title=None,
|
| 1091 |
-
cmap=CUSTOM_CMAP,
|
| 1092 |
-
filtered_entities=None,
|
| 1093 |
-
):
|
| 1094 |
-
"""
|
| 1095 |
-
Create log-log scatter plot of GDP vs Anthropic AI Usage Index.
|
| 1096 |
-
|
| 1097 |
-
Args:
|
| 1098 |
-
df: Long format dataframe
|
| 1099 |
-
geography: Geographic level
|
| 1100 |
-
figsize: Figure size
|
| 1101 |
-
title: Chart title
|
| 1102 |
-
cmap: Colormap to use
|
| 1103 |
-
filtered_entities: List of geo_id values that meet MIN_OBSERVATIONS threshold (optional)
|
| 1104 |
-
"""
|
| 1105 |
-
# Get usage data
|
| 1106 |
-
df_usage = filter_df(
|
| 1107 |
-
df, geography=geography, facet=geography, variable="usage_per_capita_index"
|
| 1108 |
-
)
|
| 1109 |
-
|
| 1110 |
-
# Apply filtering if provided
|
| 1111 |
-
if filtered_entities is not None:
|
| 1112 |
-
df_usage = df_usage[df_usage["geo_id"].isin(filtered_entities)]
|
| 1113 |
-
|
| 1114 |
-
df_usage = df_usage[["geo_id", "cluster_name", "value"]].rename(
|
| 1115 |
-
columns={"value": "usage_index"}
|
| 1116 |
-
)
|
| 1117 |
-
|
| 1118 |
-
# Get GDP data
|
| 1119 |
-
df_gdp = filter_df(
|
| 1120 |
-
df, geography=geography, facet=geography, variable="gdp_per_working_age_capita"
|
| 1121 |
-
)
|
| 1122 |
-
|
| 1123 |
-
# Apply same filtering to GDP data
|
| 1124 |
-
if filtered_entities is not None:
|
| 1125 |
-
df_gdp = df_gdp[df_gdp["geo_id"].isin(filtered_entities)]
|
| 1126 |
-
|
| 1127 |
-
df_gdp = df_gdp[["geo_id", "value"]].rename(columns={"value": "gdp_per_capita"})
|
| 1128 |
-
|
| 1129 |
-
# Merge
|
| 1130 |
-
df_plot = df_usage.merge(df_gdp, on="geo_id", how="inner")
|
| 1131 |
-
|
| 1132 |
-
# Filter out zeros and negative values for log scale
|
| 1133 |
-
# Explicitly check both GDP and usage are positive (will be true for filtered geos)
|
| 1134 |
-
mask = (df_plot["gdp_per_capita"] > 0) & (df_plot["usage_index"] > 0)
|
| 1135 |
-
df_plot = df_plot[mask]
|
| 1136 |
-
|
| 1137 |
-
# Create figure
|
| 1138 |
-
fig, ax = create_figure(figsize=figsize)
|
| 1139 |
-
|
| 1140 |
-
# Create scatter plot with geo_id values as labels
|
| 1141 |
-
x = df_plot["gdp_per_capita"].values
|
| 1142 |
-
y = df_plot["usage_index"].values
|
| 1143 |
-
|
| 1144 |
-
# Transform to log space for plotting
|
| 1145 |
-
log_x = np.log(x)
|
| 1146 |
-
log_y = np.log(y)
|
| 1147 |
-
|
| 1148 |
-
# Create norm for colorbar (using natural log)
|
| 1149 |
-
norm = plt.Normalize(vmin=log_y.min(), vmax=log_y.max())
|
| 1150 |
-
|
| 1151 |
-
# First, plot invisible points to ensure matplotlib's autoscaling includes all data points
|
| 1152 |
-
ax.scatter(log_x, log_y, s=0, alpha=0) # Size 0, invisible points for autoscaling
|
| 1153 |
-
|
| 1154 |
-
# Plot the geo_id values as text at the exact data points in log space
|
| 1155 |
-
for ln_x, ln_y, geo_id in zip(log_x, log_y, df_plot["geo_id"].values, strict=True):
|
| 1156 |
-
# Get color from colormap based on ln(usage_index)
|
| 1157 |
-
color_val = norm(ln_y)
|
| 1158 |
-
text_color = cmap(color_val)
|
| 1159 |
-
|
| 1160 |
-
ax.text(
|
| 1161 |
-
ln_x,
|
| 1162 |
-
ln_y,
|
| 1163 |
-
geo_id,
|
| 1164 |
-
fontsize=7,
|
| 1165 |
-
ha="center",
|
| 1166 |
-
va="center",
|
| 1167 |
-
color=text_color,
|
| 1168 |
-
alpha=0.9,
|
| 1169 |
-
weight="bold",
|
| 1170 |
-
)
|
| 1171 |
-
|
| 1172 |
-
# Add constant for intercept
|
| 1173 |
-
X_with_const = sm.add_constant(log_x)
|
| 1174 |
-
|
| 1175 |
-
# Fit OLS regression in log space
|
| 1176 |
-
model = sm.OLS(log_y, X_with_const)
|
| 1177 |
-
results = model.fit()
|
| 1178 |
-
|
| 1179 |
-
# Extract statistics
|
| 1180 |
-
intercept = results.params[0]
|
| 1181 |
-
slope = results.params[1]
|
| 1182 |
-
r_squared = results.rsquared
|
| 1183 |
-
p_value = results.pvalues[1] # p-value for slope
|
| 1184 |
-
|
| 1185 |
-
# Create fit line (we're already in log space)
|
| 1186 |
-
x_fit = np.linspace(log_x.min(), log_x.max(), 100)
|
| 1187 |
-
y_fit = intercept + slope * x_fit
|
| 1188 |
-
ax.plot(
|
| 1189 |
-
x_fit,
|
| 1190 |
-
y_fit,
|
| 1191 |
-
"gray",
|
| 1192 |
-
linestyle="--",
|
| 1193 |
-
alpha=0.7,
|
| 1194 |
-
linewidth=2,
|
| 1195 |
-
label=f"Power law: AUI ~ GDP^{slope:.2f}",
|
| 1196 |
-
)
|
| 1197 |
-
|
| 1198 |
-
# Add regression statistics
|
| 1199 |
-
# Format p-value display
|
| 1200 |
-
if p_value < 0.001:
|
| 1201 |
-
p_str = "p < 0.001"
|
| 1202 |
-
else:
|
| 1203 |
-
p_str = f"p = {p_value:.3f}"
|
| 1204 |
-
|
| 1205 |
-
ax.text(
|
| 1206 |
-
0.05,
|
| 1207 |
-
0.95,
|
| 1208 |
-
f"$\\beta = {slope:.3f}\\ ({p_str})$\n$R^2 = {r_squared:.3f}$",
|
| 1209 |
-
transform=ax.transAxes,
|
| 1210 |
-
fontsize=10,
|
| 1211 |
-
bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
|
| 1212 |
-
verticalalignment="top",
|
| 1213 |
-
)
|
| 1214 |
-
|
| 1215 |
-
# Customize labels for log-transformed values
|
| 1216 |
-
xlabel = "ln(GDP per working-age capita in USD)"
|
| 1217 |
-
ylabel = "ln(Anthropic AI Usage Index)"
|
| 1218 |
-
default_title = f"Income and Anthropic AI Usage Index by {'country' if geography == 'country' else 'US state'}"
|
| 1219 |
-
|
| 1220 |
-
format_axis(
|
| 1221 |
-
ax, xlabel=xlabel, ylabel=ylabel, title=title or default_title, grid=False
|
| 1222 |
-
)
|
| 1223 |
-
|
| 1224 |
-
# Grid for log scale
|
| 1225 |
-
ax.grid(True, alpha=0.3, which="both", linestyle="-", linewidth=0.5)
|
| 1226 |
-
|
| 1227 |
-
# Add legend
|
| 1228 |
-
ax.legend(loc="best")
|
| 1229 |
-
|
| 1230 |
-
# Create colorbar using ScalarMappable
|
| 1231 |
-
scalar_mappable = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
|
| 1232 |
-
scalar_mappable.set_array([])
|
| 1233 |
-
cbar = plt.colorbar(scalar_mappable, ax=ax)
|
| 1234 |
-
cbar.set_label(
|
| 1235 |
-
"ln(Anthropic AI Usage Index)", fontsize=9, rotation=270, labelpad=15
|
| 1236 |
-
)
|
| 1237 |
-
|
| 1238 |
-
return fig
|
| 1239 |
-
|
| 1240 |
-
|
| 1241 |
-
def plot_request_comparison_cards(
|
| 1242 |
-
df,
|
| 1243 |
-
geo_ids,
|
| 1244 |
-
title,
|
| 1245 |
-
geography,
|
| 1246 |
-
top_n=5,
|
| 1247 |
-
figsize=(10, 6),
|
| 1248 |
-
exclude_not_classified=True,
|
| 1249 |
-
request_level=1,
|
| 1250 |
-
request_threshold=1.0,
|
| 1251 |
-
):
|
| 1252 |
-
"""
|
| 1253 |
-
Create a condensed card visualization showing top overrepresented request categories
|
| 1254 |
-
for multiple geographies (countries or states).
|
| 1255 |
-
|
| 1256 |
-
Args:
|
| 1257 |
-
df: Long format dataframe
|
| 1258 |
-
geo_ids: List of geography IDs to compare (e.g., ['USA', 'BRA', 'VNM', 'IND'])
|
| 1259 |
-
title: Title for the figure (required)
|
| 1260 |
-
geography: Geographic level ('country' or 'state_us')
|
| 1261 |
-
top_n: Number of top requests to show per geography (default 5)
|
| 1262 |
-
figsize: Figure size as tuple
|
| 1263 |
-
exclude_not_classified: Whether to exclude "not_classified" entries
|
| 1264 |
-
request_level: Request hierarchy level to use (default 1)
|
| 1265 |
-
request_threshold: Minimum percentage threshold for requests (default 1.0%)
|
| 1266 |
-
"""
|
| 1267 |
-
# Get data for specified geography
|
| 1268 |
-
data_subset = filter_df(df, facet="request", geo_id=geo_ids, geography=geography)
|
| 1269 |
-
|
| 1270 |
-
# Filter for request_pct_index variable and specified level
|
| 1271 |
-
data_subset = filter_df(
|
| 1272 |
-
data_subset, variable="request_pct_index", level=request_level
|
| 1273 |
-
)
|
| 1274 |
-
|
| 1275 |
-
# Exclude not_classified if requested
|
| 1276 |
-
if exclude_not_classified:
|
| 1277 |
-
data_subset = data_subset[
|
| 1278 |
-
~data_subset["cluster_name"].str.contains("not_classified", na=False)
|
| 1279 |
-
]
|
| 1280 |
-
|
| 1281 |
-
# Get tier and geo_name information
|
| 1282 |
-
geo_info = filter_df(
|
| 1283 |
-
df, geography=geography, variable="usage_tier", geo_id=geo_ids
|
| 1284 |
-
)[["geo_id", "geo_name", "value"]].drop_duplicates()
|
| 1285 |
-
tier_map = dict(zip(geo_info["geo_id"], geo_info["value"], strict=True))
|
| 1286 |
-
name_map = dict(zip(geo_info["geo_id"], geo_info["geo_name"], strict=True))
|
| 1287 |
-
|
| 1288 |
-
# Set up figure with 2x2 grid for 4 geographies
|
| 1289 |
-
n_rows, n_cols = 2, 2
|
| 1290 |
-
fig, axes = create_figure(figsize=figsize, nrows=n_rows, ncols=n_cols)
|
| 1291 |
-
axes = axes.flatten()
|
| 1292 |
-
|
| 1293 |
-
# Use global tier colors
|
| 1294 |
-
tier_colors = TIER_COLORS_NUMERIC
|
| 1295 |
-
|
| 1296 |
-
# Process each geography
|
| 1297 |
-
for idx, geo_id in enumerate(geo_ids):
|
| 1298 |
-
ax = axes[idx]
|
| 1299 |
-
|
| 1300 |
-
# Apply request threshold filtering to get valid requests for this geography
|
| 1301 |
-
valid_requests = filter_requests_by_threshold(
|
| 1302 |
-
df, geography, geo_id, level=request_level, threshold=request_threshold
|
| 1303 |
-
)
|
| 1304 |
-
|
| 1305 |
-
# Get data for this geography, filtered by valid requests
|
| 1306 |
-
geo_data = data_subset[
|
| 1307 |
-
(data_subset["geo_id"] == geo_id)
|
| 1308 |
-
& (data_subset["cluster_name"].isin(valid_requests))
|
| 1309 |
-
& (data_subset["value"] > 1.0) # Only show overrepresented requests
|
| 1310 |
-
].copy()
|
| 1311 |
-
|
| 1312 |
-
# Get top n from the filtered requests
|
| 1313 |
-
geo_data = geo_data.nlargest(top_n, "value")
|
| 1314 |
-
|
| 1315 |
-
# Get tier color
|
| 1316 |
-
tier = tier_map[geo_id]
|
| 1317 |
-
base_color = tier_colors[tier]
|
| 1318 |
-
|
| 1319 |
-
# Create a lighter version of the tier color for the card background
|
| 1320 |
-
rgb = mcolors.to_rgb(base_color)
|
| 1321 |
-
# Mix with white (85% white, 15% color for very subtle background)
|
| 1322 |
-
pastel_rgb = tuple(0.85 + 0.15 * c for c in rgb)
|
| 1323 |
-
card_bg_color = mcolors.to_hex(pastel_rgb)
|
| 1324 |
-
|
| 1325 |
-
# Fill entire axis with background color
|
| 1326 |
-
ax.set_facecolor(card_bg_color)
|
| 1327 |
-
|
| 1328 |
-
# Create card with requests
|
| 1329 |
-
card_height = 0.9 # Fixed height for all cards
|
| 1330 |
-
card_bottom = 0.965 - card_height # Consistent positioning
|
| 1331 |
-
|
| 1332 |
-
card_rect = FancyBboxPatch(
|
| 1333 |
-
(0.10, card_bottom),
|
| 1334 |
-
0.80,
|
| 1335 |
-
card_height,
|
| 1336 |
-
transform=ax.transAxes,
|
| 1337 |
-
boxstyle="round,pad=0.02,rounding_size=0.035",
|
| 1338 |
-
facecolor=card_bg_color,
|
| 1339 |
-
edgecolor="none",
|
| 1340 |
-
linewidth=2,
|
| 1341 |
-
clip_on=False,
|
| 1342 |
-
)
|
| 1343 |
-
ax.add_patch(card_rect)
|
| 1344 |
-
|
| 1345 |
-
# Header bar
|
| 1346 |
-
header_top = 0.965 - 0.10
|
| 1347 |
-
header_rect = FancyBboxPatch(
|
| 1348 |
-
(0.14, header_top),
|
| 1349 |
-
0.72,
|
| 1350 |
-
0.08,
|
| 1351 |
-
transform=ax.transAxes,
|
| 1352 |
-
boxstyle="round,pad=0.01,rounding_size=0.03",
|
| 1353 |
-
facecolor=base_color,
|
| 1354 |
-
edgecolor="none",
|
| 1355 |
-
alpha=0.7,
|
| 1356 |
-
clip_on=False,
|
| 1357 |
-
)
|
| 1358 |
-
ax.add_patch(header_rect)
|
| 1359 |
-
|
| 1360 |
-
# Add geography name
|
| 1361 |
-
geo_name = name_map[geo_id]
|
| 1362 |
-
|
| 1363 |
-
ax.text(
|
| 1364 |
-
0.5,
|
| 1365 |
-
header_top + 0.04,
|
| 1366 |
-
geo_name,
|
| 1367 |
-
transform=ax.transAxes,
|
| 1368 |
-
ha="center",
|
| 1369 |
-
va="center",
|
| 1370 |
-
fontsize=12,
|
| 1371 |
-
fontweight="bold",
|
| 1372 |
-
color="#1C1C1C",
|
| 1373 |
-
)
|
| 1374 |
-
|
| 1375 |
-
# Adjust start position below header upwards
|
| 1376 |
-
y_pos = header_top - 0.05
|
| 1377 |
-
|
| 1378 |
-
for _, row in geo_data.iterrows():
|
| 1379 |
-
request = row["cluster_name"]
|
| 1380 |
-
value = row["value"]
|
| 1381 |
-
|
| 1382 |
-
# Format ratio
|
| 1383 |
-
if value >= 10:
|
| 1384 |
-
ratio_str = f"{value:.0f}x"
|
| 1385 |
-
elif value >= 2:
|
| 1386 |
-
ratio_str = f"{value:.1f}x"
|
| 1387 |
-
else:
|
| 1388 |
-
ratio_str = f"{value:.2f}x"
|
| 1389 |
-
|
| 1390 |
-
# Wrap text
|
| 1391 |
-
wrapped_text = textwrap.fill(request, width=46, break_long_words=False)
|
| 1392 |
-
lines = wrapped_text.split("\n")
|
| 1393 |
-
|
| 1394 |
-
# Display text lines with sufficient line spacing
|
| 1395 |
-
line_spacing = 0.045
|
| 1396 |
-
for j, line in enumerate(lines):
|
| 1397 |
-
ax.text(
|
| 1398 |
-
0.13, # Adjust text position for wider card
|
| 1399 |
-
y_pos - j * line_spacing,
|
| 1400 |
-
line,
|
| 1401 |
-
transform=ax.transAxes,
|
| 1402 |
-
ha="left",
|
| 1403 |
-
va="top",
|
| 1404 |
-
fontsize=9,
|
| 1405 |
-
color="#1C1C1C",
|
| 1406 |
-
rasterized=False,
|
| 1407 |
-
)
|
| 1408 |
-
|
| 1409 |
-
# Position ratio with adjusted margin for wide card
|
| 1410 |
-
text_height = len(lines) * line_spacing
|
| 1411 |
-
ax.text(
|
| 1412 |
-
0.85,
|
| 1413 |
-
y_pos - (text_height - line_spacing) / 2,
|
| 1414 |
-
ratio_str,
|
| 1415 |
-
transform=ax.transAxes,
|
| 1416 |
-
ha="right",
|
| 1417 |
-
va="center",
|
| 1418 |
-
fontsize=10,
|
| 1419 |
-
fontweight="bold",
|
| 1420 |
-
color="#B85450",
|
| 1421 |
-
rasterized=False,
|
| 1422 |
-
)
|
| 1423 |
-
|
| 1424 |
-
# Add space between different requests
|
| 1425 |
-
y_pos -= text_height + 0.05
|
| 1426 |
-
|
| 1427 |
-
# Remove axes
|
| 1428 |
-
ax.axis("off")
|
| 1429 |
-
|
| 1430 |
-
# Add title
|
| 1431 |
-
fig.suptitle(title, fontsize=14, fontweight="bold", y=0.98)
|
| 1432 |
-
|
| 1433 |
-
plt.tight_layout()
|
| 1434 |
-
plt.subplots_adjust(
|
| 1435 |
-
top=0.92, bottom=0.02, left=0.01, right=0.99, hspace=0.02, wspace=0.02
|
| 1436 |
-
)
|
| 1437 |
-
|
| 1438 |
-
return fig
|
| 1439 |
-
|
| 1440 |
-
|
| 1441 |
-
def plot_dc_task_request_cards(
|
| 1442 |
-
df,
|
| 1443 |
-
title,
|
| 1444 |
-
figsize=(10, 5),
|
| 1445 |
-
):
|
| 1446 |
-
"""
|
| 1447 |
-
Create professional card visualizations showing top overrepresented O*NET tasks and requests for Washington, DC.
|
| 1448 |
-
|
| 1449 |
-
Args:
|
| 1450 |
-
df: Long format dataframe
|
| 1451 |
-
figsize: Figure size as tuple
|
| 1452 |
-
title: Optional title for the figure
|
| 1453 |
-
"""
|
| 1454 |
-
# Fixed parameters for DC
|
| 1455 |
-
geo_id = "DC"
|
| 1456 |
-
geography = "state_us"
|
| 1457 |
-
top_n = 5
|
| 1458 |
-
|
| 1459 |
-
# Get tier for color
|
| 1460 |
-
tier_data = filter_df(
|
| 1461 |
-
df, geography=geography, variable="usage_tier", geo_id=[geo_id]
|
| 1462 |
-
)
|
| 1463 |
-
tier = tier_data["value"].iloc[0]
|
| 1464 |
-
|
| 1465 |
-
# Use tier color
|
| 1466 |
-
tier_colors = TIER_COLORS_NUMERIC
|
| 1467 |
-
base_color = tier_colors[tier]
|
| 1468 |
-
|
| 1469 |
-
# Create lighter version for card background
|
| 1470 |
-
rgb = mcolors.to_rgb(base_color)
|
| 1471 |
-
pastel_rgb = tuple(0.85 + 0.15 * c for c in rgb)
|
| 1472 |
-
card_bg_color = mcolors.to_hex(pastel_rgb)
|
| 1473 |
-
|
| 1474 |
-
# Create figure with 2 subplots (cards)
|
| 1475 |
-
fig, axes = create_figure(figsize=figsize, ncols=2)
|
| 1476 |
-
|
| 1477 |
-
# Card 1: Top O*NET Tasks
|
| 1478 |
-
ax1 = axes[0]
|
| 1479 |
-
ax1.set_facecolor(card_bg_color)
|
| 1480 |
-
|
| 1481 |
-
# Get O*NET task data
|
| 1482 |
-
df_tasks = filter_df(
|
| 1483 |
-
df,
|
| 1484 |
-
geography=geography,
|
| 1485 |
-
geo_id=[geo_id],
|
| 1486 |
-
facet="onet_task",
|
| 1487 |
-
variable="onet_task_pct_index",
|
| 1488 |
-
)
|
| 1489 |
-
|
| 1490 |
-
# Exclude not_classified and none
|
| 1491 |
-
df_tasks = df_tasks[~df_tasks["cluster_name"].isin(["not_classified", "none"])]
|
| 1492 |
-
|
| 1493 |
-
# Get top n overrepresented tasks
|
| 1494 |
-
df_tasks = df_tasks[df_tasks["value"] > 1.0].nlargest(top_n, "value")
|
| 1495 |
-
|
| 1496 |
-
# Use fixed card heights
|
| 1497 |
-
card_height_tasks = 0.955
|
| 1498 |
-
card_bottom_tasks = 0.965 - card_height_tasks
|
| 1499 |
-
|
| 1500 |
-
# Draw card for O*NET tasks
|
| 1501 |
-
card_rect1 = FancyBboxPatch(
|
| 1502 |
-
(0.10, card_bottom_tasks),
|
| 1503 |
-
0.80,
|
| 1504 |
-
card_height_tasks,
|
| 1505 |
-
transform=ax1.transAxes,
|
| 1506 |
-
boxstyle="round,pad=0.02,rounding_size=0.035",
|
| 1507 |
-
facecolor=card_bg_color,
|
| 1508 |
-
edgecolor="none",
|
| 1509 |
-
linewidth=2,
|
| 1510 |
-
clip_on=False,
|
| 1511 |
-
)
|
| 1512 |
-
ax1.add_patch(card_rect1)
|
| 1513 |
-
|
| 1514 |
-
# Header for O*NET tasks
|
| 1515 |
-
header_top = 0.965 - 0.10
|
| 1516 |
-
header_rect1 = FancyBboxPatch(
|
| 1517 |
-
(0.12, header_top),
|
| 1518 |
-
0.76,
|
| 1519 |
-
0.08,
|
| 1520 |
-
transform=ax1.transAxes,
|
| 1521 |
-
boxstyle="round,pad=0.01,rounding_size=0.03",
|
| 1522 |
-
facecolor=base_color,
|
| 1523 |
-
edgecolor="none",
|
| 1524 |
-
alpha=0.7,
|
| 1525 |
-
clip_on=False,
|
| 1526 |
-
)
|
| 1527 |
-
ax1.add_patch(header_rect1)
|
| 1528 |
-
|
| 1529 |
-
ax1.text(
|
| 1530 |
-
0.5,
|
| 1531 |
-
header_top + 0.04,
|
| 1532 |
-
"Top 5 overrepresented O*NET tasks in DC",
|
| 1533 |
-
transform=ax1.transAxes,
|
| 1534 |
-
ha="center",
|
| 1535 |
-
va="center",
|
| 1536 |
-
fontsize=11,
|
| 1537 |
-
fontweight="bold",
|
| 1538 |
-
color="#1C1C1C",
|
| 1539 |
-
)
|
| 1540 |
-
|
| 1541 |
-
# Add task items
|
| 1542 |
-
y_pos = header_top - 0.05
|
| 1543 |
-
|
| 1544 |
-
for _, row in df_tasks.iterrows():
|
| 1545 |
-
task = row["cluster_name"]
|
| 1546 |
-
value = row["value"]
|
| 1547 |
-
|
| 1548 |
-
# Convert to sentence case and remove trailing period
|
| 1549 |
-
task = task[0].upper() + task[1:].lower() if task else task
|
| 1550 |
-
task = task.rstrip(".") # Remove trailing period
|
| 1551 |
-
|
| 1552 |
-
# Format ratio - always with 2 decimal places
|
| 1553 |
-
ratio_str = f"{value:.2f}x"
|
| 1554 |
-
|
| 1555 |
-
# Wrap text
|
| 1556 |
-
wrapped_text = textwrap.fill(task, width=46, break_long_words=False)
|
| 1557 |
-
lines = wrapped_text.split("\n")
|
| 1558 |
-
|
| 1559 |
-
# Display text lines
|
| 1560 |
-
line_spacing = 0.045
|
| 1561 |
-
for j, line in enumerate(lines):
|
| 1562 |
-
ax1.text(
|
| 1563 |
-
0.13,
|
| 1564 |
-
y_pos - j * line_spacing,
|
| 1565 |
-
line,
|
| 1566 |
-
transform=ax1.transAxes,
|
| 1567 |
-
ha="left",
|
| 1568 |
-
va="top",
|
| 1569 |
-
fontsize=9,
|
| 1570 |
-
color="#1C1C1C",
|
| 1571 |
-
rasterized=False,
|
| 1572 |
-
)
|
| 1573 |
-
|
| 1574 |
-
# Add ratio at the right with consistent color
|
| 1575 |
-
ax1.text(
|
| 1576 |
-
0.87,
|
| 1577 |
-
y_pos - (len(lines) - 1) * line_spacing / 2,
|
| 1578 |
-
ratio_str,
|
| 1579 |
-
transform=ax1.transAxes,
|
| 1580 |
-
ha="right",
|
| 1581 |
-
va="center",
|
| 1582 |
-
fontsize=10,
|
| 1583 |
-
color="#B85450",
|
| 1584 |
-
fontweight="bold",
|
| 1585 |
-
)
|
| 1586 |
-
|
| 1587 |
-
# Move to next item position
|
| 1588 |
-
y_pos -= len(lines) * line_spacing + 0.025
|
| 1589 |
-
|
| 1590 |
-
ax1.axis("off")
|
| 1591 |
-
|
| 1592 |
-
# Card 2: Top Requests
|
| 1593 |
-
ax2 = axes[1]
|
| 1594 |
-
ax2.set_facecolor(card_bg_color)
|
| 1595 |
-
|
| 1596 |
-
# Get valid requests using threshold
|
| 1597 |
-
valid_requests = filter_requests_by_threshold(
|
| 1598 |
-
df, geography, geo_id, level=1, threshold=1.0
|
| 1599 |
-
)
|
| 1600 |
-
|
| 1601 |
-
# Get request data
|
| 1602 |
-
df_requests = filter_df(
|
| 1603 |
-
df,
|
| 1604 |
-
geography=geography,
|
| 1605 |
-
geo_id=[geo_id],
|
| 1606 |
-
facet="request",
|
| 1607 |
-
variable="request_pct_index",
|
| 1608 |
-
level=1,
|
| 1609 |
-
)
|
| 1610 |
-
|
| 1611 |
-
# Filter by valid requests and overrepresented
|
| 1612 |
-
df_requests = df_requests[
|
| 1613 |
-
(df_requests["cluster_name"].isin(valid_requests))
|
| 1614 |
-
& (df_requests["value"] > 1.0)
|
| 1615 |
-
& (~df_requests["cluster_name"].str.contains("not_classified", na=False))
|
| 1616 |
-
]
|
| 1617 |
-
|
| 1618 |
-
# Get top n
|
| 1619 |
-
df_requests = df_requests.nlargest(top_n, "value")
|
| 1620 |
-
|
| 1621 |
-
# Draw card for requests with fixed height
|
| 1622 |
-
card_height_requests = 0.72
|
| 1623 |
-
card_bottom_requests = 0.965 - card_height_requests
|
| 1624 |
-
|
| 1625 |
-
card_rect2 = FancyBboxPatch(
|
| 1626 |
-
(0.10, card_bottom_requests),
|
| 1627 |
-
0.80,
|
| 1628 |
-
card_height_requests,
|
| 1629 |
-
transform=ax2.transAxes,
|
| 1630 |
-
boxstyle="round,pad=0.02,rounding_size=0.035",
|
| 1631 |
-
facecolor=card_bg_color,
|
| 1632 |
-
edgecolor="none",
|
| 1633 |
-
linewidth=2,
|
| 1634 |
-
clip_on=False,
|
| 1635 |
-
)
|
| 1636 |
-
ax2.add_patch(card_rect2)
|
| 1637 |
-
|
| 1638 |
-
# Header for requests
|
| 1639 |
-
header_rect2 = FancyBboxPatch(
|
| 1640 |
-
(0.12, header_top),
|
| 1641 |
-
0.76,
|
| 1642 |
-
0.08,
|
| 1643 |
-
transform=ax2.transAxes,
|
| 1644 |
-
boxstyle="round,pad=0.01,rounding_size=0.03",
|
| 1645 |
-
facecolor=base_color,
|
| 1646 |
-
edgecolor="none",
|
| 1647 |
-
alpha=0.7,
|
| 1648 |
-
clip_on=False,
|
| 1649 |
-
)
|
| 1650 |
-
ax2.add_patch(header_rect2)
|
| 1651 |
-
|
| 1652 |
-
ax2.text(
|
| 1653 |
-
0.5,
|
| 1654 |
-
header_top + 0.04,
|
| 1655 |
-
"Top 5 overrepresented request clusters in DC",
|
| 1656 |
-
transform=ax2.transAxes,
|
| 1657 |
-
ha="center",
|
| 1658 |
-
va="center",
|
| 1659 |
-
fontsize=11,
|
| 1660 |
-
fontweight="bold",
|
| 1661 |
-
color="#1C1C1C",
|
| 1662 |
-
)
|
| 1663 |
-
|
| 1664 |
-
# Add request items
|
| 1665 |
-
y_pos = header_top - 0.05
|
| 1666 |
-
|
| 1667 |
-
for _, row in df_requests.iterrows():
|
| 1668 |
-
request = row["cluster_name"]
|
| 1669 |
-
value = row["value"]
|
| 1670 |
-
|
| 1671 |
-
# Format ratio always with 2 decimal places
|
| 1672 |
-
ratio_str = f"{value:.2f}x"
|
| 1673 |
-
|
| 1674 |
-
# Wrap text
|
| 1675 |
-
wrapped_text = textwrap.fill(request, width=46, break_long_words=False)
|
| 1676 |
-
lines = wrapped_text.split("\n")
|
| 1677 |
-
|
| 1678 |
-
# Display text lines
|
| 1679 |
-
line_spacing = 0.045
|
| 1680 |
-
for j, line in enumerate(lines):
|
| 1681 |
-
ax2.text(
|
| 1682 |
-
0.13,
|
| 1683 |
-
y_pos - j * line_spacing,
|
| 1684 |
-
line,
|
| 1685 |
-
transform=ax2.transAxes,
|
| 1686 |
-
ha="left",
|
| 1687 |
-
va="top",
|
| 1688 |
-
fontsize=9,
|
| 1689 |
-
color="#1C1C1C",
|
| 1690 |
-
rasterized=False,
|
| 1691 |
-
)
|
| 1692 |
-
|
| 1693 |
-
# Add ratio at the right with consistent color
|
| 1694 |
-
ax2.text(
|
| 1695 |
-
0.87,
|
| 1696 |
-
y_pos - (len(lines) - 1) * line_spacing / 2,
|
| 1697 |
-
ratio_str,
|
| 1698 |
-
transform=ax2.transAxes,
|
| 1699 |
-
ha="right",
|
| 1700 |
-
va="center",
|
| 1701 |
-
fontsize=10,
|
| 1702 |
-
color="#B85450",
|
| 1703 |
-
fontweight="bold",
|
| 1704 |
-
)
|
| 1705 |
-
|
| 1706 |
-
# Move to next item position
|
| 1707 |
-
y_pos -= len(lines) * line_spacing + 0.025
|
| 1708 |
-
|
| 1709 |
-
ax2.axis("off")
|
| 1710 |
-
|
| 1711 |
-
# Add subtle title if provided
|
| 1712 |
-
fig.suptitle(title, fontsize=13, fontweight="bold", y=0.98)
|
| 1713 |
-
|
| 1714 |
-
plt.tight_layout()
|
| 1715 |
-
return fig
|
| 1716 |
-
|
| 1717 |
-
|
| 1718 |
-
# Summary statistics function
|
| 1719 |
-
def plot_tier_summary_table(df, geography="country", figsize=(12, 6)):
|
| 1720 |
-
"""
|
| 1721 |
-
Create a visual table showing entities per tier and example members.
|
| 1722 |
-
|
| 1723 |
-
Args:
|
| 1724 |
-
df: Long format dataframe
|
| 1725 |
-
geography: 'country' or 'state_us'
|
| 1726 |
-
figsize: Figure size
|
| 1727 |
-
"""
|
| 1728 |
-
# Get tier data
|
| 1729 |
-
df_tier = filter_df(df, geography=geography, variable="usage_tier")
|
| 1730 |
-
|
| 1731 |
-
# Exclude US territories that appear as countries (may be confusing to readers)
|
| 1732 |
-
if geography == "country":
|
| 1733 |
-
us_territories_as_countries = [
|
| 1734 |
-
"PRI",
|
| 1735 |
-
"VIR",
|
| 1736 |
-
"GUM",
|
| 1737 |
-
"ASM",
|
| 1738 |
-
"MNP",
|
| 1739 |
-
] # Puerto Rico, Virgin Islands, Guam, American Samoa, Northern Mariana Islands
|
| 1740 |
-
df_tier = df_tier[~df_tier["geo_id"].isin(us_territories_as_countries)]
|
| 1741 |
-
|
| 1742 |
-
# Get usage per capita index for sorting entities within tiers
|
| 1743 |
-
df_usage_index = filter_df(
|
| 1744 |
-
df, geography=geography, variable="usage_per_capita_index"
|
| 1745 |
-
)
|
| 1746 |
-
|
| 1747 |
-
# Apply same territory filter to usage index data
|
| 1748 |
-
if geography == "country":
|
| 1749 |
-
df_usage_index = df_usage_index[
|
| 1750 |
-
~df_usage_index["geo_id"].isin(us_territories_as_countries)
|
| 1751 |
-
]
|
| 1752 |
-
|
| 1753 |
-
# Merge tier with usage index
|
| 1754 |
-
df_tier_full = df_tier[["geo_id", "geo_name", "cluster_name"]].merge(
|
| 1755 |
-
df_usage_index[["geo_id", "value"]],
|
| 1756 |
-
on="geo_id",
|
| 1757 |
-
how="left",
|
| 1758 |
-
suffixes=("", "_index"),
|
| 1759 |
-
)
|
| 1760 |
-
|
| 1761 |
-
# Use global tier colors
|
| 1762 |
-
tier_colors = TIER_COLORS_DICT
|
| 1763 |
-
|
| 1764 |
-
# Calculate appropriate figure height based on number of tiers
|
| 1765 |
-
n_tiers = sum(
|
| 1766 |
-
1 for tier in TIER_ORDER if tier in df_tier_full["cluster_name"].values
|
| 1767 |
-
)
|
| 1768 |
-
# Adjust height: minimal padding for compact display
|
| 1769 |
-
fig_height = 0.5 + n_tiers * 0.3 # Much more compact
|
| 1770 |
-
|
| 1771 |
-
# Create figure with calculated size
|
| 1772 |
-
fig, ax = create_figure(figsize=(figsize[0], fig_height))
|
| 1773 |
-
ax.axis("tight")
|
| 1774 |
-
ax.axis("off")
|
| 1775 |
-
|
| 1776 |
-
# Make background transparent
|
| 1777 |
-
fig.patch.set_alpha(0.0)
|
| 1778 |
-
ax.patch.set_alpha(0.0)
|
| 1779 |
-
|
| 1780 |
-
# Prepare table data
|
| 1781 |
-
table_data = []
|
| 1782 |
-
entity_type = "countries" if geography == "country" else "states"
|
| 1783 |
-
col_labels = [
|
| 1784 |
-
"Tier",
|
| 1785 |
-
"AUI range",
|
| 1786 |
-
f"# of {entity_type}",
|
| 1787 |
-
f"Example {entity_type}",
|
| 1788 |
-
]
|
| 1789 |
-
|
| 1790 |
-
for tier in TIER_ORDER:
|
| 1791 |
-
if tier in df_tier_full["cluster_name"].values:
|
| 1792 |
-
# Get entities in this tier
|
| 1793 |
-
tier_entities = filter_df(df_tier_full, cluster_name=tier)
|
| 1794 |
-
count = len(tier_entities)
|
| 1795 |
-
|
| 1796 |
-
# Calculate usage index range for this tier
|
| 1797 |
-
min_index = tier_entities["value"].min()
|
| 1798 |
-
max_index = tier_entities["value"].max()
|
| 1799 |
-
index_range = f"{min_index:.2f} - {max_index:.2f}"
|
| 1800 |
-
|
| 1801 |
-
# For Minimal tier where all have 0 index, pick shortest names
|
| 1802 |
-
if tier == "Minimal" and tier_entities["value"].max() == 0:
|
| 1803 |
-
tier_entities = tier_entities.copy()
|
| 1804 |
-
tier_entities["name_length"] = tier_entities["geo_name"].str.len()
|
| 1805 |
-
top_entities = tier_entities.nsmallest(5, "name_length")[
|
| 1806 |
-
"geo_name"
|
| 1807 |
-
].tolist()
|
| 1808 |
-
else:
|
| 1809 |
-
# Get top 5 entities by usage index in this tier
|
| 1810 |
-
top_entities = tier_entities.nlargest(5, "value")["geo_name"].tolist()
|
| 1811 |
-
|
| 1812 |
-
# Format the example entities as a comma-separated string
|
| 1813 |
-
examples = ", ".join(top_entities[:5])
|
| 1814 |
-
|
| 1815 |
-
table_data.append([tier, index_range, str(count), examples])
|
| 1816 |
-
|
| 1817 |
-
# Create table with better column widths
|
| 1818 |
-
table = ax.table(
|
| 1819 |
-
cellText=table_data,
|
| 1820 |
-
colLabels=col_labels,
|
| 1821 |
-
cellLoc="left",
|
| 1822 |
-
loc="center",
|
| 1823 |
-
colWidths=[0.20, 0.18, 0.12, 0.50],
|
| 1824 |
-
colColours=[ANTHROPIC_OAT] * 4,
|
| 1825 |
-
)
|
| 1826 |
-
|
| 1827 |
-
# Style the table
|
| 1828 |
-
table.auto_set_font_size(False)
|
| 1829 |
-
table.set_fontsize(11)
|
| 1830 |
-
table.scale(1, 2.2)
|
| 1831 |
-
|
| 1832 |
-
# Set all cell edges to Anthropic oat color
|
| 1833 |
-
for _, cell in table.get_celld().items():
|
| 1834 |
-
cell.set_edgecolor(ANTHROPIC_OAT)
|
| 1835 |
-
cell.set_linewidth(1.5)
|
| 1836 |
-
|
| 1837 |
-
# Color code the rows with consistent black text
|
| 1838 |
-
for i, row_data in enumerate(table_data):
|
| 1839 |
-
tier_name = row_data[0]
|
| 1840 |
-
if tier_name in tier_colors:
|
| 1841 |
-
# Color the tier name cell with full opacity
|
| 1842 |
-
table[(i + 1, 0)].set_facecolor(tier_colors[tier_name])
|
| 1843 |
-
table[(i + 1, 0)].set_text_props(color="black", weight="bold")
|
| 1844 |
-
|
| 1845 |
-
# Light background for usage index range column
|
| 1846 |
-
table[(i + 1, 1)].set_facecolor(tier_colors[tier_name])
|
| 1847 |
-
table[(i + 1, 1)].set_alpha(0.3)
|
| 1848 |
-
table[(i + 1, 1)].set_text_props(ha="center", color="black")
|
| 1849 |
-
|
| 1850 |
-
# Light background for count column
|
| 1851 |
-
table[(i + 1, 2)].set_facecolor(tier_colors[tier_name])
|
| 1852 |
-
table[(i + 1, 2)].set_alpha(0.2)
|
| 1853 |
-
table[(i + 1, 2)].set_text_props(ha="center", color="black")
|
| 1854 |
-
|
| 1855 |
-
# Even lighter background for examples column
|
| 1856 |
-
table[(i + 1, 3)].set_facecolor(tier_colors[tier_name])
|
| 1857 |
-
table[(i + 1, 3)].set_alpha(0.1)
|
| 1858 |
-
table[(i + 1, 3)].set_text_props(color="black")
|
| 1859 |
-
|
| 1860 |
-
# Style header row with Anthropic oat and black text
|
| 1861 |
-
for j in range(4):
|
| 1862 |
-
table[(0, j)].set_facecolor(ANTHROPIC_OAT)
|
| 1863 |
-
table[(0, j)].set_text_props(color="black", weight="bold")
|
| 1864 |
-
|
| 1865 |
-
# Center the count column
|
| 1866 |
-
for i in range(len(table_data)):
|
| 1867 |
-
table[(i + 1, 1)].set_text_props(ha="center")
|
| 1868 |
-
|
| 1869 |
-
return fig
|
| 1870 |
-
|
| 1871 |
-
|
| 1872 |
-
def plot_tier_map(
|
| 1873 |
-
df,
|
| 1874 |
-
title,
|
| 1875 |
-
geography,
|
| 1876 |
-
figsize=(16, 10),
|
| 1877 |
-
show_labels=True,
|
| 1878 |
-
):
|
| 1879 |
-
"""
|
| 1880 |
-
Create a map showing per Anthropic AI Usage Tiers.
|
| 1881 |
-
|
| 1882 |
-
Args:
|
| 1883 |
-
df: Long format dataframe with usage_tier variable
|
| 1884 |
-
geography: 'country' or 'state_us'
|
| 1885 |
-
figsize: Figure size
|
| 1886 |
-
title: Map title
|
| 1887 |
-
show_labels: whether to show title and legend (False for clean export)
|
| 1888 |
-
"""
|
| 1889 |
-
# Filter for tier data
|
| 1890 |
-
df_tier = filter_df(df, geography=geography, variable="usage_tier").copy()
|
| 1891 |
-
|
| 1892 |
-
# Use global tier colors definition
|
| 1893 |
-
tier_colors = TIER_COLORS_DICT
|
| 1894 |
-
|
| 1895 |
-
# Map tiers to colors
|
| 1896 |
-
df_tier["color"] = df_tier["cluster_name"].map(tier_colors)
|
| 1897 |
-
|
| 1898 |
-
# Set up figure
|
| 1899 |
-
# Create figure with tight_layout disabled
|
| 1900 |
-
fig, ax = create_figure(figsize=figsize, tight_layout=False)
|
| 1901 |
-
|
| 1902 |
-
if geography == "country":
|
| 1903 |
-
# Load world shapefile function
|
| 1904 |
-
world = load_world_shapefile()
|
| 1905 |
-
|
| 1906 |
-
# Merge with world data using geo_id (which contains ISO-3 codes)
|
| 1907 |
-
# Use ISO_A3_EH for merging as it's complete (ISO_A3 has -99 for France)
|
| 1908 |
-
world = merge_geo_data(
|
| 1909 |
-
world,
|
| 1910 |
-
df_tier,
|
| 1911 |
-
"ISO_A3_EH",
|
| 1912 |
-
["geo_id", "color", "cluster_name"],
|
| 1913 |
-
is_tier=True,
|
| 1914 |
-
)
|
| 1915 |
-
|
| 1916 |
-
# Plot world map
|
| 1917 |
-
plot_world_map(ax, world, data_column="cluster_name", tier_colors=tier_colors)
|
| 1918 |
-
|
| 1919 |
-
else: # state_us
|
| 1920 |
-
# Load US states shapefile function
|
| 1921 |
-
states = load_us_states_shapefile()
|
| 1922 |
-
|
| 1923 |
-
# Merge with tier data BEFORE projection
|
| 1924 |
-
states = merge_geo_data(
|
| 1925 |
-
states, df_tier, "STUSPS", ["geo_id", "color", "cluster_name"], is_tier=True
|
| 1926 |
-
)
|
| 1927 |
-
|
| 1928 |
-
# Pot states with insets
|
| 1929 |
-
plot_us_states_map(
|
| 1930 |
-
fig, ax, states, data_column="cluster_name", tier_colors=tier_colors
|
| 1931 |
-
)
|
| 1932 |
-
|
| 1933 |
-
# Remove axes
|
| 1934 |
-
ax.set_axis_off()
|
| 1935 |
-
|
| 1936 |
-
# Add title only if show_labels=True
|
| 1937 |
-
if show_labels:
|
| 1938 |
-
format_axis(ax, title=title, title_size=14, grid=False)
|
| 1939 |
-
|
| 1940 |
-
# Check which tiers actually appear in the data
|
| 1941 |
-
tiers_in_data = df_tier["cluster_name"].unique()
|
| 1942 |
-
|
| 1943 |
-
# Add legend only if show_labels=True
|
| 1944 |
-
if show_labels:
|
| 1945 |
-
# Check for excluded countries and no data
|
| 1946 |
-
excluded = False
|
| 1947 |
-
no_data = False
|
| 1948 |
-
if geography == "country":
|
| 1949 |
-
if "world" in locals() and "is_excluded" in world.columns:
|
| 1950 |
-
excluded = world["is_excluded"].any()
|
| 1951 |
-
if "world" in locals():
|
| 1952 |
-
no_data = world["cluster_name"].isna().any()
|
| 1953 |
-
else: # state_us
|
| 1954 |
-
if "states" in locals():
|
| 1955 |
-
no_data = states["cluster_name"].isna().any()
|
| 1956 |
-
|
| 1957 |
-
create_tier_legend(
|
| 1958 |
-
ax, tier_colors, tiers_in_data, excluded_countries=excluded, no_data=no_data
|
| 1959 |
-
)
|
| 1960 |
-
|
| 1961 |
-
return fig
|
| 1962 |
-
|
| 1963 |
-
|
| 1964 |
-
def plot_variable_map(
|
| 1965 |
-
df,
|
| 1966 |
-
variable,
|
| 1967 |
-
geography="country",
|
| 1968 |
-
figsize=(16, 10),
|
| 1969 |
-
title=None,
|
| 1970 |
-
cmap=CUSTOM_CMAP,
|
| 1971 |
-
center_at_one=None,
|
| 1972 |
-
):
|
| 1973 |
-
"""
|
| 1974 |
-
Create static map for any variable.
|
| 1975 |
-
|
| 1976 |
-
Args:
|
| 1977 |
-
df: Long format dataframe
|
| 1978 |
-
variable: Variable to plot (e.g., 'usage_pct')
|
| 1979 |
-
geography: 'country' or 'state_us'
|
| 1980 |
-
figsize: Figure size (width, height) in inches
|
| 1981 |
-
title: Map title
|
| 1982 |
-
cmap: Matplotlib colormap or name (default uses custom colormap)
|
| 1983 |
-
center_at_one: Whether to center the color scale at 1.0 (default True for usage_per_capita_index)
|
| 1984 |
-
"""
|
| 1985 |
-
# Get data for the specified variable
|
| 1986 |
-
df_data = filter_df(df, geography=geography, facet=geography, variable=variable)
|
| 1987 |
-
|
| 1988 |
-
# Create figure
|
| 1989 |
-
fig = plt.figure(figsize=figsize, dpi=150)
|
| 1990 |
-
fig.set_layout_engine(layout="none") # Disable layout engine for custom axes
|
| 1991 |
-
ax = fig.add_subplot(111)
|
| 1992 |
-
|
| 1993 |
-
if geography == "country":
|
| 1994 |
-
# Load world shapefile function (automatically marks excluded countries)
|
| 1995 |
-
world = load_world_shapefile()
|
| 1996 |
-
|
| 1997 |
-
# Merge using geo_id (which contains ISO-3 codes)
|
| 1998 |
-
world = merge_geo_data(
|
| 1999 |
-
world, df_data, "ISO_A3_EH", ["geo_id", "value"], is_tier=False
|
| 2000 |
-
)
|
| 2001 |
-
|
| 2002 |
-
# Prepare data and normalization
|
| 2003 |
-
plot_column, norm = prepare_map_data(
|
| 2004 |
-
world, "value", center_at_one, world["is_excluded"]
|
| 2005 |
-
)
|
| 2006 |
-
|
| 2007 |
-
# Plot world map
|
| 2008 |
-
plot_world_map(ax, world, data_column=plot_column, cmap=cmap, norm=norm)
|
| 2009 |
-
|
| 2010 |
-
else: # state_us
|
| 2011 |
-
# Load US states shapefile function
|
| 2012 |
-
states = load_us_states_shapefile()
|
| 2013 |
-
|
| 2014 |
-
# Merge our data with the states shapefile
|
| 2015 |
-
states = merge_geo_data(
|
| 2016 |
-
states, df_data, "STUSPS", ["geo_id", "value"], is_tier=False
|
| 2017 |
-
)
|
| 2018 |
-
|
| 2019 |
-
# Prepare data and normalization
|
| 2020 |
-
plot_column, norm = prepare_map_data(states, "value", center_at_one)
|
| 2021 |
-
|
| 2022 |
-
# Plot states with insets
|
| 2023 |
-
plot_us_states_map(
|
| 2024 |
-
fig, ax, states, data_column=plot_column, cmap=cmap, norm=norm
|
| 2025 |
-
)
|
| 2026 |
-
|
| 2027 |
-
# Remove axes
|
| 2028 |
-
ax.set_axis_off()
|
| 2029 |
-
|
| 2030 |
-
# Add colorbar with proper size and positioning
|
| 2031 |
-
divider = make_axes_locatable(ax)
|
| 2032 |
-
cax = divider.append_axes("right", size="3%", pad=0.1)
|
| 2033 |
-
|
| 2034 |
-
# Create colorbar
|
| 2035 |
-
scalar_mappable = plt.cm.ScalarMappable(cmap=cmap, norm=norm)
|
| 2036 |
-
scalar_mappable.set_array([])
|
| 2037 |
-
cbar = plt.colorbar(scalar_mappable, cax=cax)
|
| 2038 |
-
|
| 2039 |
-
# Set colorbar label based on variable
|
| 2040 |
-
if variable == "usage_pct":
|
| 2041 |
-
cbar.set_label("Usage share (%)", fontsize=10, rotation=270, labelpad=15)
|
| 2042 |
-
elif variable == "usage_per_capita_index":
|
| 2043 |
-
cbar.set_label(
|
| 2044 |
-
"Anthropic AI Usage Index", fontsize=10, rotation=270, labelpad=15
|
| 2045 |
-
)
|
| 2046 |
-
else:
|
| 2047 |
-
cbar.set_label(variable, fontsize=10, rotation=270, labelpad=15)
|
| 2048 |
-
|
| 2049 |
-
# Set title
|
| 2050 |
-
if variable == "usage_pct":
|
| 2051 |
-
default_title = "Share of Claude usage by " + (
|
| 2052 |
-
"country" if geography == "country" else "US state"
|
| 2053 |
-
)
|
| 2054 |
-
else:
|
| 2055 |
-
default_title = f"{variable} by " + (
|
| 2056 |
-
"country" if geography == "country" else "US state"
|
| 2057 |
-
)
|
| 2058 |
-
|
| 2059 |
-
format_axis(ax, title=title or default_title, title_size=14, grid=False)
|
| 2060 |
-
|
| 2061 |
-
# Add legend for excluded countries and no data
|
| 2062 |
-
legend_elements = []
|
| 2063 |
-
|
| 2064 |
-
# Check if we have excluded countries or no data regions
|
| 2065 |
-
if geography == "country":
|
| 2066 |
-
# Check for excluded countries (world['is_excluded'] == True)
|
| 2067 |
-
if "is_excluded" in world.columns:
|
| 2068 |
-
excluded_countries = world[world["is_excluded"] == True]
|
| 2069 |
-
if not excluded_countries.empty:
|
| 2070 |
-
legend_elements.append(
|
| 2071 |
-
Patch(
|
| 2072 |
-
facecolor="#c0c0c0",
|
| 2073 |
-
edgecolor="white",
|
| 2074 |
-
label="Claude not available",
|
| 2075 |
-
)
|
| 2076 |
-
)
|
| 2077 |
-
|
| 2078 |
-
# Check for countries with no data
|
| 2079 |
-
no_data_countries = world[
|
| 2080 |
-
(world["value"].isna()) & (world["is_excluded"] != True)
|
| 2081 |
-
]
|
| 2082 |
-
if not no_data_countries.empty:
|
| 2083 |
-
legend_elements.append(
|
| 2084 |
-
Patch(facecolor="#f0f0f0", edgecolor="white", label="No data")
|
| 2085 |
-
)
|
| 2086 |
-
|
| 2087 |
-
if legend_elements:
|
| 2088 |
-
ax.legend(
|
| 2089 |
-
handles=legend_elements,
|
| 2090 |
-
loc="lower left",
|
| 2091 |
-
fontsize=9,
|
| 2092 |
-
frameon=True,
|
| 2093 |
-
fancybox=True,
|
| 2094 |
-
shadow=True,
|
| 2095 |
-
bbox_to_anchor=(0, 0),
|
| 2096 |
-
)
|
| 2097 |
-
|
| 2098 |
-
return fig
|
| 2099 |
-
|
| 2100 |
-
|
| 2101 |
-
def plot_soc_usage_scatter(
|
| 2102 |
-
df,
|
| 2103 |
-
geography,
|
| 2104 |
-
filtered_entities=None,
|
| 2105 |
-
):
|
| 2106 |
-
"""
|
| 2107 |
-
Create faceted scatterplot of SOC percentages vs Anthropic AI Usage Index.
|
| 2108 |
-
Always creates a 2x2 grid of square subplots showing the top 4 SOC groups.
|
| 2109 |
-
|
| 2110 |
-
Args:
|
| 2111 |
-
df: Long format dataframe with enriched data
|
| 2112 |
-
geography: 'country' or 'state_us'
|
| 2113 |
-
filtered_entities: List of geo_id values that meet MIN_OBSERVATIONS threshold
|
| 2114 |
-
"""
|
| 2115 |
-
# Fixed configuration for 2x2 grid
|
| 2116 |
-
n_cols = 2
|
| 2117 |
-
n_rows = 2
|
| 2118 |
-
n_top_groups = 4
|
| 2119 |
-
|
| 2120 |
-
# Apply MIN_OBSERVATIONS filtering if not provided
|
| 2121 |
-
if filtered_entities is None:
|
| 2122 |
-
filtered_countries, filtered_states = get_filtered_geographies(df)
|
| 2123 |
-
filtered_entities = (
|
| 2124 |
-
filtered_countries if geography == "country" else filtered_states
|
| 2125 |
-
)
|
| 2126 |
-
|
| 2127 |
-
# Get Anthropic AI Usage Index data
|
| 2128 |
-
df_usage_index = filter_df(
|
| 2129 |
-
df,
|
| 2130 |
-
geography=geography,
|
| 2131 |
-
variable="usage_per_capita_index",
|
| 2132 |
-
geo_id=filtered_entities,
|
| 2133 |
-
)[["geo_id", "value"]].rename(columns={"value": "ai_usage_index"})
|
| 2134 |
-
|
| 2135 |
-
# Get usage counts for bubble sizes
|
| 2136 |
-
df_usage = filter_df(
|
| 2137 |
-
df, geography=geography, variable="usage_count", geo_id=filtered_entities
|
| 2138 |
-
)[["geo_id", "value"]].rename(columns={"value": "usage_count"})
|
| 2139 |
-
|
| 2140 |
-
# Get tier data for colors
|
| 2141 |
-
df_tier = filter_df(
|
| 2142 |
-
df, geography=geography, variable="usage_tier", geo_id=filtered_entities
|
| 2143 |
-
)[["geo_id", "cluster_name", "value"]].rename(
|
| 2144 |
-
columns={"cluster_name": "tier_name", "value": "tier_value"}
|
| 2145 |
-
)
|
| 2146 |
-
|
| 2147 |
-
# Get SOC percentages
|
| 2148 |
-
df_soc = filter_df(
|
| 2149 |
-
df,
|
| 2150 |
-
geography=geography,
|
| 2151 |
-
facet="soc_occupation",
|
| 2152 |
-
variable="soc_pct",
|
| 2153 |
-
geo_id=filtered_entities,
|
| 2154 |
-
)[["geo_id", "cluster_name", "value"]].rename(
|
| 2155 |
-
columns={"cluster_name": "soc_group", "value": "soc_pct"}
|
| 2156 |
-
)
|
| 2157 |
-
|
| 2158 |
-
# Merge all data
|
| 2159 |
-
df_plot = df_soc.merge(
|
| 2160 |
-
df_usage_index, on="geo_id", how="inner"
|
| 2161 |
-
) # inner join because some geographies don't have data for all SOC groups
|
| 2162 |
-
df_plot = df_plot.merge(df_usage, on="geo_id", how="left")
|
| 2163 |
-
df_plot = df_plot.merge(
|
| 2164 |
-
df_tier[["geo_id", "tier_name", "tier_value"]], on="geo_id", how="left"
|
| 2165 |
-
)
|
| 2166 |
-
|
| 2167 |
-
# Use parent geography reference for consistent SOC selection
|
| 2168 |
-
if geography == "country":
|
| 2169 |
-
# Use global reference for countries
|
| 2170 |
-
reference_soc = filter_df(
|
| 2171 |
-
df,
|
| 2172 |
-
geography="global",
|
| 2173 |
-
geo_id="GLOBAL",
|
| 2174 |
-
facet="soc_occupation",
|
| 2175 |
-
variable="soc_pct",
|
| 2176 |
-
)
|
| 2177 |
-
else: # state_us
|
| 2178 |
-
# Use US reference for states
|
| 2179 |
-
reference_soc = filter_df(
|
| 2180 |
-
df,
|
| 2181 |
-
geography="country",
|
| 2182 |
-
geo_id="USA",
|
| 2183 |
-
facet="soc_occupation",
|
| 2184 |
-
variable="soc_pct",
|
| 2185 |
-
)
|
| 2186 |
-
|
| 2187 |
-
# Get top SOC groups from reference (excluding not_classified)
|
| 2188 |
-
reference_filtered = reference_soc[
|
| 2189 |
-
~reference_soc["cluster_name"].str.contains("not_classified", na=False)
|
| 2190 |
-
]
|
| 2191 |
-
plot_soc_groups = reference_filtered.nlargest(n_top_groups, "value")[
|
| 2192 |
-
"cluster_name"
|
| 2193 |
-
].tolist()
|
| 2194 |
-
|
| 2195 |
-
# Filter to selected SOC groups
|
| 2196 |
-
df_plot = df_plot[df_plot["soc_group"].isin(plot_soc_groups)]
|
| 2197 |
-
|
| 2198 |
-
tier_colors = TIER_COLORS_DICT
|
| 2199 |
-
|
| 2200 |
-
# Fixed square subplot size for 2x2 grid
|
| 2201 |
-
subplot_size = 6 # Each subplot is 6x6 inches
|
| 2202 |
-
figsize = (subplot_size * n_cols, subplot_size * n_rows)
|
| 2203 |
-
|
| 2204 |
-
# Create figure
|
| 2205 |
-
fig, axes = create_figure(figsize=figsize, nrows=n_rows, ncols=n_cols)
|
| 2206 |
-
fig.suptitle(
|
| 2207 |
-
"Occupation group shares vs Anthropic AI Usage Index",
|
| 2208 |
-
fontsize=16,
|
| 2209 |
-
fontweight="bold",
|
| 2210 |
-
y=0.98,
|
| 2211 |
-
)
|
| 2212 |
-
|
| 2213 |
-
# Flatten axes for easier iteration (always 2x2 grid)
|
| 2214 |
-
axes_flat = axes.flatten()
|
| 2215 |
-
|
| 2216 |
-
# Plot each SOC group
|
| 2217 |
-
for idx, soc_group in enumerate(plot_soc_groups):
|
| 2218 |
-
ax = axes_flat[idx]
|
| 2219 |
-
|
| 2220 |
-
# Get data for this SOC group
|
| 2221 |
-
soc_data = filter_df(df_plot, soc_group=soc_group)
|
| 2222 |
-
|
| 2223 |
-
# Create scatter plot for each tier
|
| 2224 |
-
for tier_name in tier_colors.keys():
|
| 2225 |
-
tier_data = filter_df(soc_data, tier_name=tier_name)
|
| 2226 |
-
|
| 2227 |
-
# Scale bubble sizes using sqrt for better visibility
|
| 2228 |
-
sizes = np.sqrt(tier_data["usage_count"]) * 2
|
| 2229 |
-
|
| 2230 |
-
ax.scatter(
|
| 2231 |
-
tier_data["ai_usage_index"],
|
| 2232 |
-
tier_data["soc_pct"],
|
| 2233 |
-
s=sizes,
|
| 2234 |
-
c=tier_colors[tier_name],
|
| 2235 |
-
alpha=0.6,
|
| 2236 |
-
edgecolors="black",
|
| 2237 |
-
linewidth=0.5,
|
| 2238 |
-
label=tier_name,
|
| 2239 |
-
)
|
| 2240 |
-
|
| 2241 |
-
# Add trend line and regression statistics
|
| 2242 |
-
X = sm.add_constant(soc_data["ai_usage_index"].values)
|
| 2243 |
-
y = soc_data["soc_pct"].values
|
| 2244 |
-
|
| 2245 |
-
model = sm.OLS(y, X)
|
| 2246 |
-
results = model.fit()
|
| 2247 |
-
|
| 2248 |
-
intercept = results.params[0]
|
| 2249 |
-
slope = results.params[1]
|
| 2250 |
-
r_squared = results.rsquared
|
| 2251 |
-
p_value = results.pvalues[1] # p-value for slope
|
| 2252 |
-
|
| 2253 |
-
# Plot trend line
|
| 2254 |
-
x_line = np.linspace(
|
| 2255 |
-
soc_data["ai_usage_index"].min(), soc_data["ai_usage_index"].max(), 100
|
| 2256 |
-
)
|
| 2257 |
-
y_line = intercept + slope * x_line
|
| 2258 |
-
ax.plot(x_line, y_line, "--", color="gray", alpha=0.5, linewidth=1)
|
| 2259 |
-
|
| 2260 |
-
# Format p-value display
|
| 2261 |
-
if p_value < 0.001:
|
| 2262 |
-
p_str = "p < 0.001"
|
| 2263 |
-
else:
|
| 2264 |
-
p_str = f"p = {p_value:.3f}"
|
| 2265 |
-
|
| 2266 |
-
# Add regression statistics
|
| 2267 |
-
ax.text(
|
| 2268 |
-
0.95,
|
| 2269 |
-
0.95,
|
| 2270 |
-
f"$\\beta = {slope:.3f}\\ ({p_str})$\n$R^2 = {r_squared:.3f}$",
|
| 2271 |
-
transform=ax.transAxes,
|
| 2272 |
-
ha="right",
|
| 2273 |
-
va="top",
|
| 2274 |
-
fontsize=9,
|
| 2275 |
-
bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
|
| 2276 |
-
)
|
| 2277 |
-
|
| 2278 |
-
# Format axes
|
| 2279 |
-
format_axis(
|
| 2280 |
-
ax,
|
| 2281 |
-
xlabel="Anthropic AI Usage Index (usage % / working-age population %)",
|
| 2282 |
-
ylabel="Occupation group share (%)",
|
| 2283 |
-
title=soc_group,
|
| 2284 |
-
xlabel_size=10,
|
| 2285 |
-
ylabel_size=10,
|
| 2286 |
-
grid=False,
|
| 2287 |
-
)
|
| 2288 |
-
ax.grid(True, alpha=0.3)
|
| 2289 |
-
|
| 2290 |
-
# Add legend
|
| 2291 |
-
handles, labels = axes_flat[0].get_legend_handles_labels()
|
| 2292 |
-
if handles:
|
| 2293 |
-
# Create new handles with consistent size for legend only
|
| 2294 |
-
# This doesn't modify the actual plot markers
|
| 2295 |
-
legend_handles = []
|
| 2296 |
-
for handle in handles:
|
| 2297 |
-
# Get the color from the original handle
|
| 2298 |
-
color = (
|
| 2299 |
-
handle.get_facecolor()[0]
|
| 2300 |
-
if hasattr(handle, "get_facecolor")
|
| 2301 |
-
else "gray"
|
| 2302 |
-
)
|
| 2303 |
-
# Create a Line2D object with circle marker for legend
|
| 2304 |
-
new_handle = Line2D(
|
| 2305 |
-
[0],
|
| 2306 |
-
[0],
|
| 2307 |
-
marker="o",
|
| 2308 |
-
color="w",
|
| 2309 |
-
markerfacecolor=color,
|
| 2310 |
-
markersize=8,
|
| 2311 |
-
markeredgecolor="black",
|
| 2312 |
-
markeredgewidth=0.5,
|
| 2313 |
-
alpha=0.6,
|
| 2314 |
-
)
|
| 2315 |
-
legend_handles.append(new_handle)
|
| 2316 |
-
|
| 2317 |
-
# Position tier legend centered under the left column with vertical layout
|
| 2318 |
-
fig.legend(
|
| 2319 |
-
legend_handles,
|
| 2320 |
-
labels,
|
| 2321 |
-
title="Anthropic AI Usage Index tier",
|
| 2322 |
-
loc="upper center",
|
| 2323 |
-
bbox_to_anchor=(0.25, -0.03),
|
| 2324 |
-
frameon=True,
|
| 2325 |
-
fancybox=True,
|
| 2326 |
-
shadow=True,
|
| 2327 |
-
ncol=2,
|
| 2328 |
-
borderpad=0.6,
|
| 2329 |
-
)
|
| 2330 |
-
|
| 2331 |
-
# Add size legend using actual scatter points for perfect matching
|
| 2332 |
-
reference_counts = [100, 1000, 10000]
|
| 2333 |
-
|
| 2334 |
-
# Create invisible scatter points with the exact same size formula as the plot
|
| 2335 |
-
size_legend_elements = []
|
| 2336 |
-
for count in reference_counts:
|
| 2337 |
-
# Use exact same formula as in the plot
|
| 2338 |
-
size = np.sqrt(count) * 2
|
| 2339 |
-
# Create scatter on first axis (will be invisible) just for legend
|
| 2340 |
-
scatter = axes_flat[0].scatter(
|
| 2341 |
-
[],
|
| 2342 |
-
[], # Empty data
|
| 2343 |
-
s=size,
|
| 2344 |
-
c="gray",
|
| 2345 |
-
alpha=0.6,
|
| 2346 |
-
edgecolors="black",
|
| 2347 |
-
linewidth=0.5,
|
| 2348 |
-
label=f"{count:,}",
|
| 2349 |
-
)
|
| 2350 |
-
size_legend_elements.append(scatter)
|
| 2351 |
-
|
| 2352 |
-
# Add size legend centered under the right column with vertical layout
|
| 2353 |
-
fig.legend(
|
| 2354 |
-
handles=size_legend_elements,
|
| 2355 |
-
title="Claude usage count",
|
| 2356 |
-
loc="upper center",
|
| 2357 |
-
bbox_to_anchor=(0.75, -0.03),
|
| 2358 |
-
frameon=True,
|
| 2359 |
-
fancybox=True,
|
| 2360 |
-
shadow=True,
|
| 2361 |
-
ncol=1,
|
| 2362 |
-
borderpad=0.6,
|
| 2363 |
-
)
|
| 2364 |
-
|
| 2365 |
-
plt.tight_layout(rect=[0, -0.03, 1, 0.98])
|
| 2366 |
-
return fig
|
| 2367 |
-
|
| 2368 |
-
|
| 2369 |
-
def collaboration_task_regression(df, geography="country"):
|
| 2370 |
-
"""
|
| 2371 |
-
Analyze automation vs augmentation patterns controlling for task mix for
|
| 2372 |
-
geographies that meet the minimum observation threshold.
|
| 2373 |
-
|
| 2374 |
-
Uses global task weights to calculate expected automation for each geography,
|
| 2375 |
-
then compares actual vs expected automation.
|
| 2376 |
-
|
| 2377 |
-
Note: Includes "none" tasks in calculations since they have automation/augmentation
|
| 2378 |
-
patterns in the data. Excludes "not_classified" tasks which lack collaboration data.
|
| 2379 |
-
|
| 2380 |
-
Args:
|
| 2381 |
-
df: Input dataframe
|
| 2382 |
-
geography: "country" or "state_us"
|
| 2383 |
-
"""
|
| 2384 |
-
# Filter to geographies that meet min observation threshold
|
| 2385 |
-
filtered_countries, filtered_states = get_filtered_geographies(df)
|
| 2386 |
-
filtered_geos = filtered_countries if geography == "country" else filtered_states
|
| 2387 |
-
|
| 2388 |
-
# Get collaboration automation data
|
| 2389 |
-
df_automation = filter_df(
|
| 2390 |
-
df,
|
| 2391 |
-
facet="collaboration_automation_augmentation",
|
| 2392 |
-
geography=geography,
|
| 2393 |
-
variable="automation_pct",
|
| 2394 |
-
geo_id=filtered_geos,
|
| 2395 |
-
)[["geo_id", "value"]].rename(columns={"value": "automation_pct"})
|
| 2396 |
-
|
| 2397 |
-
# Get Anthropic AI Usage Index data
|
| 2398 |
-
df_usage = filter_df(
|
| 2399 |
-
df,
|
| 2400 |
-
geography=geography,
|
| 2401 |
-
facet=geography,
|
| 2402 |
-
variable="usage_per_capita_index",
|
| 2403 |
-
geo_id=filtered_geos,
|
| 2404 |
-
)[["geo_id", "geo_name", "value"]].copy()
|
| 2405 |
-
df_usage.rename(columns={"value": "usage_per_capita_index"}, inplace=True)
|
| 2406 |
-
|
| 2407 |
-
# Get geography-specific task weights (percentages)
|
| 2408 |
-
df_geo_tasks = filter_df(
|
| 2409 |
-
df,
|
| 2410 |
-
facet="onet_task",
|
| 2411 |
-
geography=geography,
|
| 2412 |
-
variable="onet_task_pct",
|
| 2413 |
-
geo_id=filtered_geos,
|
| 2414 |
-
).copy()
|
| 2415 |
-
|
| 2416 |
-
# Exclude not_classified and none tasks
|
| 2417 |
-
df_geo_tasks = df_geo_tasks[
|
| 2418 |
-
~df_geo_tasks["cluster_name"].isin(["not_classified", "none"])
|
| 2419 |
-
]
|
| 2420 |
-
|
| 2421 |
-
# Get global task-specific collaboration patterns (only available at global level)
|
| 2422 |
-
df_task_collab = filter_df(
|
| 2423 |
-
df,
|
| 2424 |
-
facet="onet_task::collaboration",
|
| 2425 |
-
geography="global",
|
| 2426 |
-
geo_id="GLOBAL",
|
| 2427 |
-
variable="onet_task_collaboration_pct",
|
| 2428 |
-
).copy()
|
| 2429 |
-
|
| 2430 |
-
# Parse task name and collaboration type from cluster_name
|
| 2431 |
-
df_task_collab["task_name"] = df_task_collab["cluster_name"].str.split("::").str[0]
|
| 2432 |
-
df_task_collab["collab_type"] = (
|
| 2433 |
-
df_task_collab["cluster_name"].str.split("::").str[1]
|
| 2434 |
-
)
|
| 2435 |
-
|
| 2436 |
-
# Map collaboration types to automation/augmentation
|
| 2437 |
-
# Automation: directive, feedback loop
|
| 2438 |
-
# Augmentation: validation, task iteration, learning
|
| 2439 |
-
# Excluded: none, not_classified
|
| 2440 |
-
def is_automation(collab_type):
|
| 2441 |
-
if collab_type in ["directive", "feedback loop"]:
|
| 2442 |
-
return True
|
| 2443 |
-
elif collab_type in [
|
| 2444 |
-
"validation",
|
| 2445 |
-
"task iteration",
|
| 2446 |
-
"learning",
|
| 2447 |
-
]:
|
| 2448 |
-
return False
|
| 2449 |
-
else: # none, not_classified
|
| 2450 |
-
return None
|
| 2451 |
-
|
| 2452 |
-
df_task_collab["is_automation"] = df_task_collab["collab_type"].apply(is_automation)
|
| 2453 |
-
|
| 2454 |
-
# Exclude not_classified tasks upfront
|
| 2455 |
-
df_task_collab_valid = df_task_collab[
|
| 2456 |
-
df_task_collab["task_name"] != "not_classified"
|
| 2457 |
-
]
|
| 2458 |
-
|
| 2459 |
-
# Calculate automation percentage for each task
|
| 2460 |
-
task_automation_rates = {}
|
| 2461 |
-
for task_name in df_task_collab_valid["task_name"].unique():
|
| 2462 |
-
task_data = df_task_collab_valid[
|
| 2463 |
-
(df_task_collab_valid["task_name"] == task_name)
|
| 2464 |
-
& (df_task_collab_valid["is_automation"].notna())
|
| 2465 |
-
]
|
| 2466 |
-
|
| 2467 |
-
# Skip tasks that only have "not_classified" collaboration types
|
| 2468 |
-
if task_data.empty or task_data["value"].sum() == 0:
|
| 2469 |
-
continue
|
| 2470 |
-
|
| 2471 |
-
automation_sum = task_data[task_data["is_automation"]]["value"].sum()
|
| 2472 |
-
total_sum = task_data["value"].sum()
|
| 2473 |
-
task_automation_rates[task_name] = (automation_sum / total_sum) * 100
|
| 2474 |
-
|
| 2475 |
-
# Calculate expected automation for each country using its own task weights
|
| 2476 |
-
expected_automation = []
|
| 2477 |
-
geo_ids = []
|
| 2478 |
-
|
| 2479 |
-
for geo_id in filtered_geos:
|
| 2480 |
-
# Get this geography's task distribution (excluding not_classified)
|
| 2481 |
-
geo_tasks = df_geo_tasks[
|
| 2482 |
-
(df_geo_tasks["geo_id"] == geo_id)
|
| 2483 |
-
& (df_geo_tasks["cluster_name"] != "not_classified")
|
| 2484 |
-
]
|
| 2485 |
-
|
| 2486 |
-
# Skip geographies with no task data
|
| 2487 |
-
if geo_tasks.empty:
|
| 2488 |
-
continue
|
| 2489 |
-
|
| 2490 |
-
# Calculate weighted automation using geography's task weights
|
| 2491 |
-
weighted_auto = 0.0
|
| 2492 |
-
total_weight = 0.0
|
| 2493 |
-
|
| 2494 |
-
for _, row in geo_tasks.iterrows():
|
| 2495 |
-
task = row["cluster_name"]
|
| 2496 |
-
weight = row["value"] # Already in percentage
|
| 2497 |
-
|
| 2498 |
-
# Get automation rate for this task (from global data)
|
| 2499 |
-
if task in task_automation_rates:
|
| 2500 |
-
auto_rate = task_automation_rates[task]
|
| 2501 |
-
weighted_auto += weight * auto_rate
|
| 2502 |
-
total_weight += weight
|
| 2503 |
-
|
| 2504 |
-
# Calculate expected automation
|
| 2505 |
-
expected_auto = weighted_auto / total_weight
|
| 2506 |
-
expected_automation.append(expected_auto)
|
| 2507 |
-
geo_ids.append(geo_id)
|
| 2508 |
-
|
| 2509 |
-
# Create dataframe with expected automation
|
| 2510 |
-
df_expected = pd.DataFrame(
|
| 2511 |
-
{"geo_id": geo_ids, "expected_automation_pct": expected_automation}
|
| 2512 |
-
)
|
| 2513 |
-
|
| 2514 |
-
# Merge all data
|
| 2515 |
-
df_regression = df_automation.merge(df_expected, on="geo_id", how="inner")
|
| 2516 |
-
df_regression = df_regression.merge(df_usage, on="geo_id", how="inner")
|
| 2517 |
-
|
| 2518 |
-
# Count unique tasks for reporting
|
| 2519 |
-
n_tasks = len(task_automation_rates)
|
| 2520 |
-
|
| 2521 |
-
# Calculate residuals from regressions for proper partial correlation
|
| 2522 |
-
# For automation, regress actual on expected to get residuals
|
| 2523 |
-
X_expected = sm.add_constant(df_regression["expected_automation_pct"])
|
| 2524 |
-
model_automation = sm.OLS(df_regression["automation_pct"], X_expected)
|
| 2525 |
-
results_automation = model_automation.fit()
|
| 2526 |
-
df_regression["automation_residuals"] = results_automation.resid
|
| 2527 |
-
|
| 2528 |
-
# For usage, regress on expected automation to get residuals
|
| 2529 |
-
model_usage = sm.OLS(df_regression["usage_per_capita_index"], X_expected)
|
| 2530 |
-
results_usage = model_usage.fit()
|
| 2531 |
-
df_regression["usage_residuals"] = results_usage.resid
|
| 2532 |
-
|
| 2533 |
-
# Partial regression is regression of residuals
|
| 2534 |
-
# We want usage (X) to explain automation (Y)
|
| 2535 |
-
X_partial = sm.add_constant(df_regression["usage_residuals"])
|
| 2536 |
-
model_partial = sm.OLS(df_regression["automation_residuals"], X_partial)
|
| 2537 |
-
results_partial = model_partial.fit()
|
| 2538 |
-
partial_slope = results_partial.params.iloc[1]
|
| 2539 |
-
partial_r2 = results_partial.rsquared
|
| 2540 |
-
partial_p = results_partial.pvalues.iloc[1]
|
| 2541 |
-
|
| 2542 |
-
# Create visualization - only show partial correlation
|
| 2543 |
-
fig, ax = create_figure(figsize=(10, 8))
|
| 2544 |
-
|
| 2545 |
-
# Define colormap for automation residuals
|
| 2546 |
-
colors_automation = [AUGMENTATION_COLOR, AUTOMATION_COLOR]
|
| 2547 |
-
cmap_automation = LinearSegmentedColormap.from_list(
|
| 2548 |
-
"automation", colors_automation, N=100
|
| 2549 |
-
)
|
| 2550 |
-
|
| 2551 |
-
# Plot partial correlation
|
| 2552 |
-
# Create colormap normalization for automation residuals
|
| 2553 |
-
norm = plt.Normalize(
|
| 2554 |
-
vmin=df_regression["automation_residuals"].min(),
|
| 2555 |
-
vmax=df_regression["automation_residuals"].max(),
|
| 2556 |
-
)
|
| 2557 |
-
|
| 2558 |
-
# Plot invisible points to ensure matplotlib's autoscaling includes all data points
|
| 2559 |
-
ax.scatter(
|
| 2560 |
-
df_regression["usage_residuals"],
|
| 2561 |
-
df_regression["automation_residuals"],
|
| 2562 |
-
s=0, # invisible points for autoscaling
|
| 2563 |
-
alpha=0,
|
| 2564 |
-
)
|
| 2565 |
-
|
| 2566 |
-
# Plot country geo_id values as text instead of scatter points
|
| 2567 |
-
for _, row in df_regression.iterrows():
|
| 2568 |
-
color_val = norm(row["automation_residuals"])
|
| 2569 |
-
text_color = cmap_automation(color_val)
|
| 2570 |
-
|
| 2571 |
-
ax.text(
|
| 2572 |
-
row["usage_residuals"],
|
| 2573 |
-
row["automation_residuals"],
|
| 2574 |
-
row["geo_id"],
|
| 2575 |
-
fontsize=7,
|
| 2576 |
-
ha="center",
|
| 2577 |
-
va="center",
|
| 2578 |
-
color=text_color,
|
| 2579 |
-
alpha=0.9,
|
| 2580 |
-
weight="bold",
|
| 2581 |
-
)
|
| 2582 |
-
|
| 2583 |
-
# Create a ScalarMappable for the colorbar
|
| 2584 |
-
scalar_mappable = plt.cm.ScalarMappable(cmap=cmap_automation, norm=norm)
|
| 2585 |
-
scalar_mappable.set_array([])
|
| 2586 |
-
|
| 2587 |
-
# Add regression line using actual regression results
|
| 2588 |
-
# OLS model: automation_residuals = intercept + slope * usage_residuals
|
| 2589 |
-
x_resid_line = np.linspace(
|
| 2590 |
-
df_regression["usage_residuals"].min(),
|
| 2591 |
-
df_regression["usage_residuals"].max(),
|
| 2592 |
-
100,
|
| 2593 |
-
)
|
| 2594 |
-
intercept = results_partial.params.iloc[0]
|
| 2595 |
-
y_resid_line = intercept + partial_slope * x_resid_line
|
| 2596 |
-
ax.plot(
|
| 2597 |
-
x_resid_line,
|
| 2598 |
-
y_resid_line,
|
| 2599 |
-
"grey",
|
| 2600 |
-
linestyle="--",
|
| 2601 |
-
linewidth=2,
|
| 2602 |
-
alpha=0.7,
|
| 2603 |
-
)
|
| 2604 |
-
|
| 2605 |
-
# Set axis labels and title
|
| 2606 |
-
format_axis(
|
| 2607 |
-
ax,
|
| 2608 |
-
xlabel="Anthropic AI Usage Index residuals\n(per capita usage not explained by task mix)",
|
| 2609 |
-
ylabel="Automation % residuals\n(automation not explained by task mix)",
|
| 2610 |
-
title="Relationship between Anthropic AI Usage Index and automation",
|
| 2611 |
-
grid=False,
|
| 2612 |
-
)
|
| 2613 |
-
|
| 2614 |
-
# Add correlation info inside the plot
|
| 2615 |
-
if partial_p < 0.001:
|
| 2616 |
-
p_str = "p < 0.001"
|
| 2617 |
-
else:
|
| 2618 |
-
p_str = f"p = {partial_p:.3f}"
|
| 2619 |
-
|
| 2620 |
-
ax.text(
|
| 2621 |
-
0.08,
|
| 2622 |
-
0.975,
|
| 2623 |
-
f"Partial regression (controlling for task mix): $\\beta = {partial_slope:.3f}, R^2 = {partial_r2:.3f}\\ ({p_str})$",
|
| 2624 |
-
transform=ax.transAxes,
|
| 2625 |
-
fontsize=10,
|
| 2626 |
-
bbox=dict(boxstyle="round", facecolor="white", alpha=0.8),
|
| 2627 |
-
verticalalignment="top",
|
| 2628 |
-
)
|
| 2629 |
-
|
| 2630 |
-
ax.axhline(y=0, color="gray", linestyle=":", linewidth=1, alpha=0.3)
|
| 2631 |
-
ax.axvline(x=0, color="gray", linestyle=":", linewidth=1, alpha=0.3)
|
| 2632 |
-
ax.grid(True, alpha=0.3, linestyle="--")
|
| 2633 |
-
|
| 2634 |
-
# Add colorbar
|
| 2635 |
-
fig.subplots_adjust(right=0.92)
|
| 2636 |
-
cbar_ax = fig.add_axes([0.94, 0.2, 0.02, 0.6])
|
| 2637 |
-
cbar = plt.colorbar(scalar_mappable, cax=cbar_ax)
|
| 2638 |
-
cbar.set_label("Automation % residuals", fontsize=10, rotation=270, labelpad=15)
|
| 2639 |
-
|
| 2640 |
-
# Adjust plot to make room for titles and ensure all data is visible
|
| 2641 |
-
plt.subplots_adjust(top=0.92, right=0.92, left=0.12, bottom=0.12)
|
| 2642 |
-
|
| 2643 |
-
# Return results
|
| 2644 |
-
return {
|
| 2645 |
-
"figure": fig,
|
| 2646 |
-
"partial_slope": partial_slope,
|
| 2647 |
-
"partial_r2": partial_r2,
|
| 2648 |
-
"partial_pvalue": partial_p,
|
| 2649 |
-
"n_countries": len(df_regression),
|
| 2650 |
-
"n_tasks": n_tasks,
|
| 2651 |
-
"df_residuals": df_regression,
|
| 2652 |
-
}
|
| 2653 |
-
|
| 2654 |
-
|
| 2655 |
-
def plot_automation_preference_residuals(df, geography="country", figsize=(14, 12)):
|
| 2656 |
-
"""Plot automation vs augmentation preference after controlling for task mix.
|
| 2657 |
-
|
| 2658 |
-
For geographies meeting minimum observation threshold only.
|
| 2659 |
-
|
| 2660 |
-
Args:
|
| 2661 |
-
df: Input dataframe
|
| 2662 |
-
geography: "country" or "state_us"
|
| 2663 |
-
figsize: Figure size
|
| 2664 |
-
"""
|
| 2665 |
-
# First run the collaboration analysis to get residuals
|
| 2666 |
-
results = collaboration_task_regression(df, geography=geography)
|
| 2667 |
-
|
| 2668 |
-
# Suppress figure created by collaboration_task_regression
|
| 2669 |
-
plt.close(results["figure"])
|
| 2670 |
-
|
| 2671 |
-
# Get the dataframe with residuals
|
| 2672 |
-
df_residuals = results["df_residuals"]
|
| 2673 |
-
|
| 2674 |
-
# Sort by automation residuals (most augmentation to most automation)
|
| 2675 |
-
df_plot = df_residuals.sort_values("automation_residuals", ascending=True)
|
| 2676 |
-
|
| 2677 |
-
# Adjust figure size based on number of geographies
|
| 2678 |
-
n_geos = len(df_plot)
|
| 2679 |
-
fig_height = max(8, n_geos * 0.25)
|
| 2680 |
-
fig, ax = create_figure(figsize=(figsize[0], fig_height))
|
| 2681 |
-
|
| 2682 |
-
# Create color map
|
| 2683 |
-
colors = [
|
| 2684 |
-
AUGMENTATION_COLOR if x < 0 else AUTOMATION_COLOR
|
| 2685 |
-
for x in df_plot["automation_residuals"]
|
| 2686 |
-
]
|
| 2687 |
-
|
| 2688 |
-
# Create horizontal bar chart
|
| 2689 |
-
ax.barh(
|
| 2690 |
-
range(len(df_plot)),
|
| 2691 |
-
df_plot["automation_residuals"].values,
|
| 2692 |
-
color=colors,
|
| 2693 |
-
alpha=0.8,
|
| 2694 |
-
)
|
| 2695 |
-
|
| 2696 |
-
# Set y-axis labels with geography names only
|
| 2697 |
-
y_labels = [row["geo_name"] for _, row in df_plot.iterrows()]
|
| 2698 |
-
ax.set_yticks(range(len(df_plot)))
|
| 2699 |
-
ax.set_yticklabels(y_labels, fontsize=7)
|
| 2700 |
-
|
| 2701 |
-
# Reduce white space at top and bottom
|
| 2702 |
-
ax.set_ylim(-0.5, len(df_plot) - 0.5)
|
| 2703 |
-
|
| 2704 |
-
# Add vertical line at zero
|
| 2705 |
-
ax.axvline(x=0, color="black", linestyle="-", linewidth=1, alpha=0.7)
|
| 2706 |
-
|
| 2707 |
-
# Labels and title
|
| 2708 |
-
geo_label = "Countries'" if geography == "country" else "States'"
|
| 2709 |
-
format_axis(
|
| 2710 |
-
ax,
|
| 2711 |
-
xlabel="Automation % residual (after controlling for task mix)",
|
| 2712 |
-
ylabel="",
|
| 2713 |
-
title=f"{geo_label} automation vs augmentation preference\n(after controlling for task composition)",
|
| 2714 |
-
grid=False,
|
| 2715 |
-
)
|
| 2716 |
-
|
| 2717 |
-
# Add grid
|
| 2718 |
-
ax.grid(True, axis="x", alpha=0.3, linestyle="--")
|
| 2719 |
-
|
| 2720 |
-
# Add value labels on the bars
|
| 2721 |
-
for i, (_, row) in enumerate(df_plot.iterrows()):
|
| 2722 |
-
value = row["automation_residuals"]
|
| 2723 |
-
x_offset = 0.2 if abs(value) < 5 else 0.3
|
| 2724 |
-
x_pos = value + (x_offset if value > 0 else -x_offset)
|
| 2725 |
-
ax.text(
|
| 2726 |
-
x_pos,
|
| 2727 |
-
i,
|
| 2728 |
-
f"{value:.1f}",
|
| 2729 |
-
ha="left" if value > 0 else "right",
|
| 2730 |
-
va="center",
|
| 2731 |
-
fontsize=8,
|
| 2732 |
-
)
|
| 2733 |
-
|
| 2734 |
-
# Add annotations
|
| 2735 |
-
y_range = ax.get_ylim()
|
| 2736 |
-
annotation_y = y_range[1] * 0.85
|
| 2737 |
-
|
| 2738 |
-
# Left annotation for augmentation
|
| 2739 |
-
ax.text(
|
| 2740 |
-
ax.get_xlim()[0] * 0.7,
|
| 2741 |
-
annotation_y,
|
| 2742 |
-
"Prefer augmentation",
|
| 2743 |
-
fontsize=9,
|
| 2744 |
-
color=AUGMENTATION_COLOR,
|
| 2745 |
-
fontweight="bold",
|
| 2746 |
-
ha="left",
|
| 2747 |
-
va="center",
|
| 2748 |
-
)
|
| 2749 |
-
|
| 2750 |
-
# Right annotation for automation
|
| 2751 |
-
ax.text(
|
| 2752 |
-
ax.get_xlim()[1] * 0.7,
|
| 2753 |
-
annotation_y,
|
| 2754 |
-
"Prefer automation",
|
| 2755 |
-
fontsize=9,
|
| 2756 |
-
color=AUTOMATION_COLOR,
|
| 2757 |
-
fontweight="bold",
|
| 2758 |
-
ha="right",
|
| 2759 |
-
va="center",
|
| 2760 |
-
)
|
| 2761 |
-
|
| 2762 |
-
plt.tight_layout()
|
| 2763 |
-
|
| 2764 |
-
return fig
|
| 2765 |
-
|
| 2766 |
-
|
| 2767 |
-
def plot_soc_distribution(
|
| 2768 |
-
df, geo_list, geography, figsize=(14, 10), title=None, exclude_not_classified=True
|
| 2769 |
-
):
|
| 2770 |
-
"""
|
| 2771 |
-
Plot SOC occupation distribution for multiple geographies (countries or states) with horizontal bars, colored by tier.
|
| 2772 |
-
|
| 2773 |
-
Args:
|
| 2774 |
-
df: Long format dataframe
|
| 2775 |
-
geo_list: List of geo_id values to compare (e.g., ['USA', 'BRA'] for countries or ['CA', 'TX'] for states)
|
| 2776 |
-
geography: Geographic level ('country' or 'state_us')
|
| 2777 |
-
figsize: Figure size
|
| 2778 |
-
title: Chart title
|
| 2779 |
-
exclude_not_classified: If True, excludes 'not_classified' from the chart
|
| 2780 |
-
"""
|
| 2781 |
-
# Use global tier colors and names
|
| 2782 |
-
tier_colors = TIER_COLORS_NUMERIC
|
| 2783 |
-
tier_names = TIER_NAMES_NUMERIC
|
| 2784 |
-
|
| 2785 |
-
# Get usage tier and geo_name for each geography
|
| 2786 |
-
tier_data = filter_df(
|
| 2787 |
-
df, geography=geography, variable="usage_tier", facet=geography, geo_id=geo_list
|
| 2788 |
-
)[["geo_id", "geo_name", "value"]].rename(columns={"value": "tier"})
|
| 2789 |
-
|
| 2790 |
-
# Collect SOC data for all geographies first to determine consistent ordering
|
| 2791 |
-
all_soc_data = []
|
| 2792 |
-
for geo_id in geo_list:
|
| 2793 |
-
geo_soc = filter_df(
|
| 2794 |
-
df,
|
| 2795 |
-
geography=geography,
|
| 2796 |
-
geo_id=geo_id,
|
| 2797 |
-
facet="soc_occupation",
|
| 2798 |
-
variable="soc_pct",
|
| 2799 |
-
).copy()
|
| 2800 |
-
|
| 2801 |
-
if not geo_soc.empty:
|
| 2802 |
-
# Optionally filter out not_classified
|
| 2803 |
-
if exclude_not_classified:
|
| 2804 |
-
geo_soc = geo_soc[geo_soc["cluster_name"] != "not_classified"].copy()
|
| 2805 |
-
|
| 2806 |
-
geo_soc["geo"] = geo_id
|
| 2807 |
-
all_soc_data.append(geo_soc)
|
| 2808 |
-
|
| 2809 |
-
combined_data = pd.concat(all_soc_data)
|
| 2810 |
-
|
| 2811 |
-
# Use global SOC distribution for countries, USA distribution for states
|
| 2812 |
-
if geography == "country":
|
| 2813 |
-
reference_data = filter_df(
|
| 2814 |
-
df,
|
| 2815 |
-
geography="global",
|
| 2816 |
-
geo_id="GLOBAL",
|
| 2817 |
-
facet="soc_occupation",
|
| 2818 |
-
variable="soc_pct",
|
| 2819 |
-
)
|
| 2820 |
-
else: # state_us
|
| 2821 |
-
reference_data = filter_df(
|
| 2822 |
-
df,
|
| 2823 |
-
geography="country",
|
| 2824 |
-
geo_id="USA",
|
| 2825 |
-
facet="soc_occupation",
|
| 2826 |
-
variable="soc_pct",
|
| 2827 |
-
)
|
| 2828 |
-
|
| 2829 |
-
# Filter out not_classified from reference data if needed
|
| 2830 |
-
if exclude_not_classified:
|
| 2831 |
-
reference_data = reference_data[
|
| 2832 |
-
reference_data["cluster_name"] != "not_classified"
|
| 2833 |
-
]
|
| 2834 |
-
|
| 2835 |
-
# Sort by reference values ascending so highest appears at top when plotted
|
| 2836 |
-
soc_order = reference_data.sort_values("value", ascending=True)[
|
| 2837 |
-
"cluster_name"
|
| 2838 |
-
].tolist()
|
| 2839 |
-
|
| 2840 |
-
# Create figure
|
| 2841 |
-
fig, ax = create_figure(figsize=figsize)
|
| 2842 |
-
|
| 2843 |
-
# Width of bars and positions
|
| 2844 |
-
n_geos = len(geo_list)
|
| 2845 |
-
bar_width = 0.95 / n_geos # Wider bars, less spacing within groups
|
| 2846 |
-
y_positions = (
|
| 2847 |
-
np.arange(len(soc_order)) * 1.05
|
| 2848 |
-
) # Reduce spacing between SOC groups to 5%
|
| 2849 |
-
|
| 2850 |
-
# Sort geo_list to ensure highest tier appears at top within each group
|
| 2851 |
-
# Reverse the order so tier 4 is plotted first and appears on top
|
| 2852 |
-
geo_tier_map = dict(zip(tier_data["geo_id"], tier_data["tier"], strict=True))
|
| 2853 |
-
geo_list_sorted = sorted(geo_list, key=lambda x: geo_tier_map[x])
|
| 2854 |
-
|
| 2855 |
-
# Plot bars for each geography
|
| 2856 |
-
for i, geo_id in enumerate(geo_list_sorted):
|
| 2857 |
-
geo_data = filter_df(combined_data, geo=geo_id)
|
| 2858 |
-
geo_name = filter_df(tier_data, geo_id=geo_id)["geo_name"].iloc[0]
|
| 2859 |
-
geo_tier = filter_df(tier_data, geo_id=geo_id)["tier"].iloc[0]
|
| 2860 |
-
|
| 2861 |
-
# Get values in the right order
|
| 2862 |
-
values = []
|
| 2863 |
-
for soc in soc_order:
|
| 2864 |
-
val_data = filter_df(geo_data, cluster_name=soc)["value"]
|
| 2865 |
-
# Use NaN for missing data
|
| 2866 |
-
values.append(val_data.iloc[0] if not val_data.empty else float("nan"))
|
| 2867 |
-
|
| 2868 |
-
# Determine color based on tier
|
| 2869 |
-
color = tier_colors[int(geo_tier)]
|
| 2870 |
-
|
| 2871 |
-
# Create bars with offset for multiple geographies
|
| 2872 |
-
# Reverse the offset calculation so first geo (lowest tier) goes to bottom
|
| 2873 |
-
offset = ((n_geos - 1 - i) - n_geos / 2 + 0.5) * bar_width
|
| 2874 |
-
|
| 2875 |
-
# Get tier name for label
|
| 2876 |
-
tier_label = tier_names[int(geo_tier)]
|
| 2877 |
-
label_text = f"{geo_name} ({tier_label})"
|
| 2878 |
-
|
| 2879 |
-
bars = ax.barh(
|
| 2880 |
-
y_positions + offset,
|
| 2881 |
-
values,
|
| 2882 |
-
bar_width,
|
| 2883 |
-
label=label_text,
|
| 2884 |
-
color=color,
|
| 2885 |
-
alpha=0.8,
|
| 2886 |
-
)
|
| 2887 |
-
|
| 2888 |
-
# Add value labels for bars with data
|
| 2889 |
-
for bar, value in zip(bars, values, strict=True):
|
| 2890 |
-
if not pd.isna(value):
|
| 2891 |
-
ax.text(
|
| 2892 |
-
value + 0.1,
|
| 2893 |
-
bar.get_y() + bar.get_height() / 2,
|
| 2894 |
-
f"{value:.1f}%",
|
| 2895 |
-
va="center",
|
| 2896 |
-
fontsize=5,
|
| 2897 |
-
)
|
| 2898 |
-
|
| 2899 |
-
# Set y-axis labels - position them at the center of each SOC group
|
| 2900 |
-
ax.set_yticks(y_positions)
|
| 2901 |
-
ax.set_yticklabels(soc_order, fontsize=9, va="center")
|
| 2902 |
-
|
| 2903 |
-
# Reduce white space at top and bottom
|
| 2904 |
-
ax.set_ylim(y_positions[0] - 0.5, y_positions[-1] + 0.5)
|
| 2905 |
-
|
| 2906 |
-
# Customize plot
|
| 2907 |
-
format_axis(
|
| 2908 |
-
ax,
|
| 2909 |
-
xlabel="Share of Claude task usage (%)",
|
| 2910 |
-
ylabel="Standard Occupation Classification group",
|
| 2911 |
-
grid=False,
|
| 2912 |
-
)
|
| 2913 |
-
|
| 2914 |
-
if title is None:
|
| 2915 |
-
title = "Claude task usage by occupation: Comparison by AI usage tier"
|
| 2916 |
-
format_axis(ax, title=title, title_size=14, grid=False)
|
| 2917 |
-
|
| 2918 |
-
# Add legend
|
| 2919 |
-
ax.legend(loc="lower right", fontsize=10, framealpha=0.95)
|
| 2920 |
-
|
| 2921 |
-
# Grid
|
| 2922 |
-
ax.grid(True, axis="x", alpha=0.3, linestyle="--")
|
| 2923 |
-
ax.set_xlim(0, max(combined_data["value"]) * 1.15)
|
| 2924 |
-
|
| 2925 |
-
plt.tight_layout()
|
| 2926 |
-
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/code/aei_report_v3_analysis_1p_api.ipynb
DELETED
|
@@ -1,315 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "markdown",
|
| 5 |
-
"metadata": {},
|
| 6 |
-
"source": [
|
| 7 |
-
"# AEI Report v3 API Analysis\n",
|
| 8 |
-
"This notebook produces the streamlined analysis for the AEI report API chapter"
|
| 9 |
-
]
|
| 10 |
-
},
|
| 11 |
-
{
|
| 12 |
-
"cell_type": "code",
|
| 13 |
-
"execution_count": null,
|
| 14 |
-
"metadata": {
|
| 15 |
-
"vscode": {
|
| 16 |
-
"languageId": "python"
|
| 17 |
-
}
|
| 18 |
-
},
|
| 19 |
-
"outputs": [],
|
| 20 |
-
"source": [
|
| 21 |
-
"from pathlib import Path\n",
|
| 22 |
-
"import pandas as pd"
|
| 23 |
-
]
|
| 24 |
-
},
|
| 25 |
-
{
|
| 26 |
-
"cell_type": "code",
|
| 27 |
-
"execution_count": null,
|
| 28 |
-
"metadata": {
|
| 29 |
-
"vscode": {
|
| 30 |
-
"languageId": "python"
|
| 31 |
-
}
|
| 32 |
-
},
|
| 33 |
-
"outputs": [],
|
| 34 |
-
"source": [
|
| 35 |
-
"# Import the analysis functions\n",
|
| 36 |
-
"from aei_analysis_functions_1p_api import (\n",
|
| 37 |
-
" setup_plot_style,\n",
|
| 38 |
-
" load_preprocessed_data,\n",
|
| 39 |
-
" create_top_requests_bar_chart,\n",
|
| 40 |
-
" create_platform_occupational_comparison,\n",
|
| 41 |
-
" create_platform_lorenz_curves,\n",
|
| 42 |
-
" create_collaboration_alluvial,\n",
|
| 43 |
-
" create_automation_augmentation_panel,\n",
|
| 44 |
-
" create_token_output_bar_chart,\n",
|
| 45 |
-
" create_completion_vs_input_tokens_scatter,\n",
|
| 46 |
-
" create_occupational_usage_cost_scatter,\n",
|
| 47 |
-
" create_partial_regression_plot,\n",
|
| 48 |
-
" perform_usage_share_regression_unweighted,\n",
|
| 49 |
-
" create_btos_ai_adoption_chart,\n",
|
| 50 |
-
")"
|
| 51 |
-
]
|
| 52 |
-
},
|
| 53 |
-
{
|
| 54 |
-
"cell_type": "code",
|
| 55 |
-
"execution_count": null,
|
| 56 |
-
"metadata": {
|
| 57 |
-
"vscode": {
|
| 58 |
-
"languageId": "python"
|
| 59 |
-
}
|
| 60 |
-
},
|
| 61 |
-
"outputs": [],
|
| 62 |
-
"source": [
|
| 63 |
-
"# Set matplotlib to use the correct backend and style\n",
|
| 64 |
-
"setup_plot_style()"
|
| 65 |
-
]
|
| 66 |
-
},
|
| 67 |
-
{
|
| 68 |
-
"cell_type": "code",
|
| 69 |
-
"execution_count": null,
|
| 70 |
-
"metadata": {
|
| 71 |
-
"vscode": {
|
| 72 |
-
"languageId": "python"
|
| 73 |
-
}
|
| 74 |
-
},
|
| 75 |
-
"outputs": [],
|
| 76 |
-
"source": [
|
| 77 |
-
"# Set up output directory for saving figures\n",
|
| 78 |
-
"output_dir = Path(\"../data/output/figures/\")\n",
|
| 79 |
-
"btos_data_path = Path(\"../data/input/BTOS_National.xlsx\")\n",
|
| 80 |
-
"api_data_path = Path(\"../data/intermediate/aei_raw_1p_api_2025-08-04_to_2025-08-11.csv\")\n",
|
| 81 |
-
"cai_data_path = Path(\n",
|
| 82 |
-
" \"../data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv\"\n",
|
| 83 |
-
")\n",
|
| 84 |
-
"\n",
|
| 85 |
-
"# Create output directory\n",
|
| 86 |
-
"output_dir.mkdir(parents=True, exist_ok=True)"
|
| 87 |
-
]
|
| 88 |
-
},
|
| 89 |
-
{
|
| 90 |
-
"cell_type": "code",
|
| 91 |
-
"execution_count": null,
|
| 92 |
-
"metadata": {
|
| 93 |
-
"vscode": {
|
| 94 |
-
"languageId": "python"
|
| 95 |
-
}
|
| 96 |
-
},
|
| 97 |
-
"outputs": [],
|
| 98 |
-
"source": [
|
| 99 |
-
"# Load BTOS Data\n",
|
| 100 |
-
"print(\"Loading BTOS data...\")\n",
|
| 101 |
-
"btos_df = pd.read_excel(btos_data_path, sheet_name=\"Response Estimates\")\n",
|
| 102 |
-
"btos_df_ref_dates_df = pd.read_excel(\n",
|
| 103 |
-
" btos_data_path, sheet_name=\"Collection and Reference Dates\"\n",
|
| 104 |
-
")\n",
|
| 105 |
-
"\n",
|
| 106 |
-
"# Load the API data\n",
|
| 107 |
-
"print(\"Loading API data...\")\n",
|
| 108 |
-
"api_df = load_preprocessed_data(api_data_path)\n",
|
| 109 |
-
"\n",
|
| 110 |
-
"# Load the Claude.ai data\n",
|
| 111 |
-
"print(\"Loading Claude.ai data...\")\n",
|
| 112 |
-
"cai_df = load_preprocessed_data(cai_data_path)"
|
| 113 |
-
]
|
| 114 |
-
},
|
| 115 |
-
{
|
| 116 |
-
"cell_type": "code",
|
| 117 |
-
"execution_count": null,
|
| 118 |
-
"metadata": {
|
| 119 |
-
"vscode": {
|
| 120 |
-
"languageId": "python"
|
| 121 |
-
}
|
| 122 |
-
},
|
| 123 |
-
"outputs": [],
|
| 124 |
-
"source": [
|
| 125 |
-
"create_btos_ai_adoption_chart(btos_df, btos_df_ref_dates_df, output_dir)"
|
| 126 |
-
]
|
| 127 |
-
},
|
| 128 |
-
{
|
| 129 |
-
"cell_type": "code",
|
| 130 |
-
"execution_count": null,
|
| 131 |
-
"metadata": {
|
| 132 |
-
"vscode": {
|
| 133 |
-
"languageId": "python"
|
| 134 |
-
}
|
| 135 |
-
},
|
| 136 |
-
"outputs": [],
|
| 137 |
-
"source": [
|
| 138 |
-
"# Create the top requests bar chart\n",
|
| 139 |
-
"print(\"Creating top requests bar chart...\")\n",
|
| 140 |
-
"top_requests_chart = create_top_requests_bar_chart(api_df, output_dir)\n",
|
| 141 |
-
"print(f\"Chart saved to: {top_requests_chart}\")"
|
| 142 |
-
]
|
| 143 |
-
},
|
| 144 |
-
{
|
| 145 |
-
"cell_type": "code",
|
| 146 |
-
"execution_count": null,
|
| 147 |
-
"metadata": {
|
| 148 |
-
"vscode": {
|
| 149 |
-
"languageId": "python"
|
| 150 |
-
}
|
| 151 |
-
},
|
| 152 |
-
"outputs": [],
|
| 153 |
-
"source": [
|
| 154 |
-
"# Create the platform occupational comparison chart\n",
|
| 155 |
-
"print(\"Creating platform occupational comparison chart...\")\n",
|
| 156 |
-
"occupational_comparison_chart = create_platform_occupational_comparison(\n",
|
| 157 |
-
" api_df, cai_df, output_dir\n",
|
| 158 |
-
")\n",
|
| 159 |
-
"print(f\"Chart saved to: {occupational_comparison_chart}\")"
|
| 160 |
-
]
|
| 161 |
-
},
|
| 162 |
-
{
|
| 163 |
-
"cell_type": "code",
|
| 164 |
-
"execution_count": null,
|
| 165 |
-
"metadata": {
|
| 166 |
-
"vscode": {
|
| 167 |
-
"languageId": "python"
|
| 168 |
-
}
|
| 169 |
-
},
|
| 170 |
-
"outputs": [],
|
| 171 |
-
"source": [
|
| 172 |
-
"# Create the platform Lorenz curves\n",
|
| 173 |
-
"print(\"Creating platform Lorenz curves...\")\n",
|
| 174 |
-
"lorenz_curves_chart = create_platform_lorenz_curves(api_df, cai_df, output_dir)\n",
|
| 175 |
-
"print(f\"Chart saved to: {lorenz_curves_chart}\")"
|
| 176 |
-
]
|
| 177 |
-
},
|
| 178 |
-
{
|
| 179 |
-
"cell_type": "code",
|
| 180 |
-
"execution_count": null,
|
| 181 |
-
"metadata": {
|
| 182 |
-
"vscode": {
|
| 183 |
-
"languageId": "python"
|
| 184 |
-
}
|
| 185 |
-
},
|
| 186 |
-
"outputs": [],
|
| 187 |
-
"source": [
|
| 188 |
-
"# Create the collaboration alluvial diagram\n",
|
| 189 |
-
"print(\"Creating collaboration alluvial diagram...\")\n",
|
| 190 |
-
"alluvial_chart = create_collaboration_alluvial(api_df, cai_df, output_dir)\n",
|
| 191 |
-
"print(f\"Chart saved to: {alluvial_chart}\")"
|
| 192 |
-
]
|
| 193 |
-
},
|
| 194 |
-
{
|
| 195 |
-
"cell_type": "code",
|
| 196 |
-
"execution_count": null,
|
| 197 |
-
"metadata": {
|
| 198 |
-
"vscode": {
|
| 199 |
-
"languageId": "python"
|
| 200 |
-
}
|
| 201 |
-
},
|
| 202 |
-
"outputs": [],
|
| 203 |
-
"source": [
|
| 204 |
-
"# Create the automation vs augmentation panel\n",
|
| 205 |
-
"print(\"Creating automation vs augmentation panel...\")\n",
|
| 206 |
-
"automation_panel_chart = create_automation_augmentation_panel(\n",
|
| 207 |
-
" api_df, cai_df, output_dir\n",
|
| 208 |
-
")\n",
|
| 209 |
-
"print(f\"Chart saved to: {automation_panel_chart}\")"
|
| 210 |
-
]
|
| 211 |
-
},
|
| 212 |
-
{
|
| 213 |
-
"cell_type": "code",
|
| 214 |
-
"execution_count": null,
|
| 215 |
-
"metadata": {
|
| 216 |
-
"vscode": {
|
| 217 |
-
"languageId": "python"
|
| 218 |
-
}
|
| 219 |
-
},
|
| 220 |
-
"outputs": [],
|
| 221 |
-
"source": [
|
| 222 |
-
"# Create the token output bar chart\n",
|
| 223 |
-
"print(\"Creating token output bar chart...\")\n",
|
| 224 |
-
"token_output_chart = create_token_output_bar_chart(api_df, output_dir)\n",
|
| 225 |
-
"print(f\"Chart saved to: {token_output_chart}\")"
|
| 226 |
-
]
|
| 227 |
-
},
|
| 228 |
-
{
|
| 229 |
-
"cell_type": "code",
|
| 230 |
-
"execution_count": null,
|
| 231 |
-
"metadata": {
|
| 232 |
-
"vscode": {
|
| 233 |
-
"languageId": "python"
|
| 234 |
-
}
|
| 235 |
-
},
|
| 236 |
-
"outputs": [],
|
| 237 |
-
"source": [
|
| 238 |
-
"# Create the completion vs input tokens scatter plot\n",
|
| 239 |
-
"print(\"Creating completion vs input tokens scatter plot...\")\n",
|
| 240 |
-
"completion_input_scatter = create_completion_vs_input_tokens_scatter(api_df, output_dir)\n",
|
| 241 |
-
"print(f\"Chart saved to: {completion_input_scatter}\")"
|
| 242 |
-
]
|
| 243 |
-
},
|
| 244 |
-
{
|
| 245 |
-
"cell_type": "code",
|
| 246 |
-
"execution_count": null,
|
| 247 |
-
"metadata": {
|
| 248 |
-
"vscode": {
|
| 249 |
-
"languageId": "python"
|
| 250 |
-
}
|
| 251 |
-
},
|
| 252 |
-
"outputs": [],
|
| 253 |
-
"source": [
|
| 254 |
-
"# Create the occupational usage vs cost scatter plot\n",
|
| 255 |
-
"print(\"Creating occupational usage vs cost scatter plot...\")\n",
|
| 256 |
-
"usage_cost_scatter = create_occupational_usage_cost_scatter(api_df, output_dir)\n",
|
| 257 |
-
"print(f\"Chart saved to: {usage_cost_scatter}\")"
|
| 258 |
-
]
|
| 259 |
-
},
|
| 260 |
-
{
|
| 261 |
-
"cell_type": "code",
|
| 262 |
-
"execution_count": null,
|
| 263 |
-
"metadata": {
|
| 264 |
-
"vscode": {
|
| 265 |
-
"languageId": "python"
|
| 266 |
-
}
|
| 267 |
-
},
|
| 268 |
-
"outputs": [],
|
| 269 |
-
"source": [
|
| 270 |
-
"# Create the partial regression plot\n",
|
| 271 |
-
"print(\"Creating partial regression plot...\")\n",
|
| 272 |
-
"partial_plot, regression_results = create_partial_regression_plot(\n",
|
| 273 |
-
" api_df, cai_df, output_dir\n",
|
| 274 |
-
")\n",
|
| 275 |
-
"print(f\"Chart saved to: {partial_plot}\")"
|
| 276 |
-
]
|
| 277 |
-
},
|
| 278 |
-
{
|
| 279 |
-
"cell_type": "code",
|
| 280 |
-
"execution_count": null,
|
| 281 |
-
"metadata": {
|
| 282 |
-
"vscode": {
|
| 283 |
-
"languageId": "python"
|
| 284 |
-
}
|
| 285 |
-
},
|
| 286 |
-
"outputs": [],
|
| 287 |
-
"source": [
|
| 288 |
-
"# Perform the unweighted usage share regression analysis\n",
|
| 289 |
-
"print(\"Performing unweighted usage share regression analysis...\")\n",
|
| 290 |
-
"regression_model = perform_usage_share_regression_unweighted(api_df, cai_df, output_dir)\n",
|
| 291 |
-
"regression_model.summary()"
|
| 292 |
-
]
|
| 293 |
-
}
|
| 294 |
-
],
|
| 295 |
-
"metadata": {
|
| 296 |
-
"kernelspec": {
|
| 297 |
-
"display_name": "Coconut",
|
| 298 |
-
"language": "coconut",
|
| 299 |
-
"name": "coconut"
|
| 300 |
-
},
|
| 301 |
-
"language_info": {
|
| 302 |
-
"codemirror_mode": {
|
| 303 |
-
"name": "python",
|
| 304 |
-
"version": 3
|
| 305 |
-
},
|
| 306 |
-
"file_extension": ".coco",
|
| 307 |
-
"mimetype": "text/x-python3",
|
| 308 |
-
"name": "coconut",
|
| 309 |
-
"pygments_lexer": "coconut",
|
| 310 |
-
"version": "3.0.2"
|
| 311 |
-
}
|
| 312 |
-
},
|
| 313 |
-
"nbformat": 4,
|
| 314 |
-
"nbformat_minor": 4
|
| 315 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/code/aei_report_v3_analysis_claude_ai.ipynb
DELETED
|
@@ -1,868 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "markdown",
|
| 5 |
-
"metadata": {},
|
| 6 |
-
"source": [
|
| 7 |
-
"# AEI Report v3 Claude.ai Analysis\n",
|
| 8 |
-
"\n",
|
| 9 |
-
"This notebook performs statistical analysis and creates visualizations from enriched Clio data.\n",
|
| 10 |
-
"It works directly with long format data from the preprocessing pipeline.\n",
|
| 11 |
-
"\n",
|
| 12 |
-
"**Input**: `aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv`\n",
|
| 13 |
-
"\n",
|
| 14 |
-
"**Output**: Visualizations"
|
| 15 |
-
]
|
| 16 |
-
},
|
| 17 |
-
{
|
| 18 |
-
"cell_type": "markdown",
|
| 19 |
-
"metadata": {},
|
| 20 |
-
"source": [
|
| 21 |
-
"## 1. Setup and Data Loading"
|
| 22 |
-
]
|
| 23 |
-
},
|
| 24 |
-
{
|
| 25 |
-
"cell_type": "code",
|
| 26 |
-
"execution_count": null,
|
| 27 |
-
"metadata": {
|
| 28 |
-
"vscode": {
|
| 29 |
-
"languageId": "python"
|
| 30 |
-
}
|
| 31 |
-
},
|
| 32 |
-
"outputs": [],
|
| 33 |
-
"source": [
|
| 34 |
-
"from pathlib import Path\n",
|
| 35 |
-
"import pandas as pd\n",
|
| 36 |
-
"import matplotlib.pyplot as plt\n",
|
| 37 |
-
"\n",
|
| 38 |
-
"# Import all analysis functions\n",
|
| 39 |
-
"from aei_analysis_functions_claude_ai import (\n",
|
| 40 |
-
" setup_plot_style,\n",
|
| 41 |
-
" get_filtered_geographies,\n",
|
| 42 |
-
" plot_usage_index_bars,\n",
|
| 43 |
-
" plot_tier_map,\n",
|
| 44 |
-
" plot_usage_share_bars,\n",
|
| 45 |
-
" plot_tier_summary_table,\n",
|
| 46 |
-
" plot_gdp_scatter,\n",
|
| 47 |
-
" plot_request_comparison_cards,\n",
|
| 48 |
-
" plot_soc_usage_scatter,\n",
|
| 49 |
-
" plot_dc_task_request_cards,\n",
|
| 50 |
-
" collaboration_task_regression,\n",
|
| 51 |
-
" plot_usage_index_histogram,\n",
|
| 52 |
-
" plot_variable_map,\n",
|
| 53 |
-
" plot_soc_distribution,\n",
|
| 54 |
-
" plot_automation_preference_residuals,\n",
|
| 55 |
-
" plot_variable_bars,\n",
|
| 56 |
-
")"
|
| 57 |
-
]
|
| 58 |
-
},
|
| 59 |
-
{
|
| 60 |
-
"cell_type": "code",
|
| 61 |
-
"execution_count": null,
|
| 62 |
-
"metadata": {
|
| 63 |
-
"vscode": {
|
| 64 |
-
"languageId": "python"
|
| 65 |
-
}
|
| 66 |
-
},
|
| 67 |
-
"outputs": [],
|
| 68 |
-
"source": [
|
| 69 |
-
"# Set matplotlib to use the correct backend and style\n",
|
| 70 |
-
"setup_plot_style()"
|
| 71 |
-
]
|
| 72 |
-
},
|
| 73 |
-
{
|
| 74 |
-
"cell_type": "code",
|
| 75 |
-
"execution_count": null,
|
| 76 |
-
"metadata": {
|
| 77 |
-
"vscode": {
|
| 78 |
-
"languageId": "python"
|
| 79 |
-
}
|
| 80 |
-
},
|
| 81 |
-
"outputs": [],
|
| 82 |
-
"source": [
|
| 83 |
-
"# Set up output directory for saving figures\n",
|
| 84 |
-
"output_dir = Path(\"../data/output/figures/\")\n",
|
| 85 |
-
"output_dir.mkdir(parents=True, exist_ok=True)\n",
|
| 86 |
-
"output_dir_app = Path(\"../data/output/figures/appendix/\")\n",
|
| 87 |
-
"output_dir_app.mkdir(parents=True, exist_ok=True)\n",
|
| 88 |
-
"\n",
|
| 89 |
-
"# Load enriched data\n",
|
| 90 |
-
"data_path = \"../data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv\"\n",
|
| 91 |
-
"\n",
|
| 92 |
-
"# Load the data - use keep_default_na=False to preserve \"NA\" (Namibia) as string\n",
|
| 93 |
-
"df = pd.read_csv(data_path, keep_default_na=False, na_values=[\"\"])"
|
| 94 |
-
]
|
| 95 |
-
},
|
| 96 |
-
{
|
| 97 |
-
"cell_type": "code",
|
| 98 |
-
"execution_count": null,
|
| 99 |
-
"metadata": {
|
| 100 |
-
"vscode": {
|
| 101 |
-
"languageId": "python"
|
| 102 |
-
}
|
| 103 |
-
},
|
| 104 |
-
"outputs": [],
|
| 105 |
-
"source": [
|
| 106 |
-
"# Filter countries to those with at least 200 observations\n",
|
| 107 |
-
"# Filter US states to those with at least 100 observations\n",
|
| 108 |
-
"filtered_countries, filtered_states = get_filtered_geographies(df)"
|
| 109 |
-
]
|
| 110 |
-
},
|
| 111 |
-
{
|
| 112 |
-
"cell_type": "markdown",
|
| 113 |
-
"metadata": {},
|
| 114 |
-
"source": [
|
| 115 |
-
"## 2.2 Global"
|
| 116 |
-
]
|
| 117 |
-
},
|
| 118 |
-
{
|
| 119 |
-
"cell_type": "code",
|
| 120 |
-
"execution_count": null,
|
| 121 |
-
"metadata": {
|
| 122 |
-
"vscode": {
|
| 123 |
-
"languageId": "python"
|
| 124 |
-
}
|
| 125 |
-
},
|
| 126 |
-
"outputs": [],
|
| 127 |
-
"source": [
|
| 128 |
-
"# Top countries by share of global usage\n",
|
| 129 |
-
"plot_usage_share_bars(\n",
|
| 130 |
-
" df,\n",
|
| 131 |
-
" geography=\"country\",\n",
|
| 132 |
-
" top_n=30,\n",
|
| 133 |
-
")\n",
|
| 134 |
-
"plt.savefig(\n",
|
| 135 |
-
" output_dir / \"usage_pct_bar_country_top30.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 136 |
-
")"
|
| 137 |
-
]
|
| 138 |
-
},
|
| 139 |
-
{
|
| 140 |
-
"cell_type": "code",
|
| 141 |
-
"execution_count": null,
|
| 142 |
-
"metadata": {
|
| 143 |
-
"vscode": {
|
| 144 |
-
"languageId": "python"
|
| 145 |
-
}
|
| 146 |
-
},
|
| 147 |
-
"outputs": [],
|
| 148 |
-
"source": [
|
| 149 |
-
"# Create world map showing usage tiers\n",
|
| 150 |
-
"plot_tier_map(\n",
|
| 151 |
-
" df,\n",
|
| 152 |
-
" geography=\"country\",\n",
|
| 153 |
-
" title=\"Anthropic AI Usage Index tiers by country\",\n",
|
| 154 |
-
" figsize=(16, 10),\n",
|
| 155 |
-
")\n",
|
| 156 |
-
"plt.savefig(\n",
|
| 157 |
-
" output_dir / \"ai_usage_index_tier_map_country_all.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 158 |
-
")"
|
| 159 |
-
]
|
| 160 |
-
},
|
| 161 |
-
{
|
| 162 |
-
"cell_type": "code",
|
| 163 |
-
"execution_count": null,
|
| 164 |
-
"metadata": {
|
| 165 |
-
"vscode": {
|
| 166 |
-
"languageId": "python"
|
| 167 |
-
}
|
| 168 |
-
},
|
| 169 |
-
"outputs": [],
|
| 170 |
-
"source": [
|
| 171 |
-
"# Create tier summary table for countries\n",
|
| 172 |
-
"plot_tier_summary_table(df, geography=\"country\")\n",
|
| 173 |
-
"plt.savefig(\n",
|
| 174 |
-
" output_dir / \"tier_summary_table_country.png\",\n",
|
| 175 |
-
" dpi=300,\n",
|
| 176 |
-
" bbox_inches=\"tight\",\n",
|
| 177 |
-
" transparent=True,\n",
|
| 178 |
-
")"
|
| 179 |
-
]
|
| 180 |
-
},
|
| 181 |
-
{
|
| 182 |
-
"cell_type": "code",
|
| 183 |
-
"execution_count": null,
|
| 184 |
-
"metadata": {
|
| 185 |
-
"vscode": {
|
| 186 |
-
"languageId": "python"
|
| 187 |
-
}
|
| 188 |
-
},
|
| 189 |
-
"outputs": [],
|
| 190 |
-
"source": [
|
| 191 |
-
"# Top countries by usage per capita\n",
|
| 192 |
-
"plot_usage_index_bars(\n",
|
| 193 |
-
" df, geography=\"country\", top_n=20, filtered_entities=filtered_countries\n",
|
| 194 |
-
")\n",
|
| 195 |
-
"plt.savefig(\n",
|
| 196 |
-
" output_dir / \"ai_usage_index_bar_country_top20.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 197 |
-
")"
|
| 198 |
-
]
|
| 199 |
-
},
|
| 200 |
-
{
|
| 201 |
-
"cell_type": "code",
|
| 202 |
-
"execution_count": null,
|
| 203 |
-
"metadata": {
|
| 204 |
-
"vscode": {
|
| 205 |
-
"languageId": "python"
|
| 206 |
-
}
|
| 207 |
-
},
|
| 208 |
-
"outputs": [],
|
| 209 |
-
"source": [
|
| 210 |
-
"# GDP vs usage regression for countries\n",
|
| 211 |
-
"plot_gdp_scatter(df, geography=\"country\", filtered_entities=filtered_countries)\n",
|
| 212 |
-
"plt.savefig(\n",
|
| 213 |
-
" output_dir / \"ai_usage_index_gdp_reg_country_min_obs.png\",\n",
|
| 214 |
-
" dpi=300,\n",
|
| 215 |
-
" bbox_inches=\"tight\",\n",
|
| 216 |
-
")"
|
| 217 |
-
]
|
| 218 |
-
},
|
| 219 |
-
{
|
| 220 |
-
"cell_type": "code",
|
| 221 |
-
"execution_count": null,
|
| 222 |
-
"metadata": {
|
| 223 |
-
"vscode": {
|
| 224 |
-
"languageId": "python"
|
| 225 |
-
}
|
| 226 |
-
},
|
| 227 |
-
"outputs": [],
|
| 228 |
-
"source": [
|
| 229 |
-
"# GDP vs usage regression for countries\n",
|
| 230 |
-
"plot_gdp_scatter(\n",
|
| 231 |
-
" df, geography=\"country\", filtered_entities=filtered_countries, figsize=(13.2, 8.25)\n",
|
| 232 |
-
")\n",
|
| 233 |
-
"plt.savefig(\n",
|
| 234 |
-
" output_dir / \"ai_usage_index_gdp_reg_country_min_obs_wide.png\",\n",
|
| 235 |
-
" dpi=300,\n",
|
| 236 |
-
" bbox_inches=\"tight\",\n",
|
| 237 |
-
")"
|
| 238 |
-
]
|
| 239 |
-
},
|
| 240 |
-
{
|
| 241 |
-
"cell_type": "code",
|
| 242 |
-
"execution_count": null,
|
| 243 |
-
"metadata": {
|
| 244 |
-
"vscode": {
|
| 245 |
-
"languageId": "python"
|
| 246 |
-
}
|
| 247 |
-
},
|
| 248 |
-
"outputs": [],
|
| 249 |
-
"source": [
|
| 250 |
-
"# Create SOC diffusion scatter plot with top 4 classified SOC groups (2x2 grid)\n",
|
| 251 |
-
"plot_soc_usage_scatter(df, geography=\"country\")\n",
|
| 252 |
-
"plt.savefig(\n",
|
| 253 |
-
" output_dir / \"soc_usage_scatter_top4_country_min.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 254 |
-
")"
|
| 255 |
-
]
|
| 256 |
-
},
|
| 257 |
-
{
|
| 258 |
-
"cell_type": "code",
|
| 259 |
-
"execution_count": null,
|
| 260 |
-
"metadata": {
|
| 261 |
-
"vscode": {
|
| 262 |
-
"languageId": "python"
|
| 263 |
-
}
|
| 264 |
-
},
|
| 265 |
-
"outputs": [],
|
| 266 |
-
"source": [
|
| 267 |
-
"# Find the highest usage country in each tier (1-4)\n",
|
| 268 |
-
"\n",
|
| 269 |
-
"# Get usage tier and usage count data for all countries\n",
|
| 270 |
-
"tier_data = df[\n",
|
| 271 |
-
" (df[\"geography\"] == \"country\")\n",
|
| 272 |
-
" & (df[\"variable\"] == \"usage_tier\")\n",
|
| 273 |
-
" & (df[\"facet\"] == \"country\")\n",
|
| 274 |
-
"][[\"geo_id\", \"value\"]].rename(columns={\"value\": \"tier\"})\n",
|
| 275 |
-
"\n",
|
| 276 |
-
"usage_data = df[\n",
|
| 277 |
-
" (df[\"geography\"] == \"country\")\n",
|
| 278 |
-
" & (df[\"variable\"] == \"usage_count\")\n",
|
| 279 |
-
" & (df[\"facet\"] == \"country\")\n",
|
| 280 |
-
"][[\"geo_id\", \"geo_name\", \"value\"]].rename(columns={\"value\": \"usage_count\"})\n",
|
| 281 |
-
"\n",
|
| 282 |
-
"# Merge tier and usage data\n",
|
| 283 |
-
"country_data = usage_data.merge(tier_data, on=\"geo_id\")\n",
|
| 284 |
-
"\n",
|
| 285 |
-
"selected_countries = [\n",
|
| 286 |
-
" country_data[country_data[\"tier\"] == tier]\n",
|
| 287 |
-
" .sort_values(\"usage_count\", ascending=False)\n",
|
| 288 |
-
" .iloc[0][\"geo_id\"]\n",
|
| 289 |
-
" for tier in [4, 3, 2, 1]\n",
|
| 290 |
-
"]"
|
| 291 |
-
]
|
| 292 |
-
},
|
| 293 |
-
{
|
| 294 |
-
"cell_type": "code",
|
| 295 |
-
"execution_count": null,
|
| 296 |
-
"metadata": {
|
| 297 |
-
"vscode": {
|
| 298 |
-
"languageId": "python"
|
| 299 |
-
}
|
| 300 |
-
},
|
| 301 |
-
"outputs": [],
|
| 302 |
-
"source": [
|
| 303 |
-
"# Compare top overrepresented requests for 4 highest usage countries in each tier\n",
|
| 304 |
-
"plot_request_comparison_cards(\n",
|
| 305 |
-
" df,\n",
|
| 306 |
-
" geo_ids=selected_countries,\n",
|
| 307 |
-
" top_n=5,\n",
|
| 308 |
-
" title=\"Top overrepresented requests for the United States, Brazil, Vietnam and India\",\n",
|
| 309 |
-
" geography=\"country\",\n",
|
| 310 |
-
")\n",
|
| 311 |
-
"\n",
|
| 312 |
-
"plt.savefig(\n",
|
| 313 |
-
" output_dir / \"request_comparison_cards_by_tier_country_selected4.png\",\n",
|
| 314 |
-
" dpi=300,\n",
|
| 315 |
-
" bbox_inches=\"tight\",\n",
|
| 316 |
-
")"
|
| 317 |
-
]
|
| 318 |
-
},
|
| 319 |
-
{
|
| 320 |
-
"cell_type": "markdown",
|
| 321 |
-
"metadata": {},
|
| 322 |
-
"source": [
|
| 323 |
-
"## 3. United States"
|
| 324 |
-
]
|
| 325 |
-
},
|
| 326 |
-
{
|
| 327 |
-
"cell_type": "code",
|
| 328 |
-
"execution_count": null,
|
| 329 |
-
"metadata": {
|
| 330 |
-
"vscode": {
|
| 331 |
-
"languageId": "python"
|
| 332 |
-
}
|
| 333 |
-
},
|
| 334 |
-
"outputs": [],
|
| 335 |
-
"source": [
|
| 336 |
-
"# State tier map\n",
|
| 337 |
-
"plot_tier_map(\n",
|
| 338 |
-
" df, geography=\"state_us\", title=\"Anthropic AI Usage Index tier by US state\"\n",
|
| 339 |
-
")\n",
|
| 340 |
-
"plt.savefig(\n",
|
| 341 |
-
" output_dir / \"ai_usage_index_tier_map_state_all.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 342 |
-
")"
|
| 343 |
-
]
|
| 344 |
-
},
|
| 345 |
-
{
|
| 346 |
-
"cell_type": "code",
|
| 347 |
-
"execution_count": null,
|
| 348 |
-
"metadata": {
|
| 349 |
-
"vscode": {
|
| 350 |
-
"languageId": "python"
|
| 351 |
-
}
|
| 352 |
-
},
|
| 353 |
-
"outputs": [],
|
| 354 |
-
"source": [
|
| 355 |
-
"# Top 20 US states\n",
|
| 356 |
-
"plot_usage_index_bars(\n",
|
| 357 |
-
" df,\n",
|
| 358 |
-
" geography=\"state_us\",\n",
|
| 359 |
-
" top_n=20,\n",
|
| 360 |
-
")\n",
|
| 361 |
-
"plt.savefig(\n",
|
| 362 |
-
" output_dir / \"ai_usage_index_bar_state_top20.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 363 |
-
")"
|
| 364 |
-
]
|
| 365 |
-
},
|
| 366 |
-
{
|
| 367 |
-
"cell_type": "code",
|
| 368 |
-
"execution_count": null,
|
| 369 |
-
"metadata": {
|
| 370 |
-
"vscode": {
|
| 371 |
-
"languageId": "python"
|
| 372 |
-
}
|
| 373 |
-
},
|
| 374 |
-
"outputs": [],
|
| 375 |
-
"source": [
|
| 376 |
-
"# Create tier summary table for US states\n",
|
| 377 |
-
"plot_tier_summary_table(df, geography=\"state_us\")\n",
|
| 378 |
-
"plt.savefig(\n",
|
| 379 |
-
" output_dir / \"tier_summary_table_state.png\",\n",
|
| 380 |
-
" dpi=300,\n",
|
| 381 |
-
" bbox_inches=\"tight\",\n",
|
| 382 |
-
" transparent=True,\n",
|
| 383 |
-
")"
|
| 384 |
-
]
|
| 385 |
-
},
|
| 386 |
-
{
|
| 387 |
-
"cell_type": "code",
|
| 388 |
-
"execution_count": null,
|
| 389 |
-
"metadata": {
|
| 390 |
-
"vscode": {
|
| 391 |
-
"languageId": "python"
|
| 392 |
-
}
|
| 393 |
-
},
|
| 394 |
-
"outputs": [],
|
| 395 |
-
"source": [
|
| 396 |
-
"# Find the highest usage US state in each tier (1-4)\n",
|
| 397 |
-
"\n",
|
| 398 |
-
"# Get usage tier and usage count data for US states\n",
|
| 399 |
-
"tier_data_states = df[\n",
|
| 400 |
-
" (df[\"geography\"] == \"state_us\")\n",
|
| 401 |
-
" & (df[\"variable\"] == \"usage_tier\")\n",
|
| 402 |
-
" & (df[\"facet\"] == \"state_us\")\n",
|
| 403 |
-
"][[\"geo_id\", \"value\"]].rename(columns={\"value\": \"tier\"})\n",
|
| 404 |
-
"\n",
|
| 405 |
-
"usage_data_states = df[\n",
|
| 406 |
-
" (df[\"geography\"] == \"state_us\")\n",
|
| 407 |
-
" & (df[\"variable\"] == \"usage_count\")\n",
|
| 408 |
-
" & (df[\"facet\"] == \"state_us\")\n",
|
| 409 |
-
"][[\"geo_id\", \"geo_name\", \"value\"]].rename(columns={\"value\": \"usage_count\"})\n",
|
| 410 |
-
"\n",
|
| 411 |
-
"# Merge tier and usage data\n",
|
| 412 |
-
"state_data = usage_data_states.merge(tier_data_states, on=\"geo_id\")\n",
|
| 413 |
-
"\n",
|
| 414 |
-
"# Find the highest usage state in each tier\n",
|
| 415 |
-
"selected_states = [\n",
|
| 416 |
-
" state_data[state_data[\"tier\"] == tier]\n",
|
| 417 |
-
" .sort_values(\"usage_count\", ascending=False)\n",
|
| 418 |
-
" .iloc[0][\"geo_id\"]\n",
|
| 419 |
-
" for tier in [4, 3, 2, 1]\n",
|
| 420 |
-
"]"
|
| 421 |
-
]
|
| 422 |
-
},
|
| 423 |
-
{
|
| 424 |
-
"cell_type": "code",
|
| 425 |
-
"execution_count": null,
|
| 426 |
-
"metadata": {
|
| 427 |
-
"vscode": {
|
| 428 |
-
"languageId": "python"
|
| 429 |
-
}
|
| 430 |
-
},
|
| 431 |
-
"outputs": [],
|
| 432 |
-
"source": [
|
| 433 |
-
"# Compare top overrepresented requests for US states representing each tier\n",
|
| 434 |
-
"# CA (Tier 4), TX (Tier 3), FL (Tier 2), SC (Tier 1)\n",
|
| 435 |
-
"states_to_compare = [\"CA\", \"TX\", \"FL\", \"SC\"]\n",
|
| 436 |
-
"\n",
|
| 437 |
-
"plot_request_comparison_cards(\n",
|
| 438 |
-
" df,\n",
|
| 439 |
-
" geo_ids=states_to_compare,\n",
|
| 440 |
-
" top_n=5,\n",
|
| 441 |
-
" title=\"Top overrepresented high-level requests for California, Texas, Florida and South Carolina\",\n",
|
| 442 |
-
" geography=\"state_us\",\n",
|
| 443 |
-
")\n",
|
| 444 |
-
"\n",
|
| 445 |
-
"plt.savefig(\n",
|
| 446 |
-
" output_dir / \"request_comparison_cards_by_tier_state_selected4.png\",\n",
|
| 447 |
-
" dpi=300,\n",
|
| 448 |
-
" bbox_inches=\"tight\",\n",
|
| 449 |
-
")"
|
| 450 |
-
]
|
| 451 |
-
},
|
| 452 |
-
{
|
| 453 |
-
"cell_type": "code",
|
| 454 |
-
"execution_count": null,
|
| 455 |
-
"metadata": {
|
| 456 |
-
"vscode": {
|
| 457 |
-
"languageId": "python"
|
| 458 |
-
}
|
| 459 |
-
},
|
| 460 |
-
"outputs": [],
|
| 461 |
-
"source": [
|
| 462 |
-
"# Create card-style visualization for Washington DC\n",
|
| 463 |
-
"# Shows top O*NET tasks and top request categories\n",
|
| 464 |
-
"plot_dc_task_request_cards(\n",
|
| 465 |
-
" df, title=\"Washington, DC: Highest Anthropic AI Usage Index in the US\"\n",
|
| 466 |
-
")\n",
|
| 467 |
-
"\n",
|
| 468 |
-
"plt.savefig(\n",
|
| 469 |
-
" output_dir / \"task_request_comparison_state_dc.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 470 |
-
")"
|
| 471 |
-
]
|
| 472 |
-
},
|
| 473 |
-
{
|
| 474 |
-
"cell_type": "code",
|
| 475 |
-
"execution_count": null,
|
| 476 |
-
"metadata": {
|
| 477 |
-
"vscode": {
|
| 478 |
-
"languageId": "python"
|
| 479 |
-
}
|
| 480 |
-
},
|
| 481 |
-
"outputs": [],
|
| 482 |
-
"source": [
|
| 483 |
-
"# Collaboration pattern analysis with task mix control\n",
|
| 484 |
-
"# This analysis determines whether the relationship between AUI\n",
|
| 485 |
-
"# and automation preference persists after controlling for task composition\n",
|
| 486 |
-
"collaboration_task_regression(df, geography=\"country\")\n",
|
| 487 |
-
"plt.savefig(\n",
|
| 488 |
-
" output_dir / \"collaboration_task_control_partial_corr_country.png\",\n",
|
| 489 |
-
" dpi=300,\n",
|
| 490 |
-
" bbox_inches=\"tight\",\n",
|
| 491 |
-
")"
|
| 492 |
-
]
|
| 493 |
-
},
|
| 494 |
-
{
|
| 495 |
-
"cell_type": "markdown",
|
| 496 |
-
"metadata": {},
|
| 497 |
-
"source": [
|
| 498 |
-
"# Appendix"
|
| 499 |
-
]
|
| 500 |
-
},
|
| 501 |
-
{
|
| 502 |
-
"cell_type": "markdown",
|
| 503 |
-
"metadata": {},
|
| 504 |
-
"source": [
|
| 505 |
-
"## Global"
|
| 506 |
-
]
|
| 507 |
-
},
|
| 508 |
-
{
|
| 509 |
-
"cell_type": "code",
|
| 510 |
-
"execution_count": null,
|
| 511 |
-
"metadata": {
|
| 512 |
-
"vscode": {
|
| 513 |
-
"languageId": "python"
|
| 514 |
-
}
|
| 515 |
-
},
|
| 516 |
-
"outputs": [],
|
| 517 |
-
"source": [
|
| 518 |
-
"# Distribution histogram\n",
|
| 519 |
-
"plot_usage_index_histogram(\n",
|
| 520 |
-
" df, geography=\"country\", title=\"Distribution of Anthropic AI Usage Index\"\n",
|
| 521 |
-
")\n",
|
| 522 |
-
"plt.savefig(\n",
|
| 523 |
-
" output_dir_app / \"ai_usage_index_histogram_country_all.png\",\n",
|
| 524 |
-
" dpi=300,\n",
|
| 525 |
-
" bbox_inches=\"tight\",\n",
|
| 526 |
-
")"
|
| 527 |
-
]
|
| 528 |
-
},
|
| 529 |
-
{
|
| 530 |
-
"cell_type": "code",
|
| 531 |
-
"execution_count": null,
|
| 532 |
-
"metadata": {
|
| 533 |
-
"vscode": {
|
| 534 |
-
"languageId": "python"
|
| 535 |
-
}
|
| 536 |
-
},
|
| 537 |
-
"outputs": [],
|
| 538 |
-
"source": [
|
| 539 |
-
"# Create map showing share of usage\n",
|
| 540 |
-
"plot_variable_map(\n",
|
| 541 |
-
" df,\n",
|
| 542 |
-
" variable=\"usage_pct\",\n",
|
| 543 |
-
" geography=\"country\",\n",
|
| 544 |
-
" title=\"Share of global Claude usage by country\",\n",
|
| 545 |
-
" figsize=(14, 8),\n",
|
| 546 |
-
")\n",
|
| 547 |
-
"plt.savefig(\n",
|
| 548 |
-
" output_dir_app / \"usage_pct_map_country_all.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 549 |
-
")"
|
| 550 |
-
]
|
| 551 |
-
},
|
| 552 |
-
{
|
| 553 |
-
"cell_type": "code",
|
| 554 |
-
"execution_count": null,
|
| 555 |
-
"metadata": {
|
| 556 |
-
"vscode": {
|
| 557 |
-
"languageId": "python"
|
| 558 |
-
}
|
| 559 |
-
},
|
| 560 |
-
"outputs": [],
|
| 561 |
-
"source": [
|
| 562 |
-
"# Create world map showing usage per capita\n",
|
| 563 |
-
"plot_variable_map(\n",
|
| 564 |
-
" df,\n",
|
| 565 |
-
" variable=\"usage_per_capita_index\",\n",
|
| 566 |
-
" geography=\"country\",\n",
|
| 567 |
-
" title=\"Anthropic AI Usage Index by country\",\n",
|
| 568 |
-
" center_at_one=True,\n",
|
| 569 |
-
" figsize=(14, 8),\n",
|
| 570 |
-
")\n",
|
| 571 |
-
"plt.savefig(\n",
|
| 572 |
-
" output_dir_app / \"ai_usage_index_map_country_all.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 573 |
-
")"
|
| 574 |
-
]
|
| 575 |
-
},
|
| 576 |
-
{
|
| 577 |
-
"cell_type": "code",
|
| 578 |
-
"execution_count": null,
|
| 579 |
-
"metadata": {
|
| 580 |
-
"vscode": {
|
| 581 |
-
"languageId": "python"
|
| 582 |
-
}
|
| 583 |
-
},
|
| 584 |
-
"outputs": [],
|
| 585 |
-
"source": [
|
| 586 |
-
"# AUI for all countries\n",
|
| 587 |
-
"plot_usage_index_bars(\n",
|
| 588 |
-
" df,\n",
|
| 589 |
-
" geography=\"country\",\n",
|
| 590 |
-
" filtered_entities=filtered_countries,\n",
|
| 591 |
-
")\n",
|
| 592 |
-
"plt.savefig(\n",
|
| 593 |
-
" output_dir_app / \"ai_usage_index_country_all.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 594 |
-
")"
|
| 595 |
-
]
|
| 596 |
-
},
|
| 597 |
-
{
|
| 598 |
-
"cell_type": "code",
|
| 599 |
-
"execution_count": null,
|
| 600 |
-
"metadata": {
|
| 601 |
-
"vscode": {
|
| 602 |
-
"languageId": "python"
|
| 603 |
-
}
|
| 604 |
-
},
|
| 605 |
-
"outputs": [],
|
| 606 |
-
"source": [
|
| 607 |
-
"# SOC distribution comparison for countries by usage tier\n",
|
| 608 |
-
"plot_soc_distribution(\n",
|
| 609 |
-
" df,\n",
|
| 610 |
-
" selected_countries,\n",
|
| 611 |
-
" \"country\",\n",
|
| 612 |
-
" title=\"Occupation groups by Claude task usage in the United States, Brazil, Vietnam and India\",\n",
|
| 613 |
-
")\n",
|
| 614 |
-
"plt.savefig(\n",
|
| 615 |
-
" output_dir_app / \"soc_distribution_by_tier_country_selected4.png\",\n",
|
| 616 |
-
" dpi=300,\n",
|
| 617 |
-
" bbox_inches=\"tight\",\n",
|
| 618 |
-
")"
|
| 619 |
-
]
|
| 620 |
-
},
|
| 621 |
-
{
|
| 622 |
-
"cell_type": "code",
|
| 623 |
-
"execution_count": null,
|
| 624 |
-
"metadata": {
|
| 625 |
-
"vscode": {
|
| 626 |
-
"languageId": "python"
|
| 627 |
-
}
|
| 628 |
-
},
|
| 629 |
-
"outputs": [],
|
| 630 |
-
"source": [
|
| 631 |
-
"# Plot automation preference residuals after controlling for task mix\n",
|
| 632 |
-
"# This shows which countries prefer more automation vs augmentation\n",
|
| 633 |
-
"# than would be expected given their task composition\n",
|
| 634 |
-
"plot_automation_preference_residuals(df)\n",
|
| 635 |
-
"plt.savefig(\n",
|
| 636 |
-
" output_dir_app / \"automation_preference_residuals.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 637 |
-
")"
|
| 638 |
-
]
|
| 639 |
-
},
|
| 640 |
-
{
|
| 641 |
-
"cell_type": "markdown",
|
| 642 |
-
"metadata": {},
|
| 643 |
-
"source": [
|
| 644 |
-
"## United States"
|
| 645 |
-
]
|
| 646 |
-
},
|
| 647 |
-
{
|
| 648 |
-
"cell_type": "code",
|
| 649 |
-
"execution_count": null,
|
| 650 |
-
"metadata": {
|
| 651 |
-
"vscode": {
|
| 652 |
-
"languageId": "python"
|
| 653 |
-
}
|
| 654 |
-
},
|
| 655 |
-
"outputs": [],
|
| 656 |
-
"source": [
|
| 657 |
-
"# Top countries by share of global usage\n",
|
| 658 |
-
"plot_usage_share_bars(\n",
|
| 659 |
-
" df,\n",
|
| 660 |
-
" geography=\"state_us\",\n",
|
| 661 |
-
" top_n=30,\n",
|
| 662 |
-
" title=\"Top 30 US states by share of US Claude usage\",\n",
|
| 663 |
-
")\n",
|
| 664 |
-
"plt.savefig(\n",
|
| 665 |
-
" output_dir_app / \"usage_pct_bar_state_top30.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 666 |
-
")"
|
| 667 |
-
]
|
| 668 |
-
},
|
| 669 |
-
{
|
| 670 |
-
"cell_type": "code",
|
| 671 |
-
"execution_count": null,
|
| 672 |
-
"metadata": {
|
| 673 |
-
"vscode": {
|
| 674 |
-
"languageId": "python"
|
| 675 |
-
}
|
| 676 |
-
},
|
| 677 |
-
"outputs": [],
|
| 678 |
-
"source": [
|
| 679 |
-
"# Distribution histogram\n",
|
| 680 |
-
"plot_usage_index_histogram(\n",
|
| 681 |
-
" df, geography=\"state_us\", title=\"Distribution of Anthropic AI Usage Index\"\n",
|
| 682 |
-
")\n",
|
| 683 |
-
"plt.savefig(\n",
|
| 684 |
-
" output_dir_app / \"ai_usage_index_histogram_state_all.png\",\n",
|
| 685 |
-
" dpi=300,\n",
|
| 686 |
-
" bbox_inches=\"tight\",\n",
|
| 687 |
-
")"
|
| 688 |
-
]
|
| 689 |
-
},
|
| 690 |
-
{
|
| 691 |
-
"cell_type": "code",
|
| 692 |
-
"execution_count": null,
|
| 693 |
-
"metadata": {
|
| 694 |
-
"vscode": {
|
| 695 |
-
"languageId": "python"
|
| 696 |
-
}
|
| 697 |
-
},
|
| 698 |
-
"outputs": [],
|
| 699 |
-
"source": [
|
| 700 |
-
"# Create map showing share of usage\n",
|
| 701 |
-
"plot_variable_map(\n",
|
| 702 |
-
" df,\n",
|
| 703 |
-
" variable=\"usage_pct\",\n",
|
| 704 |
-
" geography=\"state_us\",\n",
|
| 705 |
-
" title=\"Share of global Claude usage by US state\",\n",
|
| 706 |
-
" figsize=(14, 8),\n",
|
| 707 |
-
")\n",
|
| 708 |
-
"plt.savefig(\n",
|
| 709 |
-
" output_dir_app / \"usage_pct_map_state_all.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 710 |
-
")"
|
| 711 |
-
]
|
| 712 |
-
},
|
| 713 |
-
{
|
| 714 |
-
"cell_type": "code",
|
| 715 |
-
"execution_count": null,
|
| 716 |
-
"metadata": {
|
| 717 |
-
"vscode": {
|
| 718 |
-
"languageId": "python"
|
| 719 |
-
}
|
| 720 |
-
},
|
| 721 |
-
"outputs": [],
|
| 722 |
-
"source": [
|
| 723 |
-
"# Create map showing per capita usage\n",
|
| 724 |
-
"plot_variable_map(\n",
|
| 725 |
-
" df,\n",
|
| 726 |
-
" variable=\"usage_per_capita_index\",\n",
|
| 727 |
-
" geography=\"state_us\",\n",
|
| 728 |
-
" title=\"Anthropic AI Usage Index by US state\",\n",
|
| 729 |
-
" center_at_one=True,\n",
|
| 730 |
-
" figsize=(14, 8),\n",
|
| 731 |
-
")\n",
|
| 732 |
-
"plt.savefig(\n",
|
| 733 |
-
" output_dir_app / \"ai_usage_index_map_state_all.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 734 |
-
")"
|
| 735 |
-
]
|
| 736 |
-
},
|
| 737 |
-
{
|
| 738 |
-
"cell_type": "code",
|
| 739 |
-
"execution_count": null,
|
| 740 |
-
"metadata": {
|
| 741 |
-
"vscode": {
|
| 742 |
-
"languageId": "python"
|
| 743 |
-
}
|
| 744 |
-
},
|
| 745 |
-
"outputs": [],
|
| 746 |
-
"source": [
|
| 747 |
-
"plot_usage_index_bars(\n",
|
| 748 |
-
" df,\n",
|
| 749 |
-
" geography=\"state_us\",\n",
|
| 750 |
-
")\n",
|
| 751 |
-
"plt.savefig(\n",
|
| 752 |
-
" output_dir_app / \"ai_usage_index_bar_state_all.png\", dpi=300, bbox_inches=\"tight\"\n",
|
| 753 |
-
")"
|
| 754 |
-
]
|
| 755 |
-
},
|
| 756 |
-
{
|
| 757 |
-
"cell_type": "code",
|
| 758 |
-
"execution_count": null,
|
| 759 |
-
"metadata": {
|
| 760 |
-
"vscode": {
|
| 761 |
-
"languageId": "python"
|
| 762 |
-
}
|
| 763 |
-
},
|
| 764 |
-
"outputs": [],
|
| 765 |
-
"source": [
|
| 766 |
-
"# GDP vs usage regression for US states\n",
|
| 767 |
-
"plot_gdp_scatter(df, geography=\"state_us\", filtered_entities=filtered_states)\n",
|
| 768 |
-
"plt.savefig(\n",
|
| 769 |
-
" output_dir_app / \"ai_usage_index_gdp_reg_state_min_obs.png\",\n",
|
| 770 |
-
" dpi=300,\n",
|
| 771 |
-
" bbox_inches=\"tight\",\n",
|
| 772 |
-
")"
|
| 773 |
-
]
|
| 774 |
-
},
|
| 775 |
-
{
|
| 776 |
-
"cell_type": "code",
|
| 777 |
-
"execution_count": null,
|
| 778 |
-
"metadata": {
|
| 779 |
-
"vscode": {
|
| 780 |
-
"languageId": "python"
|
| 781 |
-
}
|
| 782 |
-
},
|
| 783 |
-
"outputs": [],
|
| 784 |
-
"source": [
|
| 785 |
-
"# SOC distribution comparison for US states by usage tier\n",
|
| 786 |
-
"plot_soc_distribution(\n",
|
| 787 |
-
" df,\n",
|
| 788 |
-
" selected_states,\n",
|
| 789 |
-
" \"state_us\",\n",
|
| 790 |
-
" title=\"Occupation groups by Claude task usage in California, Texas, Florida and South Carolina\",\n",
|
| 791 |
-
")\n",
|
| 792 |
-
"plt.savefig(\n",
|
| 793 |
-
" output_dir_app / \"soc_distribution_by_tier_state_selected4.png\",\n",
|
| 794 |
-
" dpi=300,\n",
|
| 795 |
-
" bbox_inches=\"tight\",\n",
|
| 796 |
-
")"
|
| 797 |
-
]
|
| 798 |
-
},
|
| 799 |
-
{
|
| 800 |
-
"cell_type": "code",
|
| 801 |
-
"execution_count": null,
|
| 802 |
-
"metadata": {
|
| 803 |
-
"vscode": {
|
| 804 |
-
"languageId": "python"
|
| 805 |
-
}
|
| 806 |
-
},
|
| 807 |
-
"outputs": [],
|
| 808 |
-
"source": [
|
| 809 |
-
"# Top SOC chart\n",
|
| 810 |
-
"plot_variable_bars(\n",
|
| 811 |
-
" df,\n",
|
| 812 |
-
" variable=\"soc_pct\",\n",
|
| 813 |
-
" geography=\"country\",\n",
|
| 814 |
-
" facet=\"soc_occupation\",\n",
|
| 815 |
-
" geo_id=\"USA\",\n",
|
| 816 |
-
" title=\"Occupation groups in the US by Claude use for associated tasks\",\n",
|
| 817 |
-
" xlabel=\"Share of total usage (%)\",\n",
|
| 818 |
-
" exclude_not_classified=True,\n",
|
| 819 |
-
")\n",
|
| 820 |
-
"\n",
|
| 821 |
-
"# Save the figure\n",
|
| 822 |
-
"plt.savefig(output_dir_app / \"soc_bar_country_us.png\", dpi=300, bbox_inches=\"tight\")"
|
| 823 |
-
]
|
| 824 |
-
},
|
| 825 |
-
{
|
| 826 |
-
"cell_type": "code",
|
| 827 |
-
"execution_count": null,
|
| 828 |
-
"metadata": {
|
| 829 |
-
"vscode": {
|
| 830 |
-
"languageId": "python"
|
| 831 |
-
}
|
| 832 |
-
},
|
| 833 |
-
"outputs": [],
|
| 834 |
-
"source": [
|
| 835 |
-
"# Create SOC diffusion scatter plot with top 4 classified SOC groups\n",
|
| 836 |
-
"plot_soc_usage_scatter(\n",
|
| 837 |
-
" df,\n",
|
| 838 |
-
" geography=\"state_us\",\n",
|
| 839 |
-
")\n",
|
| 840 |
-
"plt.savefig(\n",
|
| 841 |
-
" output_dir_app / \"soc_usage_scatter_top4_state_min.png\",\n",
|
| 842 |
-
" dpi=300,\n",
|
| 843 |
-
" bbox_inches=\"tight\",\n",
|
| 844 |
-
")"
|
| 845 |
-
]
|
| 846 |
-
}
|
| 847 |
-
],
|
| 848 |
-
"metadata": {
|
| 849 |
-
"kernelspec": {
|
| 850 |
-
"display_name": "Coconut",
|
| 851 |
-
"language": "coconut",
|
| 852 |
-
"name": "coconut"
|
| 853 |
-
},
|
| 854 |
-
"language_info": {
|
| 855 |
-
"codemirror_mode": {
|
| 856 |
-
"name": "python",
|
| 857 |
-
"version": 3
|
| 858 |
-
},
|
| 859 |
-
"file_extension": ".coco",
|
| 860 |
-
"mimetype": "text/x-python3",
|
| 861 |
-
"name": "coconut",
|
| 862 |
-
"pygments_lexer": "coconut",
|
| 863 |
-
"version": "3.0.2"
|
| 864 |
-
}
|
| 865 |
-
},
|
| 866 |
-
"nbformat": 4,
|
| 867 |
-
"nbformat_minor": 4
|
| 868 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/code/aei_report_v3_change_over_time_claude_ai.py
DELETED
|
@@ -1,564 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python3
|
| 2 |
-
"""
|
| 3 |
-
Clean Economic Analysis Figure Generator
|
| 4 |
-
======================================
|
| 5 |
-
Generates three key figures for V1→V2→V3 economic analysis:
|
| 6 |
-
1. Usage Share Trends Across Economic Index Reports
|
| 7 |
-
2. Notable Task Changes (Growing/Declining Tasks)
|
| 8 |
-
3. Automation vs Augmentation Evolution
|
| 9 |
-
|
| 10 |
-
ASSUMPTIONS:
|
| 11 |
-
- V1/V2/V3 use same task taxonomy
|
| 12 |
-
- GLOBAL geo_id is representative
|
| 13 |
-
- Missing values = 0% usage
|
| 14 |
-
- Percentages don't need renormalization
|
| 15 |
-
"""
|
| 16 |
-
|
| 17 |
-
import os
|
| 18 |
-
import warnings
|
| 19 |
-
from pathlib import Path
|
| 20 |
-
|
| 21 |
-
import matplotlib.pyplot as plt
|
| 22 |
-
import numpy as np
|
| 23 |
-
import pandas as pd
|
| 24 |
-
import seaborn as sns
|
| 25 |
-
|
| 26 |
-
# Use default matplotlib styling
|
| 27 |
-
plt.style.use("default")
|
| 28 |
-
|
| 29 |
-
# Configuration
|
| 30 |
-
FILES = {
|
| 31 |
-
"v1_tasks": "../data/input/task_pct_v1.csv",
|
| 32 |
-
"v2_tasks": "../data/input/task_pct_v2.csv",
|
| 33 |
-
"v3_data": "../data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv",
|
| 34 |
-
"v1_auto": "../data/input/automation_vs_augmentation_v1.csv",
|
| 35 |
-
"v2_auto": "../data/input/automation_vs_augmentation_v2.csv",
|
| 36 |
-
"onet": "../data/intermediate/onet_task_statements.csv",
|
| 37 |
-
"soc": "../data/intermediate/soc_structure.csv",
|
| 38 |
-
}
|
| 39 |
-
|
| 40 |
-
AUTOMATION_TYPES = ["directive", "feedback_loop"]
|
| 41 |
-
AUGMENTATION_TYPES = ["validation", "task_iteration", "learning"]
|
| 42 |
-
MIN_THRESHOLD = 1.0
|
| 43 |
-
COLORS = {
|
| 44 |
-
"increase": "#2E8B57",
|
| 45 |
-
"decrease": "#CD5C5C",
|
| 46 |
-
"automation": "#FF6B6B",
|
| 47 |
-
"augmentation": "#4ECDC4",
|
| 48 |
-
}
|
| 49 |
-
|
| 50 |
-
# ============================================================================
|
| 51 |
-
# DATA LOADING
|
| 52 |
-
# ============================================================================
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def load_task_data(filepath, version_name):
|
| 56 |
-
"""Load and validate task percentage data for any version."""
|
| 57 |
-
if not Path(filepath).exists():
|
| 58 |
-
raise FileNotFoundError(f"Missing {version_name} data: {filepath}")
|
| 59 |
-
|
| 60 |
-
df = pd.read_csv(filepath)
|
| 61 |
-
|
| 62 |
-
if version_name == "V3":
|
| 63 |
-
# Filter V3 data for global onet tasks
|
| 64 |
-
df = df[
|
| 65 |
-
(df["geo_id"] == "GLOBAL")
|
| 66 |
-
& (df["facet"] == "onet_task")
|
| 67 |
-
& (df["variable"] == "onet_task_pct")
|
| 68 |
-
].copy()
|
| 69 |
-
df = df.rename(columns={"cluster_name": "task_name", "value": "pct"})
|
| 70 |
-
|
| 71 |
-
# Remove "not_classified" from V3 for fair comparison with V1/V2
|
| 72 |
-
# Keep "none" as it represents legitimate unclassifiable tasks across all versions
|
| 73 |
-
not_classified_pct = df[df["task_name"] == "not_classified"]["pct"].sum()
|
| 74 |
-
df = df[df["task_name"] != "not_classified"].copy()
|
| 75 |
-
|
| 76 |
-
# Renormalize V3 to 100% after removing not_classified
|
| 77 |
-
if not_classified_pct > 0:
|
| 78 |
-
remaining_total = df["pct"].sum()
|
| 79 |
-
normalization_factor = 100 / remaining_total
|
| 80 |
-
df["pct"] = df["pct"] * normalization_factor
|
| 81 |
-
print(
|
| 82 |
-
f" → Removed {not_classified_pct:.1f}% not_classified, renormalized by {normalization_factor:.3f}x"
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
# Validate structure
|
| 86 |
-
if "task_name" not in df.columns or "pct" not in df.columns:
|
| 87 |
-
raise ValueError(f"{version_name} data missing required columns")
|
| 88 |
-
|
| 89 |
-
# Normalize task names and validate totals
|
| 90 |
-
df["task_name"] = df["task_name"].str.lower().str.strip()
|
| 91 |
-
total = df["pct"].sum()
|
| 92 |
-
|
| 93 |
-
if not (80 <= total <= 120):
|
| 94 |
-
warnings.warn(
|
| 95 |
-
f"{version_name} percentages sum to {total:.1f}% (expected ~100%)",
|
| 96 |
-
stacklevel=2,
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
print(f"✓ {version_name}: {len(df)} tasks, {total:.1f}% coverage")
|
| 100 |
-
return df[["task_name", "pct"]]
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def load_automation_data():
|
| 104 |
-
"""Load automation/collaboration data for all versions."""
|
| 105 |
-
result = {}
|
| 106 |
-
|
| 107 |
-
# V1 and V2 - always renormalize to 100%
|
| 108 |
-
for version in ["v1", "v2"]:
|
| 109 |
-
df = pd.read_csv(FILES[f"{version}_auto"])
|
| 110 |
-
|
| 111 |
-
# Always renormalize to 100%
|
| 112 |
-
total = df["pct"].sum()
|
| 113 |
-
normalization_factor = 100 / total
|
| 114 |
-
df["pct"] = df["pct"] * normalization_factor
|
| 115 |
-
print(
|
| 116 |
-
f" → {version.upper()} automation: renormalized from {total:.1f}% to 100.0%"
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
result[version] = df
|
| 120 |
-
|
| 121 |
-
# V3 from processed data
|
| 122 |
-
df = pd.read_csv(FILES["v3_data"])
|
| 123 |
-
v3_collab = df[
|
| 124 |
-
(df["geo_id"] == "GLOBAL")
|
| 125 |
-
& (df["facet"] == "collaboration")
|
| 126 |
-
& (df["level"] == 0)
|
| 127 |
-
& (df["variable"] == "collaboration_pct")
|
| 128 |
-
].copy()
|
| 129 |
-
v3_collab = v3_collab.rename(
|
| 130 |
-
columns={"cluster_name": "interaction_type", "value": "pct"}
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
# Remove "not_classified" from V3 collaboration data for fair comparison
|
| 134 |
-
not_classified_pct = v3_collab[v3_collab["interaction_type"] == "not_classified"][
|
| 135 |
-
"pct"
|
| 136 |
-
].sum()
|
| 137 |
-
v3_collab = v3_collab[v3_collab["interaction_type"] != "not_classified"].copy()
|
| 138 |
-
|
| 139 |
-
# Renormalize V3 collaboration to 100% after removing not_classified
|
| 140 |
-
if not_classified_pct > 0:
|
| 141 |
-
remaining_total = v3_collab["pct"].sum()
|
| 142 |
-
normalization_factor = 100 / remaining_total
|
| 143 |
-
v3_collab["pct"] = v3_collab["pct"] * normalization_factor
|
| 144 |
-
print(
|
| 145 |
-
f" → V3 collaboration: removed {not_classified_pct:.1f}% not_classified, renormalized by {normalization_factor:.3f}x"
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
result["v3"] = v3_collab[["interaction_type", "pct"]]
|
| 149 |
-
|
| 150 |
-
print(f"✓ Automation data loaded for all versions")
|
| 151 |
-
return result
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
def load_occupational_mapping():
|
| 155 |
-
"""Load O*NET to SOC mapping data."""
|
| 156 |
-
onet_df = pd.read_csv(FILES["onet"])
|
| 157 |
-
soc_df = pd.read_csv(FILES["soc"]).dropna(subset=["Major Group"])
|
| 158 |
-
|
| 159 |
-
onet_df["soc_major_group"] = onet_df["O*NET-SOC Code"].str[:2]
|
| 160 |
-
soc_df["soc_major_group"] = soc_df["Major Group"].str[:2]
|
| 161 |
-
|
| 162 |
-
merged = onet_df.merge(
|
| 163 |
-
soc_df[["soc_major_group", "SOC or O*NET-SOC 2019 Title"]], on="soc_major_group"
|
| 164 |
-
)
|
| 165 |
-
merged["task_normalized"] = merged["Task"].str.lower().str.strip()
|
| 166 |
-
|
| 167 |
-
print(f"✓ Occupational mapping: {merged['soc_major_group'].nunique()} SOC groups")
|
| 168 |
-
return merged
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
# ============================================================================
|
| 172 |
-
# ANALYSIS
|
| 173 |
-
# ============================================================================
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
def analyze_occupational_trends(task_data, onet_soc_data):
|
| 177 |
-
"""Analyze occupational category trends across versions."""
|
| 178 |
-
|
| 179 |
-
def aggregate_by_occupation(df):
|
| 180 |
-
merged = df.merge(
|
| 181 |
-
onet_soc_data[
|
| 182 |
-
["task_normalized", "SOC or O*NET-SOC 2019 Title"]
|
| 183 |
-
].drop_duplicates(),
|
| 184 |
-
left_on="task_name",
|
| 185 |
-
right_on="task_normalized",
|
| 186 |
-
how="left",
|
| 187 |
-
)
|
| 188 |
-
|
| 189 |
-
unmapped = merged[merged["SOC or O*NET-SOC 2019 Title"].isna()]
|
| 190 |
-
# Only warn if there are real unmapped tasks (not just "none" and "not_classified")
|
| 191 |
-
real_unmapped = unmapped[
|
| 192 |
-
~unmapped["task_name"].isin(["none", "not_classified"])
|
| 193 |
-
]
|
| 194 |
-
if len(real_unmapped) > 0:
|
| 195 |
-
real_unmapped_pct = real_unmapped["pct"].sum()
|
| 196 |
-
warnings.warn(
|
| 197 |
-
f"{real_unmapped_pct:.1f}% of tasks unmapped to occupational categories",
|
| 198 |
-
stacklevel=2,
|
| 199 |
-
)
|
| 200 |
-
|
| 201 |
-
return merged.groupby("SOC or O*NET-SOC 2019 Title")["pct"].sum()
|
| 202 |
-
|
| 203 |
-
# Aggregate all versions
|
| 204 |
-
comparison_df = pd.DataFrame(
|
| 205 |
-
{
|
| 206 |
-
"v1": aggregate_by_occupation(task_data["v1"]),
|
| 207 |
-
"v2": aggregate_by_occupation(task_data["v2"]),
|
| 208 |
-
"v3": aggregate_by_occupation(task_data["v3"]),
|
| 209 |
-
}
|
| 210 |
-
).fillna(0)
|
| 211 |
-
|
| 212 |
-
# Calculate changes and filter economically significant categories
|
| 213 |
-
comparison_df["v3_v1_diff"] = comparison_df["v3"] - comparison_df["v1"]
|
| 214 |
-
significant = comparison_df[
|
| 215 |
-
(comparison_df[["v1", "v2", "v3"]] >= MIN_THRESHOLD).any(axis=1)
|
| 216 |
-
]
|
| 217 |
-
|
| 218 |
-
print(
|
| 219 |
-
f"✓ Occupational analysis: {len(significant)} economically significant categories"
|
| 220 |
-
)
|
| 221 |
-
return significant.sort_values("v1", ascending=False)
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
def analyze_task_changes(task_data, onet_soc_data, top_n=12):
|
| 225 |
-
"""Identify most notable task changes V1→V3."""
|
| 226 |
-
v1, v3 = task_data["v1"], task_data["v3"]
|
| 227 |
-
|
| 228 |
-
# Compare changes
|
| 229 |
-
comparison = (
|
| 230 |
-
v1[["task_name", "pct"]]
|
| 231 |
-
.rename(columns={"pct": "v1_pct"})
|
| 232 |
-
.merge(
|
| 233 |
-
v3[["task_name", "pct"]].rename(columns={"pct": "v3_pct"}),
|
| 234 |
-
on="task_name",
|
| 235 |
-
how="outer",
|
| 236 |
-
)
|
| 237 |
-
.fillna(0)
|
| 238 |
-
)
|
| 239 |
-
|
| 240 |
-
comparison["change"] = comparison["v3_pct"] - comparison["v1_pct"]
|
| 241 |
-
comparison["rel_change"] = np.where(
|
| 242 |
-
comparison["v1_pct"] > 0,
|
| 243 |
-
(comparison["v3_pct"] - comparison["v1_pct"]) / comparison["v1_pct"] * 100,
|
| 244 |
-
np.inf,
|
| 245 |
-
)
|
| 246 |
-
|
| 247 |
-
# Add SOC context
|
| 248 |
-
with_context = comparison.merge(
|
| 249 |
-
onet_soc_data[
|
| 250 |
-
["task_normalized", "SOC or O*NET-SOC 2019 Title"]
|
| 251 |
-
].drop_duplicates(),
|
| 252 |
-
left_on="task_name",
|
| 253 |
-
right_on="task_normalized",
|
| 254 |
-
how="left",
|
| 255 |
-
)
|
| 256 |
-
|
| 257 |
-
# Get all tasks with economically significant changes (>= 0.2pp)
|
| 258 |
-
significant_changes = with_context[abs(with_context["change"]) >= 0.2].copy()
|
| 259 |
-
|
| 260 |
-
# Create category column with formatted relative percentage change
|
| 261 |
-
def format_rel_change(row):
|
| 262 |
-
if row["v1_pct"] > 0:
|
| 263 |
-
rel_change = (row["v3_pct"] - row["v1_pct"]) / row["v1_pct"] * 100
|
| 264 |
-
return f"{rel_change:+.0f}%"
|
| 265 |
-
else:
|
| 266 |
-
return "new"
|
| 267 |
-
|
| 268 |
-
significant_changes["category"] = significant_changes.apply(
|
| 269 |
-
format_rel_change, axis=1
|
| 270 |
-
)
|
| 271 |
-
|
| 272 |
-
# Rename column and sort by change descending
|
| 273 |
-
significant_changes = significant_changes.rename(
|
| 274 |
-
columns={"SOC or O*NET-SOC 2019 Title": "soc_group"}
|
| 275 |
-
)
|
| 276 |
-
significant_changes = significant_changes.sort_values("change", ascending=False)
|
| 277 |
-
|
| 278 |
-
# Round to 3 decimals
|
| 279 |
-
significant_changes[["v1_pct", "v3_pct", "change"]] = significant_changes[
|
| 280 |
-
["v1_pct", "v3_pct", "change"]
|
| 281 |
-
].round(3)
|
| 282 |
-
|
| 283 |
-
print(f"✓ Task changes: {len(significant_changes)} notable changes identified")
|
| 284 |
-
return significant_changes
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
def analyze_automation_trends(automation_data):
|
| 288 |
-
"""Analyze automation vs augmentation trends across versions."""
|
| 289 |
-
# Standardize interaction names
|
| 290 |
-
for df in automation_data.values():
|
| 291 |
-
df["interaction_type"] = df["interaction_type"].replace(
|
| 292 |
-
{"task iteration": "task_iteration", "feedback loop": "feedback_loop"}
|
| 293 |
-
)
|
| 294 |
-
|
| 295 |
-
results = {}
|
| 296 |
-
for version, data in automation_data.items():
|
| 297 |
-
auto_total = data[data["interaction_type"].isin(AUTOMATION_TYPES)]["pct"].sum()
|
| 298 |
-
aug_total = data[data["interaction_type"].isin(AUGMENTATION_TYPES)]["pct"].sum()
|
| 299 |
-
|
| 300 |
-
interaction_dict = dict(zip(data["interaction_type"], data["pct"], strict=True))
|
| 301 |
-
results[version] = {
|
| 302 |
-
"automation_total": auto_total,
|
| 303 |
-
"augmentation_total": aug_total,
|
| 304 |
-
"directive": interaction_dict["directive"],
|
| 305 |
-
"feedback_loop": interaction_dict["feedback_loop"],
|
| 306 |
-
"validation": interaction_dict["validation"],
|
| 307 |
-
"task_iteration": interaction_dict["task_iteration"],
|
| 308 |
-
"learning": interaction_dict["learning"],
|
| 309 |
-
}
|
| 310 |
-
|
| 311 |
-
print("✓ Automation trends analysis complete")
|
| 312 |
-
return results
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
# ============================================================================
|
| 316 |
-
# VISUALIZATION
|
| 317 |
-
# ============================================================================
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
def setup_plot_style():
|
| 321 |
-
"""Configure consistent plot styling."""
|
| 322 |
-
plt.rcParams.update({"font.size": 12, "axes.titlesize": 16, "axes.labelsize": 14})
|
| 323 |
-
sns.set_context("notebook", font_scale=1.1)
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
def create_usage_trends_figure(comparison_df):
|
| 327 |
-
"""Create Usage Share Trends subplot figure."""
|
| 328 |
-
setup_plot_style()
|
| 329 |
-
|
| 330 |
-
# Get top categories
|
| 331 |
-
top_cats = comparison_df[
|
| 332 |
-
(comparison_df[["v1", "v2", "v3"]] >= MIN_THRESHOLD).any(axis=1)
|
| 333 |
-
].head(8)
|
| 334 |
-
top_cats.index = top_cats.index.str.replace(" Occupations", "")
|
| 335 |
-
|
| 336 |
-
fig, axes = plt.subplots(2, 4, figsize=(20, 15))
|
| 337 |
-
axes = axes.flatten()
|
| 338 |
-
|
| 339 |
-
line_color = "#FF8E53"
|
| 340 |
-
fill_color = "#DEB887"
|
| 341 |
-
|
| 342 |
-
# Simplified date labels (actual periods: Dec 2024-Jan 2025, Feb-Mar 2025, Aug 2025)
|
| 343 |
-
versions, version_labels = [1, 2, 3], ["Jan 2025", "Mar 2025", "Aug 2025"]
|
| 344 |
-
|
| 345 |
-
for i, (category, data) in enumerate(top_cats.iterrows()):
|
| 346 |
-
if i >= len(axes):
|
| 347 |
-
break
|
| 348 |
-
ax = axes[i]
|
| 349 |
-
values = [data["v1"], data["v2"], data["v3"]]
|
| 350 |
-
|
| 351 |
-
ax.plot(
|
| 352 |
-
versions,
|
| 353 |
-
values,
|
| 354 |
-
"o-",
|
| 355 |
-
color=line_color,
|
| 356 |
-
linewidth=3,
|
| 357 |
-
markersize=8,
|
| 358 |
-
markerfacecolor=line_color,
|
| 359 |
-
markeredgecolor="white",
|
| 360 |
-
markeredgewidth=2,
|
| 361 |
-
)
|
| 362 |
-
ax.fill_between(versions, values, alpha=0.3, color=fill_color)
|
| 363 |
-
|
| 364 |
-
# Add value labels
|
| 365 |
-
for x, y in zip(versions, values, strict=True):
|
| 366 |
-
ax.text(
|
| 367 |
-
x,
|
| 368 |
-
y + max(values) * 0.02,
|
| 369 |
-
f"{y:.1f}%",
|
| 370 |
-
ha="center",
|
| 371 |
-
va="bottom",
|
| 372 |
-
fontsize=12,
|
| 373 |
-
fontweight="bold",
|
| 374 |
-
)
|
| 375 |
-
|
| 376 |
-
ax.set_title(category, fontsize=14, fontweight="bold", pad=10)
|
| 377 |
-
ax.set_xticks(versions)
|
| 378 |
-
ax.set_xticklabels(version_labels)
|
| 379 |
-
ax.set_ylabel("Percentage", fontsize=12)
|
| 380 |
-
ax.set_ylim(0, max(values) * 1.15)
|
| 381 |
-
ax.grid(True, alpha=0.3)
|
| 382 |
-
ax.spines["top"].set_visible(False)
|
| 383 |
-
ax.spines["right"].set_visible(False)
|
| 384 |
-
|
| 385 |
-
fig.suptitle(
|
| 386 |
-
"Usage share trends across economic index reports (V1 to V3)",
|
| 387 |
-
fontsize=18,
|
| 388 |
-
fontweight="bold",
|
| 389 |
-
y=0.98,
|
| 390 |
-
)
|
| 391 |
-
plt.tight_layout()
|
| 392 |
-
plt.subplots_adjust(top=0.88)
|
| 393 |
-
return fig
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
def create_automation_figure(trends):
|
| 397 |
-
"""Create Automation vs Augmentation Evolution figure."""
|
| 398 |
-
setup_plot_style()
|
| 399 |
-
|
| 400 |
-
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6))
|
| 401 |
-
|
| 402 |
-
# Simplified date labels (actual periods: Dec 2024-Jan 2025, Feb-Mar 2025, Aug 2025)
|
| 403 |
-
version_labels = ["Jan 2025", "Mar 2025", "Aug 2025"]
|
| 404 |
-
x_pos = [1, 2, 3]
|
| 405 |
-
|
| 406 |
-
# Left: Overall trends (no fill)
|
| 407 |
-
auto_vals = [trends[v]["automation_total"] for v in ["v1", "v2", "v3"]]
|
| 408 |
-
aug_vals = [trends[v]["augmentation_total"] for v in ["v1", "v2", "v3"]]
|
| 409 |
-
|
| 410 |
-
ax1.plot(
|
| 411 |
-
x_pos,
|
| 412 |
-
auto_vals,
|
| 413 |
-
"o-",
|
| 414 |
-
color=COLORS["automation"],
|
| 415 |
-
linewidth=3,
|
| 416 |
-
markersize=8,
|
| 417 |
-
label="Automation",
|
| 418 |
-
markeredgecolor="white",
|
| 419 |
-
markeredgewidth=2,
|
| 420 |
-
)
|
| 421 |
-
ax1.plot(
|
| 422 |
-
x_pos,
|
| 423 |
-
aug_vals,
|
| 424 |
-
"o-",
|
| 425 |
-
color=COLORS["augmentation"],
|
| 426 |
-
linewidth=3,
|
| 427 |
-
markersize=8,
|
| 428 |
-
label="Augmentation",
|
| 429 |
-
markeredgecolor="white",
|
| 430 |
-
markeredgewidth=2,
|
| 431 |
-
)
|
| 432 |
-
|
| 433 |
-
# Value labels with automation above and augmentation below dots
|
| 434 |
-
y_max = max(max(auto_vals), max(aug_vals))
|
| 435 |
-
for i, (auto, aug) in enumerate(zip(auto_vals, aug_vals, strict=True)):
|
| 436 |
-
# Red (automation) always above the dot
|
| 437 |
-
ax1.text(
|
| 438 |
-
x_pos[i],
|
| 439 |
-
auto + 1.2,
|
| 440 |
-
f"{auto:.1f}%",
|
| 441 |
-
ha="center",
|
| 442 |
-
va="bottom",
|
| 443 |
-
fontweight="bold",
|
| 444 |
-
color=COLORS["automation"],
|
| 445 |
-
)
|
| 446 |
-
# Blue (augmentation) always below the dot
|
| 447 |
-
ax1.text(
|
| 448 |
-
x_pos[i],
|
| 449 |
-
aug - 1.5,
|
| 450 |
-
f"{aug:.1f}%",
|
| 451 |
-
ha="center",
|
| 452 |
-
va="top",
|
| 453 |
-
fontweight="bold",
|
| 454 |
-
color=COLORS["augmentation"],
|
| 455 |
-
)
|
| 456 |
-
|
| 457 |
-
ax1.set_xticks(x_pos)
|
| 458 |
-
ax1.set_xticklabels(version_labels)
|
| 459 |
-
ax1.set_ylabel("Percentage")
|
| 460 |
-
ax1.set_title("Automation vs augmentation trends")
|
| 461 |
-
ax1.legend()
|
| 462 |
-
ax1.grid(True, alpha=0.3)
|
| 463 |
-
ax1.spines[["top", "right"]].set_visible(False)
|
| 464 |
-
ax1.set_ylim(0, y_max * 1.15)
|
| 465 |
-
|
| 466 |
-
# Right: Individual interaction types with color-coded groups
|
| 467 |
-
interactions = [
|
| 468 |
-
"directive",
|
| 469 |
-
"feedback_loop",
|
| 470 |
-
"validation",
|
| 471 |
-
"task_iteration",
|
| 472 |
-
"learning",
|
| 473 |
-
]
|
| 474 |
-
# Automation = red shades, Augmentation = cool shades
|
| 475 |
-
colors_individual = ["#DC143C", "#FF6B6B", "#4682B4", "#5F9EA0", "#4169E1"]
|
| 476 |
-
|
| 477 |
-
for interaction, color in zip(interactions, colors_individual, strict=True):
|
| 478 |
-
values = [trends[v][interaction] for v in ["v1", "v2", "v3"]]
|
| 479 |
-
ax2.plot(
|
| 480 |
-
x_pos,
|
| 481 |
-
values,
|
| 482 |
-
"o-",
|
| 483 |
-
color=color,
|
| 484 |
-
linewidth=2.5,
|
| 485 |
-
markersize=6,
|
| 486 |
-
label=interaction.replace("_", " ").title(),
|
| 487 |
-
alpha=0.8,
|
| 488 |
-
)
|
| 489 |
-
|
| 490 |
-
ax2.set_xticks(x_pos)
|
| 491 |
-
ax2.set_xticklabels(version_labels)
|
| 492 |
-
ax2.set_ylabel("Percentage")
|
| 493 |
-
ax2.set_title("Individual interaction types")
|
| 494 |
-
ax2.legend(bbox_to_anchor=(1.05, 1), loc="upper left")
|
| 495 |
-
ax2.grid(True, alpha=0.3)
|
| 496 |
-
ax2.spines[["top", "right"]].set_visible(False)
|
| 497 |
-
|
| 498 |
-
plt.suptitle(
|
| 499 |
-
"Automation vs augmentation evolution (V1 to V3)",
|
| 500 |
-
fontsize=16,
|
| 501 |
-
fontweight="bold",
|
| 502 |
-
)
|
| 503 |
-
plt.tight_layout()
|
| 504 |
-
return fig
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
# ============================================================================
|
| 508 |
-
# MAIN
|
| 509 |
-
# ============================================================================
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
def main():
|
| 513 |
-
"""Generate all three economic analysis figures."""
|
| 514 |
-
print("=" * 80)
|
| 515 |
-
print("ECONOMIC ANALYSIS FIGURE GENERATION")
|
| 516 |
-
print("=" * 80)
|
| 517 |
-
|
| 518 |
-
# Use consistent output directory for all economic research scripts
|
| 519 |
-
output_dir = "../data/output/figures"
|
| 520 |
-
os.makedirs(output_dir, exist_ok=True)
|
| 521 |
-
|
| 522 |
-
# Load all data
|
| 523 |
-
print("\nLoading data...")
|
| 524 |
-
task_data = {
|
| 525 |
-
"v1": load_task_data(FILES["v1_tasks"], "V1"),
|
| 526 |
-
"v2": load_task_data(FILES["v2_tasks"], "V2"),
|
| 527 |
-
"v3": load_task_data(FILES["v3_data"], "V3"),
|
| 528 |
-
}
|
| 529 |
-
automation_data = load_automation_data()
|
| 530 |
-
onet_soc_data = load_occupational_mapping()
|
| 531 |
-
|
| 532 |
-
# Analysis
|
| 533 |
-
print("\nAnalyzing trends...")
|
| 534 |
-
occupational_trends = analyze_occupational_trends(task_data, onet_soc_data)
|
| 535 |
-
task_changes = analyze_task_changes(task_data, onet_soc_data)
|
| 536 |
-
automation_trends = analyze_automation_trends(automation_data)
|
| 537 |
-
|
| 538 |
-
# Generate figures
|
| 539 |
-
print("\nGenerating figures...")
|
| 540 |
-
|
| 541 |
-
fig1 = create_usage_trends_figure(occupational_trends)
|
| 542 |
-
fig1.savefig(
|
| 543 |
-
f"{output_dir}/main_occupational_categories.png",
|
| 544 |
-
dpi=300,
|
| 545 |
-
bbox_inches="tight",
|
| 546 |
-
facecolor="white",
|
| 547 |
-
)
|
| 548 |
-
print("✓ Saved: main_occupational_categories.png")
|
| 549 |
-
|
| 550 |
-
fig3 = create_automation_figure(automation_trends)
|
| 551 |
-
fig3.savefig(
|
| 552 |
-
f"{output_dir}/automation_trends_v1_v2_v3.png",
|
| 553 |
-
dpi=300,
|
| 554 |
-
bbox_inches="tight",
|
| 555 |
-
facecolor="white",
|
| 556 |
-
)
|
| 557 |
-
print("✓ Saved: automation_trends_v1_v2_v3.png")
|
| 558 |
-
|
| 559 |
-
print(f"\n✅ All figures generated successfully!")
|
| 560 |
-
return occupational_trends, task_changes, automation_trends
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
if __name__ == "__main__":
|
| 564 |
-
results = main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/code/aei_report_v3_preprocessing_claude_ai.ipynb
DELETED
|
@@ -1,1840 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "markdown",
|
| 5 |
-
"metadata": {},
|
| 6 |
-
"source": [
|
| 7 |
-
"# AEI Report v3 Claude.ai Preprocessing\n",
|
| 8 |
-
"\n",
|
| 9 |
-
"This notebook takes processed Clio data and enriches it with external sources:\n",
|
| 10 |
-
"1. Merges with population data for per capita calculations\n",
|
| 11 |
-
"2. Merges with GDP data for economic analysis\n",
|
| 12 |
-
"3. Merges with SOC/O*NET data for occupational analysis\n",
|
| 13 |
-
"4. Applies MIN_OBSERVATIONS filtering\n",
|
| 14 |
-
"5. Calculates derived metrics (per capita, indices, tiers)\n",
|
| 15 |
-
"6. Categorizes collaboration patterns\n",
|
| 16 |
-
"\n",
|
| 17 |
-
"**Input**: `aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv`\n",
|
| 18 |
-
"\n",
|
| 19 |
-
"**Output**: `aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv`"
|
| 20 |
-
]
|
| 21 |
-
},
|
| 22 |
-
{
|
| 23 |
-
"cell_type": "markdown",
|
| 24 |
-
"metadata": {},
|
| 25 |
-
"source": [
|
| 26 |
-
"## Configuration and Setup"
|
| 27 |
-
]
|
| 28 |
-
},
|
| 29 |
-
{
|
| 30 |
-
"cell_type": "code",
|
| 31 |
-
"execution_count": null,
|
| 32 |
-
"metadata": {},
|
| 33 |
-
"outputs": [],
|
| 34 |
-
"source": [
|
| 35 |
-
"from pathlib import Path\n",
|
| 36 |
-
"\n",
|
| 37 |
-
"import numpy as np\n",
|
| 38 |
-
"import pandas as pd"
|
| 39 |
-
]
|
| 40 |
-
},
|
| 41 |
-
{
|
| 42 |
-
"cell_type": "code",
|
| 43 |
-
"execution_count": null,
|
| 44 |
-
"metadata": {},
|
| 45 |
-
"outputs": [],
|
| 46 |
-
"source": [
|
| 47 |
-
"# Year for external data\n",
|
| 48 |
-
"YEAR = 2024\n",
|
| 49 |
-
"\n",
|
| 50 |
-
"# Data paths - using local directories\n",
|
| 51 |
-
"DATA_INPUT_DIR = \"../data/input\" # Raw external data\n",
|
| 52 |
-
"DATA_INTERMEDIATE_DIR = (\n",
|
| 53 |
-
" \"../data/intermediate\" # Processed external data and Clio output\n",
|
| 54 |
-
")\n",
|
| 55 |
-
"DATA_OUTPUT_DIR = \"../data/output\" # Final enriched data\n",
|
| 56 |
-
"\n",
|
| 57 |
-
"# Minimum observation thresholds\n",
|
| 58 |
-
"MIN_OBSERVATIONS_COUNTRY = 200 # Threshold for countries\n",
|
| 59 |
-
"MIN_OBSERVATIONS_US_STATE = 100 # Threshold for US states"
|
| 60 |
-
]
|
| 61 |
-
},
|
| 62 |
-
{
|
| 63 |
-
"cell_type": "code",
|
| 64 |
-
"execution_count": null,
|
| 65 |
-
"metadata": {},
|
| 66 |
-
"outputs": [],
|
| 67 |
-
"source": [
|
| 68 |
-
"# Countries where Claude doesn't operate (23 countries)\n",
|
| 69 |
-
"EXCLUDED_COUNTRIES = [\n",
|
| 70 |
-
" \"AF\", # Afghanistan\n",
|
| 71 |
-
" \"BY\", # Belarus\n",
|
| 72 |
-
" \"CD\", # Democratic Republic of the Congo\n",
|
| 73 |
-
" \"CF\", # Central African Republic\n",
|
| 74 |
-
" \"CN\", # China\n",
|
| 75 |
-
" \"CU\", # Cuba\n",
|
| 76 |
-
" \"ER\", # Eritrea\n",
|
| 77 |
-
" \"ET\", # Ethiopia\n",
|
| 78 |
-
" \"HK\", # Hong Kong\n",
|
| 79 |
-
" \"IR\", # Iran\n",
|
| 80 |
-
" \"KP\", # North Korea\n",
|
| 81 |
-
" \"LY\", # Libya\n",
|
| 82 |
-
" \"ML\", # Mali\n",
|
| 83 |
-
" \"MM\", # Myanmar\n",
|
| 84 |
-
" \"MO\", # Macau\n",
|
| 85 |
-
" \"NI\", # Nicaragua\n",
|
| 86 |
-
" \"RU\", # Russia\n",
|
| 87 |
-
" \"SD\", # Sudan\n",
|
| 88 |
-
" \"SO\", # Somalia\n",
|
| 89 |
-
" \"SS\", # South Sudan\n",
|
| 90 |
-
" \"SY\", # Syria\n",
|
| 91 |
-
" \"VE\", # Venezuela\n",
|
| 92 |
-
" \"YE\", # Yemen\n",
|
| 93 |
-
"]"
|
| 94 |
-
]
|
| 95 |
-
},
|
| 96 |
-
{
|
| 97 |
-
"cell_type": "markdown",
|
| 98 |
-
"metadata": {},
|
| 99 |
-
"source": [
|
| 100 |
-
"## Data Loading Functions"
|
| 101 |
-
]
|
| 102 |
-
},
|
| 103 |
-
{
|
| 104 |
-
"cell_type": "code",
|
| 105 |
-
"execution_count": null,
|
| 106 |
-
"metadata": {},
|
| 107 |
-
"outputs": [],
|
| 108 |
-
"source": [
|
| 109 |
-
"def load_population_data():\n",
|
| 110 |
-
" \"\"\"\n",
|
| 111 |
-
" Load population data for countries and US states.\n",
|
| 112 |
-
"\n",
|
| 113 |
-
" Args:\n",
|
| 114 |
-
" verbose: Whether to print progress\n",
|
| 115 |
-
"\n",
|
| 116 |
-
" Returns:\n",
|
| 117 |
-
" Dict with country and state_us population dataframes\n",
|
| 118 |
-
" \"\"\"\n",
|
| 119 |
-
" pop_country_path = (\n",
|
| 120 |
-
" Path(DATA_INTERMEDIATE_DIR) / f\"working_age_pop_{YEAR}_country.csv\"\n",
|
| 121 |
-
" )\n",
|
| 122 |
-
" pop_state_path = (\n",
|
| 123 |
-
" Path(DATA_INTERMEDIATE_DIR) / f\"working_age_pop_{YEAR}_us_state.csv\"\n",
|
| 124 |
-
" )\n",
|
| 125 |
-
"\n",
|
| 126 |
-
" if not pop_country_path.exists() or not pop_state_path.exists():\n",
|
| 127 |
-
" raise FileNotFoundError(\n",
|
| 128 |
-
" f\"Population data is required but not found.\\n\"\n",
|
| 129 |
-
" f\" Expected files:\\n\"\n",
|
| 130 |
-
" f\" - {pop_country_path}\\n\"\n",
|
| 131 |
-
" f\" - {pop_state_path}\\n\"\n",
|
| 132 |
-
" f\" Run preprocess_population.py first to generate these files.\"\n",
|
| 133 |
-
" )\n",
|
| 134 |
-
"\n",
|
| 135 |
-
" # Use keep_default_na=False to preserve any \"NA\" values as strings\n",
|
| 136 |
-
" df_pop_country = pd.read_csv(\n",
|
| 137 |
-
" pop_country_path, keep_default_na=False, na_values=[\"\"]\n",
|
| 138 |
-
" )\n",
|
| 139 |
-
" df_pop_state = pd.read_csv(pop_state_path, keep_default_na=False, na_values=[\"\"])\n",
|
| 140 |
-
"\n",
|
| 141 |
-
" return {\"country\": df_pop_country, \"state_us\": df_pop_state}\n",
|
| 142 |
-
"\n",
|
| 143 |
-
"\n",
|
| 144 |
-
"def load_gdp_data():\n",
|
| 145 |
-
" \"\"\"\n",
|
| 146 |
-
" Load GDP data for countries and US states.\n",
|
| 147 |
-
"\n",
|
| 148 |
-
" Returns:\n",
|
| 149 |
-
" Dict with country and state_us GDP dataframes\n",
|
| 150 |
-
" \"\"\"\n",
|
| 151 |
-
" gdp_country_path = Path(DATA_INTERMEDIATE_DIR) / f\"gdp_{YEAR}_country.csv\"\n",
|
| 152 |
-
" gdp_state_path = Path(DATA_INTERMEDIATE_DIR) / f\"gdp_{YEAR}_us_state.csv\"\n",
|
| 153 |
-
"\n",
|
| 154 |
-
" if not gdp_country_path.exists() or not gdp_state_path.exists():\n",
|
| 155 |
-
" raise FileNotFoundError(\n",
|
| 156 |
-
" f\"GDP data is required but not found.\\n\"\n",
|
| 157 |
-
" f\" Expected files:\\n\"\n",
|
| 158 |
-
" f\" - {gdp_country_path}\\n\"\n",
|
| 159 |
-
" f\" - {gdp_state_path}\\n\"\n",
|
| 160 |
-
" f\" Run preprocess_gdp.py first to generate these files.\"\n",
|
| 161 |
-
" )\n",
|
| 162 |
-
"\n",
|
| 163 |
-
" # Use keep_default_na=False to preserve any \"NA\" values as strings\n",
|
| 164 |
-
" df_gdp_country = pd.read_csv(\n",
|
| 165 |
-
" gdp_country_path, keep_default_na=False, na_values=[\"\"]\n",
|
| 166 |
-
" )\n",
|
| 167 |
-
" df_gdp_state = pd.read_csv(gdp_state_path, keep_default_na=False, na_values=[\"\"])\n",
|
| 168 |
-
"\n",
|
| 169 |
-
" return {\"country\": df_gdp_country, \"state_us\": df_gdp_state}\n",
|
| 170 |
-
"\n",
|
| 171 |
-
"\n",
|
| 172 |
-
"def load_task_data():\n",
|
| 173 |
-
" \"\"\"\n",
|
| 174 |
-
" Load O*NET task statements with SOC codes.\n",
|
| 175 |
-
"\n",
|
| 176 |
-
" Returns:\n",
|
| 177 |
-
" DataFrame with O*NET tasks and SOC major groups\n",
|
| 178 |
-
" \"\"\"\n",
|
| 179 |
-
" onet_path = Path(DATA_INTERMEDIATE_DIR) / \"onet_task_statements.csv\"\n",
|
| 180 |
-
"\n",
|
| 181 |
-
" if not onet_path.exists():\n",
|
| 182 |
-
" raise FileNotFoundError(\n",
|
| 183 |
-
" f\"O*NET data is required but not found.\\n\"\n",
|
| 184 |
-
" f\" Expected file:\\n\"\n",
|
| 185 |
-
" f\" - {onet_path}\\n\"\n",
|
| 186 |
-
" f\" Run preprocess_onet.py first to generate this file.\"\n",
|
| 187 |
-
" )\n",
|
| 188 |
-
"\n",
|
| 189 |
-
" # Use keep_default_na=False to preserve any \"NA\" values as strings\n",
|
| 190 |
-
" df_onet = pd.read_csv(onet_path, keep_default_na=False, na_values=[\"\"])\n",
|
| 191 |
-
"\n",
|
| 192 |
-
" # Normalize task names for matching with Clio data\n",
|
| 193 |
-
" df_onet[\"task_normalized\"] = df_onet[\"Task\"].str.lower().str.strip()\n",
|
| 194 |
-
"\n",
|
| 195 |
-
" return df_onet\n",
|
| 196 |
-
"\n",
|
| 197 |
-
"\n",
|
| 198 |
-
"def load_soc_data():\n",
|
| 199 |
-
" \"\"\"\n",
|
| 200 |
-
" Load SOC structure data for occupation names.\n",
|
| 201 |
-
"\n",
|
| 202 |
-
" Returns:\n",
|
| 203 |
-
" DataFrame with SOC major groups and their titles\n",
|
| 204 |
-
" \"\"\"\n",
|
| 205 |
-
" soc_path = Path(DATA_INTERMEDIATE_DIR) / \"soc_structure.csv\"\n",
|
| 206 |
-
"\n",
|
| 207 |
-
" if not soc_path.exists():\n",
|
| 208 |
-
" raise FileNotFoundError(\n",
|
| 209 |
-
" f\"SOC structure data is required but not found.\\n\"\n",
|
| 210 |
-
" f\" Expected file:\\n\"\n",
|
| 211 |
-
" f\" - {soc_path}\\n\"\n",
|
| 212 |
-
" f\" Run preprocess_onet.py first to generate this file.\"\n",
|
| 213 |
-
" )\n",
|
| 214 |
-
"\n",
|
| 215 |
-
" # Use keep_default_na=False to preserve any \"NA\" values as strings\n",
|
| 216 |
-
" df_soc = pd.read_csv(soc_path, keep_default_na=False, na_values=[\"\"])\n",
|
| 217 |
-
"\n",
|
| 218 |
-
" # Get unique major groups with their titles for SOC name mapping\n",
|
| 219 |
-
" df_major_groups = df_soc[df_soc[\"soc_major_group\"].notna()][\n",
|
| 220 |
-
" [\"soc_major_group\", \"SOC or O*NET-SOC 2019 Title\"]\n",
|
| 221 |
-
" ].drop_duplicates(subset=[\"soc_major_group\"])\n",
|
| 222 |
-
"\n",
|
| 223 |
-
" return df_major_groups\n",
|
| 224 |
-
"\n",
|
| 225 |
-
"\n",
|
| 226 |
-
"def load_external_data():\n",
|
| 227 |
-
" \"\"\"\n",
|
| 228 |
-
" Load all external data sources from local files.\n",
|
| 229 |
-
"\n",
|
| 230 |
-
" Returns:\n",
|
| 231 |
-
" Dict with population, gdp, task_statements, and soc_structure dataframes\n",
|
| 232 |
-
" \"\"\"\n",
|
| 233 |
-
"\n",
|
| 234 |
-
" external_data = {}\n",
|
| 235 |
-
"\n",
|
| 236 |
-
" # Load each data source with its specific function\n",
|
| 237 |
-
" external_data[\"population\"] = load_population_data()\n",
|
| 238 |
-
" external_data[\"gdp\"] = load_gdp_data()\n",
|
| 239 |
-
" external_data[\"task_statements\"] = load_task_data()\n",
|
| 240 |
-
" external_data[\"soc_structure\"] = load_soc_data()\n",
|
| 241 |
-
"\n",
|
| 242 |
-
" return external_data"
|
| 243 |
-
]
|
| 244 |
-
},
|
| 245 |
-
{
|
| 246 |
-
"cell_type": "markdown",
|
| 247 |
-
"metadata": {},
|
| 248 |
-
"source": [
|
| 249 |
-
"## Filtering Functions"
|
| 250 |
-
]
|
| 251 |
-
},
|
| 252 |
-
{
|
| 253 |
-
"cell_type": "code",
|
| 254 |
-
"execution_count": null,
|
| 255 |
-
"metadata": {},
|
| 256 |
-
"outputs": [],
|
| 257 |
-
"source": [
|
| 258 |
-
"def get_filtered_geographies(df):\n",
|
| 259 |
-
" \"\"\"\n",
|
| 260 |
-
" Get lists of countries and states that meet MIN_OBSERVATIONS thresholds.\n",
|
| 261 |
-
"\n",
|
| 262 |
-
" This function does NOT filter the dataframe - it only identifies which\n",
|
| 263 |
-
" geographies meet the thresholds. The full dataframe is preserved\n",
|
| 264 |
-
" so we can still report statistics for all geographies.\n",
|
| 265 |
-
"\n",
|
| 266 |
-
" Args:\n",
|
| 267 |
-
" df: Input dataframe\n",
|
| 268 |
-
"\n",
|
| 269 |
-
" Returns:\n",
|
| 270 |
-
" Tuple of (filtered_countries list, filtered_states list)\n",
|
| 271 |
-
" \"\"\"\n",
|
| 272 |
-
" # Get country usage counts\n",
|
| 273 |
-
" country_usage = df[\n",
|
| 274 |
-
" (df[\"facet\"] == \"country\") & (df[\"variable\"] == \"usage_count\")\n",
|
| 275 |
-
" ].set_index(\"geo_id\")[\"value\"]\n",
|
| 276 |
-
"\n",
|
| 277 |
-
" # Get state usage counts\n",
|
| 278 |
-
" state_usage = df[\n",
|
| 279 |
-
" (df[\"facet\"] == \"state_us\") & (df[\"variable\"] == \"usage_count\")\n",
|
| 280 |
-
" ].set_index(\"geo_id\")[\"value\"]\n",
|
| 281 |
-
"\n",
|
| 282 |
-
" # Get countries that meet MIN_OBSERVATIONS threshold\n",
|
| 283 |
-
" filtered_countries = country_usage[\n",
|
| 284 |
-
" country_usage >= MIN_OBSERVATIONS_COUNTRY\n",
|
| 285 |
-
" ].index.tolist()\n",
|
| 286 |
-
"\n",
|
| 287 |
-
" # Get states that meet MIN_OBSERVATIONS threshold\n",
|
| 288 |
-
" filtered_states = state_usage[\n",
|
| 289 |
-
" state_usage >= MIN_OBSERVATIONS_US_STATE\n",
|
| 290 |
-
" ].index.tolist()\n",
|
| 291 |
-
"\n",
|
| 292 |
-
" return filtered_countries, filtered_states"
|
| 293 |
-
]
|
| 294 |
-
},
|
| 295 |
-
{
|
| 296 |
-
"cell_type": "markdown",
|
| 297 |
-
"metadata": {},
|
| 298 |
-
"source": [
|
| 299 |
-
"## Data Merge Functions"
|
| 300 |
-
]
|
| 301 |
-
},
|
| 302 |
-
{
|
| 303 |
-
"cell_type": "code",
|
| 304 |
-
"execution_count": null,
|
| 305 |
-
"metadata": {},
|
| 306 |
-
"outputs": [],
|
| 307 |
-
"source": [
|
| 308 |
-
"def merge_population_data(df, population_data):\n",
|
| 309 |
-
" \"\"\"\n",
|
| 310 |
-
" Merge population data in long format.\n",
|
| 311 |
-
"\n",
|
| 312 |
-
" This function:\n",
|
| 313 |
-
" 1. Adds countries/states that have population but no usage (with 0 usage values)\n",
|
| 314 |
-
" 2. Adds population as new rows with variable=\"working_age_pop\"\n",
|
| 315 |
-
"\n",
|
| 316 |
-
" Args:\n",
|
| 317 |
-
" df: Input dataframe in long format\n",
|
| 318 |
-
" population_data: Dict with country and state_us population dataframes\n",
|
| 319 |
-
"\n",
|
| 320 |
-
" Returns:\n",
|
| 321 |
-
" Dataframe with all geographies and population added as rows\n",
|
| 322 |
-
" \"\"\"\n",
|
| 323 |
-
" df_result = df.copy()\n",
|
| 324 |
-
" new_rows = []\n",
|
| 325 |
-
"\n",
|
| 326 |
-
" # Get unique date/platform combinations to replicate for new data\n",
|
| 327 |
-
" date_platform_combos = df_result[\n",
|
| 328 |
-
" [\"date_start\", \"date_end\", \"platform_and_product\"]\n",
|
| 329 |
-
" ].drop_duplicates()\n",
|
| 330 |
-
"\n",
|
| 331 |
-
" # Process countries\n",
|
| 332 |
-
" if \"country\" in population_data and not population_data[\"country\"].empty:\n",
|
| 333 |
-
" pop_country = population_data[\"country\"]\n",
|
| 334 |
-
"\n",
|
| 335 |
-
" # Get existing countries in our data\n",
|
| 336 |
-
" existing_countries = df_result[\n",
|
| 337 |
-
" (df_result[\"geography\"] == \"country\")\n",
|
| 338 |
-
" & (df_result[\"variable\"] == \"usage_count\")\n",
|
| 339 |
-
" ][\"geo_id\"].unique()\n",
|
| 340 |
-
"\n",
|
| 341 |
-
" # Add missing countries with 0 usage (excluding excluded countries)\n",
|
| 342 |
-
" missing_countries = (\n",
|
| 343 |
-
" set(pop_country[\"country_code\"])\n",
|
| 344 |
-
" - set(existing_countries)\n",
|
| 345 |
-
" - set(EXCLUDED_COUNTRIES)\n",
|
| 346 |
-
" )\n",
|
| 347 |
-
"\n",
|
| 348 |
-
" for _, combo in date_platform_combos.iterrows():\n",
|
| 349 |
-
" # Add missing countries with 0 usage (both count and percentage)\n",
|
| 350 |
-
" for country_code in missing_countries:\n",
|
| 351 |
-
" # Add usage_count = 0\n",
|
| 352 |
-
" new_rows.append(\n",
|
| 353 |
-
" {\n",
|
| 354 |
-
" \"geo_id\": country_code,\n",
|
| 355 |
-
" \"geography\": \"country\",\n",
|
| 356 |
-
" \"date_start\": combo[\"date_start\"],\n",
|
| 357 |
-
" \"date_end\": combo[\"date_end\"],\n",
|
| 358 |
-
" \"platform_and_product\": combo[\"platform_and_product\"],\n",
|
| 359 |
-
" \"facet\": \"country\",\n",
|
| 360 |
-
" \"level\": 0,\n",
|
| 361 |
-
" \"variable\": \"usage_count\",\n",
|
| 362 |
-
" \"cluster_name\": \"\",\n",
|
| 363 |
-
" \"value\": 0.0,\n",
|
| 364 |
-
" }\n",
|
| 365 |
-
" )\n",
|
| 366 |
-
" # Add usage_pct = 0\n",
|
| 367 |
-
" new_rows.append(\n",
|
| 368 |
-
" {\n",
|
| 369 |
-
" \"geo_id\": country_code,\n",
|
| 370 |
-
" \"geography\": \"country\",\n",
|
| 371 |
-
" \"date_start\": combo[\"date_start\"],\n",
|
| 372 |
-
" \"date_end\": combo[\"date_end\"],\n",
|
| 373 |
-
" \"platform_and_product\": combo[\"platform_and_product\"],\n",
|
| 374 |
-
" \"facet\": \"country\",\n",
|
| 375 |
-
" \"level\": 0,\n",
|
| 376 |
-
" \"variable\": \"usage_pct\",\n",
|
| 377 |
-
" \"cluster_name\": \"\",\n",
|
| 378 |
-
" \"value\": 0.0,\n",
|
| 379 |
-
" }\n",
|
| 380 |
-
" )\n",
|
| 381 |
-
"\n",
|
| 382 |
-
" # Add population data for all countries (that are not excluded)\n",
|
| 383 |
-
" for _, pop_row in pop_country.iterrows():\n",
|
| 384 |
-
" new_rows.append(\n",
|
| 385 |
-
" {\n",
|
| 386 |
-
" \"geo_id\": pop_row[\"country_code\"],\n",
|
| 387 |
-
" \"geography\": \"country\",\n",
|
| 388 |
-
" \"date_start\": combo[\"date_start\"],\n",
|
| 389 |
-
" \"date_end\": combo[\"date_end\"],\n",
|
| 390 |
-
" \"platform_and_product\": combo[\"platform_and_product\"],\n",
|
| 391 |
-
" \"facet\": \"country\",\n",
|
| 392 |
-
" \"level\": 0,\n",
|
| 393 |
-
" \"variable\": \"working_age_pop\",\n",
|
| 394 |
-
" \"cluster_name\": \"\",\n",
|
| 395 |
-
" \"value\": float(pop_row[\"working_age_pop\"]),\n",
|
| 396 |
-
" }\n",
|
| 397 |
-
" )\n",
|
| 398 |
-
"\n",
|
| 399 |
-
" # Process US states\n",
|
| 400 |
-
" if \"state_us\" in population_data and not population_data[\"state_us\"].empty:\n",
|
| 401 |
-
" pop_state = population_data[\"state_us\"]\n",
|
| 402 |
-
"\n",
|
| 403 |
-
" # Get existing states in our data\n",
|
| 404 |
-
" existing_states = df_result[\n",
|
| 405 |
-
" (df_result[\"geography\"] == \"state_us\")\n",
|
| 406 |
-
" & (df_result[\"variable\"] == \"usage_count\")\n",
|
| 407 |
-
" ][\"geo_id\"].unique()\n",
|
| 408 |
-
"\n",
|
| 409 |
-
" # Add missing states with 0 usage\n",
|
| 410 |
-
" missing_states = set(pop_state[\"state_code\"]) - set(existing_states)\n",
|
| 411 |
-
"\n",
|
| 412 |
-
" for _, combo in date_platform_combos.iterrows():\n",
|
| 413 |
-
" # Add missing states with 0 usage (both count and percentage)\n",
|
| 414 |
-
" for state_code in missing_states:\n",
|
| 415 |
-
" # Add usage_count = 0\n",
|
| 416 |
-
" new_rows.append(\n",
|
| 417 |
-
" {\n",
|
| 418 |
-
" \"geo_id\": state_code,\n",
|
| 419 |
-
" \"geography\": \"state_us\",\n",
|
| 420 |
-
" \"date_start\": combo[\"date_start\"],\n",
|
| 421 |
-
" \"date_end\": combo[\"date_end\"],\n",
|
| 422 |
-
" \"platform_and_product\": combo[\"platform_and_product\"],\n",
|
| 423 |
-
" \"facet\": \"state_us\",\n",
|
| 424 |
-
" \"level\": 0,\n",
|
| 425 |
-
" \"variable\": \"usage_count\",\n",
|
| 426 |
-
" \"cluster_name\": \"\",\n",
|
| 427 |
-
" \"value\": 0.0,\n",
|
| 428 |
-
" }\n",
|
| 429 |
-
" )\n",
|
| 430 |
-
" # Add usage_pct = 0\n",
|
| 431 |
-
" new_rows.append(\n",
|
| 432 |
-
" {\n",
|
| 433 |
-
" \"geo_id\": state_code,\n",
|
| 434 |
-
" \"geography\": \"state_us\",\n",
|
| 435 |
-
" \"date_start\": combo[\"date_start\"],\n",
|
| 436 |
-
" \"date_end\": combo[\"date_end\"],\n",
|
| 437 |
-
" \"platform_and_product\": combo[\"platform_and_product\"],\n",
|
| 438 |
-
" \"facet\": \"state_us\",\n",
|
| 439 |
-
" \"level\": 0,\n",
|
| 440 |
-
" \"variable\": \"usage_pct\",\n",
|
| 441 |
-
" \"cluster_name\": \"\",\n",
|
| 442 |
-
" \"value\": 0.0,\n",
|
| 443 |
-
" }\n",
|
| 444 |
-
" )\n",
|
| 445 |
-
"\n",
|
| 446 |
-
" # Add population data for all states\n",
|
| 447 |
-
" for _, pop_row in pop_state.iterrows():\n",
|
| 448 |
-
" new_rows.append(\n",
|
| 449 |
-
" {\n",
|
| 450 |
-
" \"geo_id\": pop_row[\"state_code\"],\n",
|
| 451 |
-
" \"geography\": \"state_us\",\n",
|
| 452 |
-
" \"date_start\": combo[\"date_start\"],\n",
|
| 453 |
-
" \"date_end\": combo[\"date_end\"],\n",
|
| 454 |
-
" \"platform_and_product\": combo[\"platform_and_product\"],\n",
|
| 455 |
-
" \"facet\": \"state_us\",\n",
|
| 456 |
-
" \"level\": 0,\n",
|
| 457 |
-
" \"variable\": \"working_age_pop\",\n",
|
| 458 |
-
" \"cluster_name\": \"\",\n",
|
| 459 |
-
" \"value\": float(pop_row[\"working_age_pop\"]),\n",
|
| 460 |
-
" }\n",
|
| 461 |
-
" )\n",
|
| 462 |
-
"\n",
|
| 463 |
-
" # Add all new rows to the dataframe\n",
|
| 464 |
-
" if new_rows:\n",
|
| 465 |
-
" df_new = pd.DataFrame(new_rows)\n",
|
| 466 |
-
" df_result = pd.concat([df_result, df_new], ignore_index=True)\n",
|
| 467 |
-
"\n",
|
| 468 |
-
" return df_result\n",
|
| 469 |
-
"\n",
|
| 470 |
-
"\n",
|
| 471 |
-
"def merge_gdp_data(df, gdp_data, population_data):\n",
|
| 472 |
-
" \"\"\"\n",
|
| 473 |
-
" Merge GDP data and calculate GDP per working age capita.\n",
|
| 474 |
-
"\n",
|
| 475 |
-
" Since we have total GDP in actual dollars, we divide by population to get per capita.\n",
|
| 476 |
-
"\n",
|
| 477 |
-
" Args:\n",
|
| 478 |
-
" df: Input dataframe in long format\n",
|
| 479 |
-
" gdp_data: Dict with country and state_us GDP dataframes (total GDP in dollars)\n",
|
| 480 |
-
" population_data: Dict with country and state_us population dataframes\n",
|
| 481 |
-
"\n",
|
| 482 |
-
" Returns:\n",
|
| 483 |
-
" Dataframe with GDP per capita data added as rows\n",
|
| 484 |
-
" \"\"\"\n",
|
| 485 |
-
" df_result = df.copy()\n",
|
| 486 |
-
" new_rows = []\n",
|
| 487 |
-
"\n",
|
| 488 |
-
" # Get unique date/platform combinations\n",
|
| 489 |
-
" date_platform_combos = df_result[\n",
|
| 490 |
-
" [\"date_start\", \"date_end\", \"platform_and_product\"]\n",
|
| 491 |
-
" ].drop_duplicates()\n",
|
| 492 |
-
"\n",
|
| 493 |
-
" # Process country GDP\n",
|
| 494 |
-
" if \"country\" in gdp_data and \"country\" in population_data:\n",
|
| 495 |
-
" gdp_country = gdp_data[\"country\"]\n",
|
| 496 |
-
" pop_country = population_data[\"country\"]\n",
|
| 497 |
-
"\n",
|
| 498 |
-
" # Merge GDP with population to calculate per capita\n",
|
| 499 |
-
" gdp_pop = gdp_country.merge(pop_country, on=\"iso_alpha_3\", how=\"inner\")\n",
|
| 500 |
-
"\n",
|
| 501 |
-
" # Calculate GDP per working age capita\n",
|
| 502 |
-
" gdp_pop[\"gdp_per_working_age_capita\"] = (\n",
|
| 503 |
-
" gdp_pop[\"gdp_total\"] / gdp_pop[\"working_age_pop\"]\n",
|
| 504 |
-
" )\n",
|
| 505 |
-
"\n",
|
| 506 |
-
" for _, combo in date_platform_combos.iterrows():\n",
|
| 507 |
-
" for _, gdp_row in gdp_pop.iterrows():\n",
|
| 508 |
-
" new_rows.append(\n",
|
| 509 |
-
" {\n",
|
| 510 |
-
" \"geo_id\": gdp_row[\"country_code\"], # Use 2-letter code\n",
|
| 511 |
-
" \"geography\": \"country\",\n",
|
| 512 |
-
" \"date_start\": combo[\"date_start\"],\n",
|
| 513 |
-
" \"date_end\": combo[\"date_end\"],\n",
|
| 514 |
-
" \"platform_and_product\": combo[\"platform_and_product\"],\n",
|
| 515 |
-
" \"facet\": \"country\",\n",
|
| 516 |
-
" \"level\": 0,\n",
|
| 517 |
-
" \"variable\": \"gdp_per_working_age_capita\",\n",
|
| 518 |
-
" \"cluster_name\": \"\",\n",
|
| 519 |
-
" \"value\": float(gdp_row[\"gdp_per_working_age_capita\"]),\n",
|
| 520 |
-
" }\n",
|
| 521 |
-
" )\n",
|
| 522 |
-
"\n",
|
| 523 |
-
" # Process state GDP\n",
|
| 524 |
-
" if \"state_us\" in gdp_data and \"state_us\" in population_data:\n",
|
| 525 |
-
" gdp_state = gdp_data[\"state_us\"]\n",
|
| 526 |
-
" pop_state = population_data[\"state_us\"]\n",
|
| 527 |
-
"\n",
|
| 528 |
-
" # Merge GDP with population\n",
|
| 529 |
-
" # Column names from preprocess_gdp.py: state_code, gdp_total (in actual dollars)\n",
|
| 530 |
-
" gdp_pop = gdp_state.merge(pop_state, on=\"state_code\", how=\"inner\")\n",
|
| 531 |
-
"\n",
|
| 532 |
-
" # Calculate GDP per working age capita\n",
|
| 533 |
-
" gdp_pop[\"gdp_per_working_age_capita\"] = (\n",
|
| 534 |
-
" gdp_pop[\"gdp_total\"] / gdp_pop[\"working_age_pop\"]\n",
|
| 535 |
-
" )\n",
|
| 536 |
-
"\n",
|
| 537 |
-
" for _, combo in date_platform_combos.iterrows():\n",
|
| 538 |
-
" for _, gdp_row in gdp_pop.iterrows():\n",
|
| 539 |
-
" new_rows.append(\n",
|
| 540 |
-
" {\n",
|
| 541 |
-
" \"geo_id\": gdp_row[\"state_code\"],\n",
|
| 542 |
-
" \"geography\": \"state_us\",\n",
|
| 543 |
-
" \"date_start\": combo[\"date_start\"],\n",
|
| 544 |
-
" \"date_end\": combo[\"date_end\"],\n",
|
| 545 |
-
" \"platform_and_product\": combo[\"platform_and_product\"],\n",
|
| 546 |
-
" \"facet\": \"state_us\",\n",
|
| 547 |
-
" \"level\": 0,\n",
|
| 548 |
-
" \"variable\": \"gdp_per_working_age_capita\",\n",
|
| 549 |
-
" \"cluster_name\": \"\",\n",
|
| 550 |
-
" \"value\": float(gdp_row[\"gdp_per_working_age_capita\"]),\n",
|
| 551 |
-
" }\n",
|
| 552 |
-
" )\n",
|
| 553 |
-
"\n",
|
| 554 |
-
" # Add all new rows to the dataframe\n",
|
| 555 |
-
" if new_rows:\n",
|
| 556 |
-
" df_new = pd.DataFrame(new_rows)\n",
|
| 557 |
-
" df_result = pd.concat([df_result, df_new], ignore_index=True)\n",
|
| 558 |
-
"\n",
|
| 559 |
-
" return df_result\n",
|
| 560 |
-
"\n",
|
| 561 |
-
"\n",
|
| 562 |
-
"def calculate_soc_distribution(\n",
|
| 563 |
-
" df, df_onet, df_soc_structure, filtered_countries=None, filtered_states=None\n",
|
| 564 |
-
"):\n",
|
| 565 |
-
" \"\"\"\n",
|
| 566 |
-
" Calculate SOC occupation distribution from O*NET task usage.\n",
|
| 567 |
-
"\n",
|
| 568 |
-
" This uses the following approach:\n",
|
| 569 |
-
" 1. Map tasks directly to SOC major groups (with minimal double counting)\n",
|
| 570 |
-
" 2. Combine \"none\" and \"not_classified\" tasks into a single \"not_classified\" SOC group\n",
|
| 571 |
-
" 3. Sum percentages by SOC group\n",
|
| 572 |
-
" 4. Normalize to 100% for each geography\n",
|
| 573 |
-
" 5. Calculate for countries, US states, and global that meet MIN_OBSERVATIONS threshold\n",
|
| 574 |
-
"\n",
|
| 575 |
-
" NOTE: For US states, only ~449 O*NET tasks have state-level data (those with sufficient\n",
|
| 576 |
-
" observations), but these tasks still map to SOC groups the same way as for countries.\n",
|
| 577 |
-
"\n",
|
| 578 |
-
" Args:\n",
|
| 579 |
-
" df: DataFrame with O*NET task percentages\n",
|
| 580 |
-
" df_onet: O*NET task data with SOC codes\n",
|
| 581 |
-
" df_soc_structure: SOC structure with major group names\n",
|
| 582 |
-
" filtered_countries: List of countries that meet MIN_OBSERVATIONS (optional)\n",
|
| 583 |
-
" filtered_states: List of states that meet MIN_OBSERVATIONS (optional)\n",
|
| 584 |
-
"\n",
|
| 585 |
-
" Returns:\n",
|
| 586 |
-
" DataFrame with SOC distribution rows added\n",
|
| 587 |
-
" \"\"\"\n",
|
| 588 |
-
" df_result = df.copy()\n",
|
| 589 |
-
" soc_rows = []\n",
|
| 590 |
-
"\n",
|
| 591 |
-
" # Get all O*NET task percentage data (including not_classified and \"none\")\n",
|
| 592 |
-
" df_task_pct_all = df_result[\n",
|
| 593 |
-
" (df_result[\"facet\"] == \"onet_task\") & (df_result[\"variable\"] == \"onet_task_pct\")\n",
|
| 594 |
-
" ].copy()\n",
|
| 595 |
-
"\n",
|
| 596 |
-
" if df_task_pct_all.empty:\n",
|
| 597 |
-
" return df_result\n",
|
| 598 |
-
"\n",
|
| 599 |
-
" # Build masks for each geography type\n",
|
| 600 |
-
" # Always include global\n",
|
| 601 |
-
" global_mask = df_task_pct_all[\"geography\"] == \"global\"\n",
|
| 602 |
-
"\n",
|
| 603 |
-
" # Apply filtering for countries\n",
|
| 604 |
-
" if filtered_countries is not None:\n",
|
| 605 |
-
" country_mask = (df_task_pct_all[\"geography\"] == \"country\") & (\n",
|
| 606 |
-
" df_task_pct_all[\"geo_id\"].isin(filtered_countries)\n",
|
| 607 |
-
" )\n",
|
| 608 |
-
" else:\n",
|
| 609 |
-
" # If no filter, keep all countries\n",
|
| 610 |
-
" country_mask = df_task_pct_all[\"geography\"] == \"country\"\n",
|
| 611 |
-
"\n",
|
| 612 |
-
" # Apply filtering for states\n",
|
| 613 |
-
" if filtered_states is not None:\n",
|
| 614 |
-
" state_mask = (df_task_pct_all[\"geography\"] == \"state_us\") & (\n",
|
| 615 |
-
" df_task_pct_all[\"geo_id\"].isin(filtered_states)\n",
|
| 616 |
-
" )\n",
|
| 617 |
-
" else:\n",
|
| 618 |
-
" # If no filter, keep all states\n",
|
| 619 |
-
" state_mask = df_task_pct_all[\"geography\"] == \"state_us\"\n",
|
| 620 |
-
"\n",
|
| 621 |
-
" # Combine masks to keep relevant geographies\n",
|
| 622 |
-
" combined_mask = global_mask | country_mask | state_mask\n",
|
| 623 |
-
" df_task_pct_all = df_task_pct_all[combined_mask].copy()\n",
|
| 624 |
-
"\n",
|
| 625 |
-
" if df_task_pct_all.empty:\n",
|
| 626 |
-
" return df_result\n",
|
| 627 |
-
"\n",
|
| 628 |
-
" # Separate not_classified and none tasks from real O*NET tasks\n",
|
| 629 |
-
" df_not_classified = df_task_pct_all[\n",
|
| 630 |
-
" (df_task_pct_all[\"cluster_name\"].str.contains(\"not_classified\", na=False))\n",
|
| 631 |
-
" | (df_task_pct_all[\"cluster_name\"] == \"none\")\n",
|
| 632 |
-
" ].copy()\n",
|
| 633 |
-
"\n",
|
| 634 |
-
" # Get real O*NET tasks (excluding not_classified and none)\n",
|
| 635 |
-
" df_task_pct = df_task_pct_all[\n",
|
| 636 |
-
" (~df_task_pct_all[\"cluster_name\"].str.contains(\"not_classified\", na=False))\n",
|
| 637 |
-
" & (df_task_pct_all[\"cluster_name\"] != \"none\")\n",
|
| 638 |
-
" ].copy()\n",
|
| 639 |
-
"\n",
|
| 640 |
-
" # Normalize task names for matching\n",
|
| 641 |
-
" df_task_pct[\"task_normalized\"] = df_task_pct[\"cluster_name\"].str.lower().str.strip()\n",
|
| 642 |
-
"\n",
|
| 643 |
-
" # Get unique task-SOC pairs from O*NET data\n",
|
| 644 |
-
" # This keeps tasks that map to multiple SOC groups (different rows)\n",
|
| 645 |
-
" df_task_soc = df_onet[[\"task_normalized\", \"soc_major_group\"]].drop_duplicates()\n",
|
| 646 |
-
"\n",
|
| 647 |
-
" # Merge tasks with their SOC codes\n",
|
| 648 |
-
" df_with_soc = df_task_pct.merge(df_task_soc, on=\"task_normalized\", how=\"left\")\n",
|
| 649 |
-
"\n",
|
| 650 |
-
" # Check for unmapped tasks and raise error if found (same as for countries)\n",
|
| 651 |
-
" unmapped_tasks = df_with_soc[df_with_soc[\"soc_major_group\"].isna()]\n",
|
| 652 |
-
" if not unmapped_tasks.empty:\n",
|
| 653 |
-
" unmapped_list = unmapped_tasks[\"cluster_name\"].unique()[:10] # Show first 10\n",
|
| 654 |
-
" n_unmapped = len(unmapped_tasks[\"cluster_name\"].unique())\n",
|
| 655 |
-
"\n",
|
| 656 |
-
" # Check which geographies have unmapped tasks\n",
|
| 657 |
-
" unmapped_geos = unmapped_tasks[\"geography\"].unique()\n",
|
| 658 |
-
"\n",
|
| 659 |
-
" raise ValueError(\n",
|
| 660 |
-
" f\"Found {n_unmapped} O*NET tasks that could not be mapped to SOC codes.\\n\"\n",
|
| 661 |
-
" f\"Geographies with unmapped tasks: {unmapped_geos.tolist()}\\n\"\n",
|
| 662 |
-
" f\"First 10 unmapped tasks:\\n\"\n",
|
| 663 |
-
" + \"\\n\".join(f\" - {task}\" for task in unmapped_list)\n",
|
| 664 |
-
" + f\"\\n\\nThis likely means the O*NET data is out of sync with the Clio task data.\\n\"\n",
|
| 665 |
-
" f\"Please verify that preprocess_onet.py has been run with the correct O*NET version.\"\n",
|
| 666 |
-
" )\n",
|
| 667 |
-
"\n",
|
| 668 |
-
" # Create SOC name mapping if SOC structure is available\n",
|
| 669 |
-
" soc_names = {}\n",
|
| 670 |
-
" if not df_soc_structure.empty:\n",
|
| 671 |
-
" for _, row in df_soc_structure.iterrows():\n",
|
| 672 |
-
" soc_code = row[\"soc_major_group\"]\n",
|
| 673 |
-
" title = row[\"SOC or O*NET-SOC 2019 Title\"]\n",
|
| 674 |
-
" # Clean up title (remove \"Occupations\" suffix)\n",
|
| 675 |
-
" clean_title = title.replace(\" Occupations\", \"\").replace(\" Occupation\", \"\")\n",
|
| 676 |
-
" soc_names[soc_code] = clean_title\n",
|
| 677 |
-
"\n",
|
| 678 |
-
" # Group by geography and process each group\n",
|
| 679 |
-
" geo_groups = df_with_soc.groupby(\n",
|
| 680 |
-
" [\"geo_id\", \"geography\", \"date_start\", \"date_end\", \"platform_and_product\"]\n",
|
| 681 |
-
" )\n",
|
| 682 |
-
"\n",
|
| 683 |
-
" # Also group not_classified data by geography\n",
|
| 684 |
-
" not_classified_groups = df_not_classified.groupby(\n",
|
| 685 |
-
" [\"geo_id\", \"geography\", \"date_start\", \"date_end\", \"platform_and_product\"]\n",
|
| 686 |
-
" )\n",
|
| 687 |
-
"\n",
|
| 688 |
-
" # Track statistics\n",
|
| 689 |
-
" states_with_soc = set()\n",
|
| 690 |
-
" countries_with_soc = set()\n",
|
| 691 |
-
"\n",
|
| 692 |
-
" # Process all geographies\n",
|
| 693 |
-
" all_geos = set()\n",
|
| 694 |
-
" for (geo_id, geography, date_start, date_end, platform), _ in geo_groups:\n",
|
| 695 |
-
" all_geos.add((geo_id, geography, date_start, date_end, platform))\n",
|
| 696 |
-
" for (geo_id, geography, date_start, date_end, platform), _ in not_classified_groups:\n",
|
| 697 |
-
" all_geos.add((geo_id, geography, date_start, date_end, platform))\n",
|
| 698 |
-
"\n",
|
| 699 |
-
" for geo_id, geography, date_start, date_end, platform in all_geos:\n",
|
| 700 |
-
" # Get mapped SOC data for this geography\n",
|
| 701 |
-
" try:\n",
|
| 702 |
-
" geo_data = geo_groups.get_group(\n",
|
| 703 |
-
" (geo_id, geography, date_start, date_end, platform)\n",
|
| 704 |
-
" )\n",
|
| 705 |
-
" # Sum percentages by SOC major group\n",
|
| 706 |
-
" # If a task maps to multiple SOC groups, its percentage is added to each\n",
|
| 707 |
-
" soc_totals = geo_data.groupby(\"soc_major_group\")[\"value\"].sum()\n",
|
| 708 |
-
" except KeyError:\n",
|
| 709 |
-
" # No mapped tasks for this geography\n",
|
| 710 |
-
" soc_totals = pd.Series(dtype=float)\n",
|
| 711 |
-
"\n",
|
| 712 |
-
" # Get not_classified/none data for this geography\n",
|
| 713 |
-
" try:\n",
|
| 714 |
-
" not_classified_data = not_classified_groups.get_group(\n",
|
| 715 |
-
" (geo_id, geography, date_start, date_end, platform)\n",
|
| 716 |
-
" )\n",
|
| 717 |
-
" # Sum all not_classified and none percentages\n",
|
| 718 |
-
" not_classified_total = not_classified_data[\"value\"].sum()\n",
|
| 719 |
-
" except KeyError:\n",
|
| 720 |
-
" # No not_classified/none for this geography\n",
|
| 721 |
-
" not_classified_total = 0\n",
|
| 722 |
-
"\n",
|
| 723 |
-
" # Combine and normalize to 100%\n",
|
| 724 |
-
" total_pct = soc_totals.sum() + not_classified_total\n",
|
| 725 |
-
"\n",
|
| 726 |
-
" if total_pct > 0:\n",
|
| 727 |
-
" # Normalize mapped SOC groups\n",
|
| 728 |
-
" if len(soc_totals) > 0:\n",
|
| 729 |
-
" soc_normalized = (soc_totals / total_pct) * 100\n",
|
| 730 |
-
" else:\n",
|
| 731 |
-
" soc_normalized = pd.Series(dtype=float)\n",
|
| 732 |
-
"\n",
|
| 733 |
-
" # Calculate normalized not_classified percentage\n",
|
| 734 |
-
" not_classified_normalized = (not_classified_total / total_pct) * 100\n",
|
| 735 |
-
"\n",
|
| 736 |
-
" # Track geographies that have SOC data\n",
|
| 737 |
-
" if geography == \"state_us\":\n",
|
| 738 |
-
" states_with_soc.add(geo_id)\n",
|
| 739 |
-
" elif geography == \"country\":\n",
|
| 740 |
-
" countries_with_soc.add(geo_id)\n",
|
| 741 |
-
"\n",
|
| 742 |
-
" # Create rows for each SOC group\n",
|
| 743 |
-
" for soc_group, pct_value in soc_normalized.items():\n",
|
| 744 |
-
" # Get SOC name if available, otherwise use code\n",
|
| 745 |
-
" soc_name = soc_names.get(soc_group, f\"SOC {soc_group}\")\n",
|
| 746 |
-
"\n",
|
| 747 |
-
" soc_row = {\n",
|
| 748 |
-
" \"geo_id\": geo_id,\n",
|
| 749 |
-
" \"geography\": geography,\n",
|
| 750 |
-
" \"date_start\": date_start,\n",
|
| 751 |
-
" \"date_end\": date_end,\n",
|
| 752 |
-
" \"platform_and_product\": platform,\n",
|
| 753 |
-
" \"facet\": \"soc_occupation\",\n",
|
| 754 |
-
" \"level\": 0,\n",
|
| 755 |
-
" \"variable\": \"soc_pct\",\n",
|
| 756 |
-
" \"cluster_name\": soc_name,\n",
|
| 757 |
-
" \"value\": pct_value,\n",
|
| 758 |
-
" }\n",
|
| 759 |
-
" soc_rows.append(soc_row)\n",
|
| 760 |
-
"\n",
|
| 761 |
-
" # Add not_classified SOC row if there's any not_classified/none percentage\n",
|
| 762 |
-
" if not_classified_normalized > 0:\n",
|
| 763 |
-
" soc_row = {\n",
|
| 764 |
-
" \"geo_id\": geo_id,\n",
|
| 765 |
-
" \"geography\": geography,\n",
|
| 766 |
-
" \"date_start\": date_start,\n",
|
| 767 |
-
" \"date_end\": date_end,\n",
|
| 768 |
-
" \"platform_and_product\": platform,\n",
|
| 769 |
-
" \"facet\": \"soc_occupation\",\n",
|
| 770 |
-
" \"level\": 0,\n",
|
| 771 |
-
" \"variable\": \"soc_pct\",\n",
|
| 772 |
-
" \"cluster_name\": \"not_classified\",\n",
|
| 773 |
-
" \"value\": not_classified_normalized,\n",
|
| 774 |
-
" }\n",
|
| 775 |
-
" soc_rows.append(soc_row)\n",
|
| 776 |
-
"\n",
|
| 777 |
-
" # Print summary\n",
|
| 778 |
-
" if countries_with_soc:\n",
|
| 779 |
-
" print(\n",
|
| 780 |
-
" f\"Calculated SOC distributions for {len(countries_with_soc)} countries + global\"\n",
|
| 781 |
-
" )\n",
|
| 782 |
-
" if states_with_soc:\n",
|
| 783 |
-
" print(f\"Calculated SOC distributions for {len(states_with_soc)} US states\")\n",
|
| 784 |
-
"\n",
|
| 785 |
-
" # Add all SOC rows to result\n",
|
| 786 |
-
" if soc_rows:\n",
|
| 787 |
-
" df_soc = pd.DataFrame(soc_rows)\n",
|
| 788 |
-
" df_result = pd.concat([df_result, df_soc], ignore_index=True)\n",
|
| 789 |
-
"\n",
|
| 790 |
-
" return df_result"
|
| 791 |
-
]
|
| 792 |
-
},
|
| 793 |
-
{
|
| 794 |
-
"cell_type": "markdown",
|
| 795 |
-
"metadata": {},
|
| 796 |
-
"source": [
|
| 797 |
-
"## Metric Calculation Functions"
|
| 798 |
-
]
|
| 799 |
-
},
|
| 800 |
-
{
|
| 801 |
-
"cell_type": "code",
|
| 802 |
-
"execution_count": null,
|
| 803 |
-
"metadata": {},
|
| 804 |
-
"outputs": [],
|
| 805 |
-
"source": [
|
| 806 |
-
"def calculate_per_capita_metrics(df):\n",
|
| 807 |
-
" \"\"\"\n",
|
| 808 |
-
" Calculate per capita metrics by joining usage and population data.\n",
|
| 809 |
-
"\n",
|
| 810 |
-
" Since data is in long format, this function:\n",
|
| 811 |
-
" 1. Extracts usage count rows\n",
|
| 812 |
-
" 2. Extracts population rows\n",
|
| 813 |
-
" 3. Joins them and calculates per capita\n",
|
| 814 |
-
" 4. Adds results as new rows\n",
|
| 815 |
-
"\n",
|
| 816 |
-
" Args:\n",
|
| 817 |
-
" df: Dataframe in long format with usage and population as rows\n",
|
| 818 |
-
"\n",
|
| 819 |
-
" Returns:\n",
|
| 820 |
-
" Dataframe with per capita metrics added as new rows\n",
|
| 821 |
-
" \"\"\"\n",
|
| 822 |
-
" df_result = df.copy()\n",
|
| 823 |
-
"\n",
|
| 824 |
-
" # Define which metrics should have per capita calculations\n",
|
| 825 |
-
" count_metrics = [\"usage_count\"]\n",
|
| 826 |
-
"\n",
|
| 827 |
-
" # Get population data\n",
|
| 828 |
-
" df_pop = df_result[df_result[\"variable\"] == \"working_age_pop\"][\n",
|
| 829 |
-
" [\n",
|
| 830 |
-
" \"geo_id\",\n",
|
| 831 |
-
" \"geography\",\n",
|
| 832 |
-
" \"date_start\",\n",
|
| 833 |
-
" \"date_end\",\n",
|
| 834 |
-
" \"platform_and_product\",\n",
|
| 835 |
-
" \"value\",\n",
|
| 836 |
-
" ]\n",
|
| 837 |
-
" ].rename(columns={\"value\": \"population\"})\n",
|
| 838 |
-
"\n",
|
| 839 |
-
" # Calculate per capita for each count metric\n",
|
| 840 |
-
" per_capita_rows = []\n",
|
| 841 |
-
"\n",
|
| 842 |
-
" for metric in count_metrics:\n",
|
| 843 |
-
" # Get the count data for this metric\n",
|
| 844 |
-
" df_metric = df_result[df_result[\"variable\"] == metric].copy()\n",
|
| 845 |
-
"\n",
|
| 846 |
-
" # Join with population data\n",
|
| 847 |
-
" df_joined = df_metric.merge(\n",
|
| 848 |
-
" df_pop,\n",
|
| 849 |
-
" on=[\n",
|
| 850 |
-
" \"geo_id\",\n",
|
| 851 |
-
" \"geography\",\n",
|
| 852 |
-
" \"date_start\",\n",
|
| 853 |
-
" \"date_end\",\n",
|
| 854 |
-
" \"platform_and_product\",\n",
|
| 855 |
-
" ],\n",
|
| 856 |
-
" how=\"left\",\n",
|
| 857 |
-
" )\n",
|
| 858 |
-
"\n",
|
| 859 |
-
" # Calculate per capita where population exists and is > 0\n",
|
| 860 |
-
" df_joined = df_joined[\n",
|
| 861 |
-
" df_joined[\"population\"].notna() & (df_joined[\"population\"] > 0)\n",
|
| 862 |
-
" ]\n",
|
| 863 |
-
"\n",
|
| 864 |
-
" if not df_joined.empty:\n",
|
| 865 |
-
" # Create per capita rows\n",
|
| 866 |
-
" for _, row in df_joined.iterrows():\n",
|
| 867 |
-
" per_capita_row = {\n",
|
| 868 |
-
" \"geo_id\": row[\"geo_id\"],\n",
|
| 869 |
-
" \"geography\": row[\"geography\"],\n",
|
| 870 |
-
" \"date_start\": row[\"date_start\"],\n",
|
| 871 |
-
" \"date_end\": row[\"date_end\"],\n",
|
| 872 |
-
" \"platform_and_product\": row[\"platform_and_product\"],\n",
|
| 873 |
-
" \"facet\": row[\"facet\"],\n",
|
| 874 |
-
" \"level\": row[\"level\"],\n",
|
| 875 |
-
" \"variable\": metric.replace(\"_count\", \"_per_capita\"),\n",
|
| 876 |
-
" \"cluster_name\": row[\"cluster_name\"],\n",
|
| 877 |
-
" \"value\": row[\"value\"] / row[\"population\"],\n",
|
| 878 |
-
" }\n",
|
| 879 |
-
" per_capita_rows.append(per_capita_row)\n",
|
| 880 |
-
"\n",
|
| 881 |
-
" # Add all per capita rows to the result\n",
|
| 882 |
-
" if per_capita_rows:\n",
|
| 883 |
-
" df_per_capita = pd.DataFrame(per_capita_rows)\n",
|
| 884 |
-
" df_result = pd.concat([df_result, df_per_capita], ignore_index=True)\n",
|
| 885 |
-
"\n",
|
| 886 |
-
" return df_result\n",
|
| 887 |
-
"\n",
|
| 888 |
-
"\n",
|
| 889 |
-
"def calculate_usage_per_capita_index(df, filtered_countries=None, filtered_states=None):\n",
|
| 890 |
-
" \"\"\"\n",
|
| 891 |
-
" Calculate usage concentration index: (% of usage) / (% of population).\n",
|
| 892 |
-
"\n",
|
| 893 |
-
" This shows whether a geography has more or less usage than expected based on its population.\n",
|
| 894 |
-
" - Index = 1.0: Usage proportional to population\n",
|
| 895 |
-
" - Index > 1.0: Over-representation (more usage than expected)\n",
|
| 896 |
-
" - Index < 1.0: Under-representation (less usage than expected)\n",
|
| 897 |
-
" - Index = 0.0: No usage at all\n",
|
| 898 |
-
"\n",
|
| 899 |
-
" The function calculates the index for all countries/states that have usage data.\n",
|
| 900 |
-
" Excluded countries don't have usage data, so they're automatically excluded.\n",
|
| 901 |
-
" Countries with zero usage get index=0 naturally from the calculation.\n",
|
| 902 |
-
"\n",
|
| 903 |
-
" Args:\n",
|
| 904 |
-
" df: Dataframe with usage and population data\n",
|
| 905 |
-
" filtered_countries: List of countries that meet MIN_OBSERVATIONS threshold (used for baseline calculation)\n",
|
| 906 |
-
" filtered_states: List of states that meet MIN_OBSERVATIONS threshold (used for baseline calculation)\n",
|
| 907 |
-
"\n",
|
| 908 |
-
" Returns:\n",
|
| 909 |
-
" Dataframe with usage concentration index added as new rows\n",
|
| 910 |
-
" \"\"\"\n",
|
| 911 |
-
" df_result = df.copy()\n",
|
| 912 |
-
"\n",
|
| 913 |
-
" index_rows = []\n",
|
| 914 |
-
"\n",
|
| 915 |
-
" # Process countries\n",
|
| 916 |
-
" # Get all countries with usage data (excluded countries won't be here)\n",
|
| 917 |
-
" df_usage_country = df_result[\n",
|
| 918 |
-
" (df_result[\"geography\"] == \"country\") & (df_result[\"variable\"] == \"usage_count\")\n",
|
| 919 |
-
" ].copy()\n",
|
| 920 |
-
"\n",
|
| 921 |
-
" # Get population data for the same countries\n",
|
| 922 |
-
" df_pop_country = df_result[\n",
|
| 923 |
-
" (df_result[\"geography\"] == \"country\")\n",
|
| 924 |
-
" & (df_result[\"variable\"] == \"working_age_pop\")\n",
|
| 925 |
-
" ].copy()\n",
|
| 926 |
-
"\n",
|
| 927 |
-
" if not df_usage_country.empty and not df_pop_country.empty:\n",
|
| 928 |
-
" # For baseline calculation, use filtered countries if provided, otherwise use all\n",
|
| 929 |
-
" if filtered_countries is not None:\n",
|
| 930 |
-
" # Calculate totals using only filtered countries for the baseline\n",
|
| 931 |
-
" usage_for_baseline = df_usage_country[\n",
|
| 932 |
-
" df_usage_country[\"geo_id\"].isin(filtered_countries)\n",
|
| 933 |
-
" ]\n",
|
| 934 |
-
" pop_for_baseline = df_pop_country[\n",
|
| 935 |
-
" df_pop_country[\"geo_id\"].isin(filtered_countries)\n",
|
| 936 |
-
" ]\n",
|
| 937 |
-
" total_usage = usage_for_baseline[\"value\"].sum()\n",
|
| 938 |
-
" total_pop = pop_for_baseline[\"value\"].sum()\n",
|
| 939 |
-
" else:\n",
|
| 940 |
-
" # Use all countries for baseline\n",
|
| 941 |
-
" total_usage = df_usage_country[\"value\"].sum()\n",
|
| 942 |
-
" total_pop = df_pop_country[\"value\"].sum()\n",
|
| 943 |
-
"\n",
|
| 944 |
-
" if total_usage > 0 and total_pop > 0:\n",
|
| 945 |
-
" # Calculate index for all countries (not just filtered)\n",
|
| 946 |
-
" for _, usage_row in df_usage_country.iterrows():\n",
|
| 947 |
-
" # Find corresponding population\n",
|
| 948 |
-
" pop_value = df_pop_country[\n",
|
| 949 |
-
" df_pop_country[\"geo_id\"] == usage_row[\"geo_id\"]\n",
|
| 950 |
-
" ][\"value\"].values\n",
|
| 951 |
-
"\n",
|
| 952 |
-
" if len(pop_value) > 0 and pop_value[0] > 0:\n",
|
| 953 |
-
" # Calculate shares\n",
|
| 954 |
-
" usage_share = (\n",
|
| 955 |
-
" usage_row[\"value\"] / total_usage\n",
|
| 956 |
-
" if usage_row[\"value\"] > 0\n",
|
| 957 |
-
" else 0\n",
|
| 958 |
-
" )\n",
|
| 959 |
-
" pop_share = pop_value[0] / total_pop\n",
|
| 960 |
-
"\n",
|
| 961 |
-
" # Calculate index (will be 0 if usage is 0)\n",
|
| 962 |
-
" index_value = usage_share / pop_share if pop_share > 0 else 0\n",
|
| 963 |
-
"\n",
|
| 964 |
-
" index_row = {\n",
|
| 965 |
-
" \"geo_id\": usage_row[\"geo_id\"],\n",
|
| 966 |
-
" \"geography\": usage_row[\"geography\"],\n",
|
| 967 |
-
" \"date_start\": usage_row[\"date_start\"],\n",
|
| 968 |
-
" \"date_end\": usage_row[\"date_end\"],\n",
|
| 969 |
-
" \"platform_and_product\": usage_row[\"platform_and_product\"],\n",
|
| 970 |
-
" \"facet\": usage_row[\"facet\"],\n",
|
| 971 |
-
" \"level\": usage_row[\"level\"],\n",
|
| 972 |
-
" \"variable\": \"usage_per_capita_index\",\n",
|
| 973 |
-
" \"cluster_name\": usage_row[\"cluster_name\"],\n",
|
| 974 |
-
" \"value\": index_value,\n",
|
| 975 |
-
" }\n",
|
| 976 |
-
" index_rows.append(index_row)\n",
|
| 977 |
-
"\n",
|
| 978 |
-
" # Process states\n",
|
| 979 |
-
" # Get all states with usage data\n",
|
| 980 |
-
" df_usage_state = df_result[\n",
|
| 981 |
-
" (df_result[\"geography\"] == \"state_us\")\n",
|
| 982 |
-
" & (df_result[\"variable\"] == \"usage_count\")\n",
|
| 983 |
-
" ].copy()\n",
|
| 984 |
-
"\n",
|
| 985 |
-
" # Get population data for the same states\n",
|
| 986 |
-
" df_pop_state = df_result[\n",
|
| 987 |
-
" (df_result[\"geography\"] == \"state_us\")\n",
|
| 988 |
-
" & (df_result[\"variable\"] == \"working_age_pop\")\n",
|
| 989 |
-
" ].copy()\n",
|
| 990 |
-
"\n",
|
| 991 |
-
" if not df_usage_state.empty and not df_pop_state.empty:\n",
|
| 992 |
-
" # For baseline calculation, use filtered states if provided, otherwise use all\n",
|
| 993 |
-
" if filtered_states is not None:\n",
|
| 994 |
-
" # Calculate totals using only filtered states for the baseline\n",
|
| 995 |
-
" usage_for_baseline = df_usage_state[\n",
|
| 996 |
-
" df_usage_state[\"geo_id\"].isin(filtered_states)\n",
|
| 997 |
-
" ]\n",
|
| 998 |
-
" pop_for_baseline = df_pop_state[\n",
|
| 999 |
-
" df_pop_state[\"geo_id\"].isin(filtered_states)\n",
|
| 1000 |
-
" ]\n",
|
| 1001 |
-
" total_usage = usage_for_baseline[\"value\"].sum()\n",
|
| 1002 |
-
" total_pop = pop_for_baseline[\"value\"].sum()\n",
|
| 1003 |
-
" else:\n",
|
| 1004 |
-
" # Use all states for baseline\n",
|
| 1005 |
-
" total_usage = df_usage_state[\"value\"].sum()\n",
|
| 1006 |
-
" total_pop = df_pop_state[\"value\"].sum()\n",
|
| 1007 |
-
"\n",
|
| 1008 |
-
" if total_usage > 0 and total_pop > 0:\n",
|
| 1009 |
-
" # Calculate index for all states (not just filtered)\n",
|
| 1010 |
-
" for _, usage_row in df_usage_state.iterrows():\n",
|
| 1011 |
-
" # Find corresponding population\n",
|
| 1012 |
-
" pop_value = df_pop_state[df_pop_state[\"geo_id\"] == usage_row[\"geo_id\"]][\n",
|
| 1013 |
-
" \"value\"\n",
|
| 1014 |
-
" ].values\n",
|
| 1015 |
-
"\n",
|
| 1016 |
-
" if len(pop_value) > 0 and pop_value[0] > 0:\n",
|
| 1017 |
-
" # Calculate shares\n",
|
| 1018 |
-
" usage_share = (\n",
|
| 1019 |
-
" usage_row[\"value\"] / total_usage\n",
|
| 1020 |
-
" if usage_row[\"value\"] > 0\n",
|
| 1021 |
-
" else 0\n",
|
| 1022 |
-
" )\n",
|
| 1023 |
-
" pop_share = pop_value[0] / total_pop\n",
|
| 1024 |
-
"\n",
|
| 1025 |
-
" # Calculate index (will be 0 if usage is 0)\n",
|
| 1026 |
-
" index_value = usage_share / pop_share if pop_share > 0 else 0\n",
|
| 1027 |
-
"\n",
|
| 1028 |
-
" index_row = {\n",
|
| 1029 |
-
" \"geo_id\": usage_row[\"geo_id\"],\n",
|
| 1030 |
-
" \"geography\": usage_row[\"geography\"],\n",
|
| 1031 |
-
" \"date_start\": usage_row[\"date_start\"],\n",
|
| 1032 |
-
" \"date_end\": usage_row[\"date_end\"],\n",
|
| 1033 |
-
" \"platform_and_product\": usage_row[\"platform_and_product\"],\n",
|
| 1034 |
-
" \"facet\": usage_row[\"facet\"],\n",
|
| 1035 |
-
" \"level\": usage_row[\"level\"],\n",
|
| 1036 |
-
" \"variable\": \"usage_per_capita_index\",\n",
|
| 1037 |
-
" \"cluster_name\": usage_row[\"cluster_name\"],\n",
|
| 1038 |
-
" \"value\": index_value,\n",
|
| 1039 |
-
" }\n",
|
| 1040 |
-
" index_rows.append(index_row)\n",
|
| 1041 |
-
"\n",
|
| 1042 |
-
" # Add all index rows to result\n",
|
| 1043 |
-
" if index_rows:\n",
|
| 1044 |
-
" df_index = pd.DataFrame(index_rows)\n",
|
| 1045 |
-
" df_result = pd.concat([df_result, df_index], ignore_index=True)\n",
|
| 1046 |
-
"\n",
|
| 1047 |
-
" return df_result\n",
|
| 1048 |
-
"\n",
|
| 1049 |
-
"\n",
|
| 1050 |
-
"def calculate_category_percentage_index(\n",
|
| 1051 |
-
" df, filtered_countries=None, filtered_states=None\n",
|
| 1052 |
-
"):\n",
|
| 1053 |
-
" \"\"\"\n",
|
| 1054 |
-
" Calculate category percentage index for facet specialization.\n",
|
| 1055 |
-
"\n",
|
| 1056 |
-
" For countries: Compare to global percentage for that cluster\n",
|
| 1057 |
-
" For US states: Compare to US country percentage for that cluster\n",
|
| 1058 |
-
"\n",
|
| 1059 |
-
" Only calculates for countries/states that meet MIN_OBSERVATIONS.\n",
|
| 1060 |
-
" Excludes \"not_classified\" and \"none\" categories as these are catch-alls.\n",
|
| 1061 |
-
"\n",
|
| 1062 |
-
" Args:\n",
|
| 1063 |
-
" df: Dataframe with percentage metrics as rows\n",
|
| 1064 |
-
" filtered_countries: List of countries that meet MIN_OBSERVATIONS threshold\n",
|
| 1065 |
-
" filtered_states: List of states that meet MIN_OBSERVATIONS threshold\n",
|
| 1066 |
-
"\n",
|
| 1067 |
-
" Returns:\n",
|
| 1068 |
-
" Dataframe with category percentage index added as new rows (only for filtered geographies)\n",
|
| 1069 |
-
" \"\"\"\n",
|
| 1070 |
-
" df_result = df.copy()\n",
|
| 1071 |
-
"\n",
|
| 1072 |
-
" # Process percentage metrics for content facets\n",
|
| 1073 |
-
" pct_vars = [\"onet_task_pct\", \"collaboration_pct\", \"request_pct\"]\n",
|
| 1074 |
-
"\n",
|
| 1075 |
-
" index_rows = []\n",
|
| 1076 |
-
"\n",
|
| 1077 |
-
" for pct_var in pct_vars:\n",
|
| 1078 |
-
" # Get the base facet name\n",
|
| 1079 |
-
" facet_name = pct_var.replace(\"_pct\", \"\")\n",
|
| 1080 |
-
"\n",
|
| 1081 |
-
" # Get percentage data for this variable\n",
|
| 1082 |
-
" df_pct = df_result[\n",
|
| 1083 |
-
" (df_result[\"variable\"] == pct_var) & (df_result[\"facet\"] == facet_name)\n",
|
| 1084 |
-
" ].copy()\n",
|
| 1085 |
-
"\n",
|
| 1086 |
-
" # Exclude not_classified and none categories from index calculation\n",
|
| 1087 |
-
" # These are catch-all/no-pattern categories that don't provide meaningful comparisons\n",
|
| 1088 |
-
" df_pct = df_pct[~df_pct[\"cluster_name\"].isin([\"not_classified\", \"none\"])]\n",
|
| 1089 |
-
"\n",
|
| 1090 |
-
" if not df_pct.empty and \"cluster_name\" in df_pct.columns:\n",
|
| 1091 |
-
" # Check if this facet has levels (like request)\n",
|
| 1092 |
-
" has_levels = df_pct[\"level\"].notna().any() and (df_pct[\"level\"] != 0).any()\n",
|
| 1093 |
-
"\n",
|
| 1094 |
-
" if has_levels:\n",
|
| 1095 |
-
" # Process each level separately\n",
|
| 1096 |
-
" levels = df_pct[\"level\"].dropna().unique()\n",
|
| 1097 |
-
"\n",
|
| 1098 |
-
" for level in levels:\n",
|
| 1099 |
-
" df_level = df_pct[df_pct[\"level\"] == level].copy()\n",
|
| 1100 |
-
"\n",
|
| 1101 |
-
" # Get global baselines for this level\n",
|
| 1102 |
-
" global_baselines = (\n",
|
| 1103 |
-
" df_level[\n",
|
| 1104 |
-
" (df_level[\"geography\"] == \"global\")\n",
|
| 1105 |
-
" & (df_level[\"geo_id\"] == \"GLOBAL\")\n",
|
| 1106 |
-
" ]\n",
|
| 1107 |
-
" .set_index(\"cluster_name\")[\"value\"]\n",
|
| 1108 |
-
" .to_dict()\n",
|
| 1109 |
-
" )\n",
|
| 1110 |
-
"\n",
|
| 1111 |
-
" # Get US baselines for this level\n",
|
| 1112 |
-
" us_baselines = (\n",
|
| 1113 |
-
" df_level[\n",
|
| 1114 |
-
" (df_level[\"geography\"] == \"country\")\n",
|
| 1115 |
-
" & (df_level[\"geo_id\"] == \"US\")\n",
|
| 1116 |
-
" ]\n",
|
| 1117 |
-
" .set_index(\"cluster_name\")[\"value\"]\n",
|
| 1118 |
-
" .to_dict()\n",
|
| 1119 |
-
" )\n",
|
| 1120 |
-
"\n",
|
| 1121 |
-
" # Process countries for this level\n",
|
| 1122 |
-
" if filtered_countries is not None and global_baselines:\n",
|
| 1123 |
-
" df_countries = df_level[\n",
|
| 1124 |
-
" (df_level[\"geography\"] == \"country\")\n",
|
| 1125 |
-
" & (df_level[\"geo_id\"].isin(filtered_countries))\n",
|
| 1126 |
-
" ].copy()\n",
|
| 1127 |
-
"\n",
|
| 1128 |
-
" for _, row in df_countries.iterrows():\n",
|
| 1129 |
-
" baseline = global_baselines.get(row[\"cluster_name\"])\n",
|
| 1130 |
-
"\n",
|
| 1131 |
-
" if baseline and baseline > 0:\n",
|
| 1132 |
-
" index_row = {\n",
|
| 1133 |
-
" \"geo_id\": row[\"geo_id\"],\n",
|
| 1134 |
-
" \"geography\": row[\"geography\"],\n",
|
| 1135 |
-
" \"date_start\": row[\"date_start\"],\n",
|
| 1136 |
-
" \"date_end\": row[\"date_end\"],\n",
|
| 1137 |
-
" \"platform_and_product\": row[\"platform_and_product\"],\n",
|
| 1138 |
-
" \"facet\": row[\"facet\"],\n",
|
| 1139 |
-
" \"level\": row[\"level\"],\n",
|
| 1140 |
-
" \"variable\": f\"{facet_name}_pct_index\",\n",
|
| 1141 |
-
" \"cluster_name\": row[\"cluster_name\"],\n",
|
| 1142 |
-
" \"value\": row[\"value\"] / baseline,\n",
|
| 1143 |
-
" }\n",
|
| 1144 |
-
" index_rows.append(index_row)\n",
|
| 1145 |
-
"\n",
|
| 1146 |
-
" # Process states for this level\n",
|
| 1147 |
-
" if filtered_states is not None and us_baselines:\n",
|
| 1148 |
-
" df_states = df_level[\n",
|
| 1149 |
-
" (df_level[\"geography\"] == \"state_us\")\n",
|
| 1150 |
-
" & (df_level[\"geo_id\"].isin(filtered_states))\n",
|
| 1151 |
-
" ].copy()\n",
|
| 1152 |
-
"\n",
|
| 1153 |
-
" for _, row in df_states.iterrows():\n",
|
| 1154 |
-
" baseline = us_baselines.get(row[\"cluster_name\"])\n",
|
| 1155 |
-
"\n",
|
| 1156 |
-
" if baseline and baseline > 0:\n",
|
| 1157 |
-
" index_row = {\n",
|
| 1158 |
-
" \"geo_id\": row[\"geo_id\"],\n",
|
| 1159 |
-
" \"geography\": row[\"geography\"],\n",
|
| 1160 |
-
" \"date_start\": row[\"date_start\"],\n",
|
| 1161 |
-
" \"date_end\": row[\"date_end\"],\n",
|
| 1162 |
-
" \"platform_and_product\": row[\"platform_and_product\"],\n",
|
| 1163 |
-
" \"facet\": row[\"facet\"],\n",
|
| 1164 |
-
" \"level\": row[\"level\"],\n",
|
| 1165 |
-
" \"variable\": f\"{facet_name}_pct_index\",\n",
|
| 1166 |
-
" \"cluster_name\": row[\"cluster_name\"],\n",
|
| 1167 |
-
" \"value\": row[\"value\"] / baseline,\n",
|
| 1168 |
-
" }\n",
|
| 1169 |
-
" index_rows.append(index_row)\n",
|
| 1170 |
-
" else:\n",
|
| 1171 |
-
" # No levels (onet_task, collaboration)\n",
|
| 1172 |
-
" # Get global baselines\n",
|
| 1173 |
-
" global_baselines = (\n",
|
| 1174 |
-
" df_pct[\n",
|
| 1175 |
-
" (df_pct[\"geography\"] == \"global\")\n",
|
| 1176 |
-
" & (df_pct[\"geo_id\"] == \"GLOBAL\")\n",
|
| 1177 |
-
" ]\n",
|
| 1178 |
-
" .set_index(\"cluster_name\")[\"value\"]\n",
|
| 1179 |
-
" .to_dict()\n",
|
| 1180 |
-
" )\n",
|
| 1181 |
-
"\n",
|
| 1182 |
-
" # Get US baselines\n",
|
| 1183 |
-
" us_baselines = (\n",
|
| 1184 |
-
" df_pct[\n",
|
| 1185 |
-
" (df_pct[\"geography\"] == \"country\") & (df_pct[\"geo_id\"] == \"US\")\n",
|
| 1186 |
-
" ]\n",
|
| 1187 |
-
" .set_index(\"cluster_name\")[\"value\"]\n",
|
| 1188 |
-
" .to_dict()\n",
|
| 1189 |
-
" )\n",
|
| 1190 |
-
"\n",
|
| 1191 |
-
" # Process countries\n",
|
| 1192 |
-
" if filtered_countries is not None and global_baselines:\n",
|
| 1193 |
-
" df_countries = df_pct[\n",
|
| 1194 |
-
" (df_pct[\"geography\"] == \"country\")\n",
|
| 1195 |
-
" & (df_pct[\"geo_id\"].isin(filtered_countries))\n",
|
| 1196 |
-
" ].copy()\n",
|
| 1197 |
-
"\n",
|
| 1198 |
-
" for _, row in df_countries.iterrows():\n",
|
| 1199 |
-
" baseline = global_baselines.get(row[\"cluster_name\"])\n",
|
| 1200 |
-
"\n",
|
| 1201 |
-
" if baseline and baseline > 0:\n",
|
| 1202 |
-
" index_row = {\n",
|
| 1203 |
-
" \"geo_id\": row[\"geo_id\"],\n",
|
| 1204 |
-
" \"geography\": row[\"geography\"],\n",
|
| 1205 |
-
" \"date_start\": row[\"date_start\"],\n",
|
| 1206 |
-
" \"date_end\": row[\"date_end\"],\n",
|
| 1207 |
-
" \"platform_and_product\": row[\"platform_and_product\"],\n",
|
| 1208 |
-
" \"facet\": row[\"facet\"],\n",
|
| 1209 |
-
" \"level\": row[\"level\"],\n",
|
| 1210 |
-
" \"variable\": f\"{facet_name}_pct_index\",\n",
|
| 1211 |
-
" \"cluster_name\": row[\"cluster_name\"],\n",
|
| 1212 |
-
" \"value\": row[\"value\"] / baseline,\n",
|
| 1213 |
-
" }\n",
|
| 1214 |
-
" index_rows.append(index_row)\n",
|
| 1215 |
-
"\n",
|
| 1216 |
-
" # Process states\n",
|
| 1217 |
-
" if filtered_states is not None and us_baselines:\n",
|
| 1218 |
-
" df_states = df_pct[\n",
|
| 1219 |
-
" (df_pct[\"geography\"] == \"state_us\")\n",
|
| 1220 |
-
" & (df_pct[\"geo_id\"].isin(filtered_states))\n",
|
| 1221 |
-
" ].copy()\n",
|
| 1222 |
-
"\n",
|
| 1223 |
-
" for _, row in df_states.iterrows():\n",
|
| 1224 |
-
" baseline = us_baselines.get(row[\"cluster_name\"])\n",
|
| 1225 |
-
"\n",
|
| 1226 |
-
" if baseline and baseline > 0:\n",
|
| 1227 |
-
" index_row = {\n",
|
| 1228 |
-
" \"geo_id\": row[\"geo_id\"],\n",
|
| 1229 |
-
" \"geography\": row[\"geography\"],\n",
|
| 1230 |
-
" \"date_start\": row[\"date_start\"],\n",
|
| 1231 |
-
" \"date_end\": row[\"date_end\"],\n",
|
| 1232 |
-
" \"platform_and_product\": row[\"platform_and_product\"],\n",
|
| 1233 |
-
" \"facet\": row[\"facet\"],\n",
|
| 1234 |
-
" \"level\": row[\"level\"],\n",
|
| 1235 |
-
" \"variable\": f\"{facet_name}_pct_index\",\n",
|
| 1236 |
-
" \"cluster_name\": row[\"cluster_name\"],\n",
|
| 1237 |
-
" \"value\": row[\"value\"] / baseline,\n",
|
| 1238 |
-
" }\n",
|
| 1239 |
-
" index_rows.append(index_row)\n",
|
| 1240 |
-
"\n",
|
| 1241 |
-
" # Add all index rows to result\n",
|
| 1242 |
-
" if index_rows:\n",
|
| 1243 |
-
" df_index = pd.DataFrame(index_rows)\n",
|
| 1244 |
-
" df_result = pd.concat([df_result, df_index], ignore_index=True)\n",
|
| 1245 |
-
"\n",
|
| 1246 |
-
" return df_result"
|
| 1247 |
-
]
|
| 1248 |
-
},
|
| 1249 |
-
{
|
| 1250 |
-
"cell_type": "code",
|
| 1251 |
-
"execution_count": null,
|
| 1252 |
-
"metadata": {},
|
| 1253 |
-
"outputs": [],
|
| 1254 |
-
"source": [
|
| 1255 |
-
"def calculate_usage_tiers(df, n_tiers=4, filtered_countries=None, filtered_states=None):\n",
|
| 1256 |
-
" \"\"\"\n",
|
| 1257 |
-
" Calculate usage tiers based on indexed per capita usage.\n",
|
| 1258 |
-
" - Tier 0: Zero adoption (index = 0)\n",
|
| 1259 |
-
" - Tiers 1-4: Quartiles based on thresholds from filtered countries/states\n",
|
| 1260 |
-
"\n",
|
| 1261 |
-
" Quartile thresholds are calculated using only countries/states with ≥MIN_OBSERVATIONS,\n",
|
| 1262 |
-
" but applied to all countries/states to ensure complete visualization.\n",
|
| 1263 |
-
"\n",
|
| 1264 |
-
" Note: Tier assignments for countries/states with <MIN_OBSERVATIONS should be\n",
|
| 1265 |
-
" interpreted with caution due to sample size limitations.\n",
|
| 1266 |
-
"\n",
|
| 1267 |
-
" Args:\n",
|
| 1268 |
-
" df: Input dataframe\n",
|
| 1269 |
-
" n_tiers: Number of quartiles to create for non-zero usage (default 4)\n",
|
| 1270 |
-
" filtered_countries: List of countries that meet MIN_OBSERVATIONS threshold\n",
|
| 1271 |
-
" filtered_states: List of states that meet MIN_OBSERVATIONS threshold\n",
|
| 1272 |
-
"\n",
|
| 1273 |
-
" Returns:\n",
|
| 1274 |
-
" Dataframe with usage tier rows added\n",
|
| 1275 |
-
" \"\"\"\n",
|
| 1276 |
-
" df_result = df.copy()\n",
|
| 1277 |
-
"\n",
|
| 1278 |
-
" # Calculate tiers for indexed per capita metrics\n",
|
| 1279 |
-
" if \"variable\" in df_result.columns and \"value\" in df_result.columns:\n",
|
| 1280 |
-
" index_vars = [\"usage_per_capita_index\"]\n",
|
| 1281 |
-
"\n",
|
| 1282 |
-
" quartile_labels = [\n",
|
| 1283 |
-
" \"Emerging (bottom 25%)\",\n",
|
| 1284 |
-
" \"Lower middle (25-50%)\",\n",
|
| 1285 |
-
" \"Upper middle (50-75%)\",\n",
|
| 1286 |
-
" \"Leading (top 25%)\",\n",
|
| 1287 |
-
" ]\n",
|
| 1288 |
-
"\n",
|
| 1289 |
-
" tier_rows = []\n",
|
| 1290 |
-
"\n",
|
| 1291 |
-
" for var in index_vars:\n",
|
| 1292 |
-
" # Process countries\n",
|
| 1293 |
-
" # Get all countries with the index variable\n",
|
| 1294 |
-
" all_country_data = df_result[\n",
|
| 1295 |
-
" (df_result[\"variable\"] == var) & (df_result[\"geography\"] == \"country\")\n",
|
| 1296 |
-
" ].copy()\n",
|
| 1297 |
-
"\n",
|
| 1298 |
-
" if not all_country_data.empty:\n",
|
| 1299 |
-
" # Separate zero and non-zero usage\n",
|
| 1300 |
-
" zero_usage = all_country_data[all_country_data[\"value\"] == 0].copy()\n",
|
| 1301 |
-
" nonzero_usage = all_country_data[all_country_data[\"value\"] > 0].copy()\n",
|
| 1302 |
-
"\n",
|
| 1303 |
-
" # Calculate quartile thresholds using ONLY filtered countries\n",
|
| 1304 |
-
" if filtered_countries is not None and not nonzero_usage.empty:\n",
|
| 1305 |
-
" # Get only filtered countries for quartile calculation\n",
|
| 1306 |
-
" filtered_for_quartiles = nonzero_usage[\n",
|
| 1307 |
-
" nonzero_usage[\"geo_id\"].isin(filtered_countries)\n",
|
| 1308 |
-
" ].copy()\n",
|
| 1309 |
-
"\n",
|
| 1310 |
-
" if not filtered_for_quartiles.empty:\n",
|
| 1311 |
-
" # Calculate quartile thresholds from filtered countries\n",
|
| 1312 |
-
" quartiles = (\n",
|
| 1313 |
-
" filtered_for_quartiles[\"value\"]\n",
|
| 1314 |
-
" .quantile([0.25, 0.5, 0.75])\n",
|
| 1315 |
-
" .values\n",
|
| 1316 |
-
" )\n",
|
| 1317 |
-
"\n",
|
| 1318 |
-
" # Apply thresholds to all non-zero countries\n",
|
| 1319 |
-
" for _, row in nonzero_usage.iterrows():\n",
|
| 1320 |
-
" value = row[\"value\"]\n",
|
| 1321 |
-
"\n",
|
| 1322 |
-
" # Assign tier based on thresholds\n",
|
| 1323 |
-
" if value <= quartiles[0]:\n",
|
| 1324 |
-
" tier_label = quartile_labels[0] # Bottom 25%\n",
|
| 1325 |
-
" tier_value = 1\n",
|
| 1326 |
-
" elif value <= quartiles[1]:\n",
|
| 1327 |
-
" tier_label = quartile_labels[1] # 25-50%\n",
|
| 1328 |
-
" tier_value = 2\n",
|
| 1329 |
-
" elif value <= quartiles[2]:\n",
|
| 1330 |
-
" tier_label = quartile_labels[2] # 50-75%\n",
|
| 1331 |
-
" tier_value = 3\n",
|
| 1332 |
-
" else:\n",
|
| 1333 |
-
" tier_label = quartile_labels[3] # Top 25%\n",
|
| 1334 |
-
" tier_value = 4\n",
|
| 1335 |
-
"\n",
|
| 1336 |
-
" tier_row = {\n",
|
| 1337 |
-
" \"geo_id\": row[\"geo_id\"],\n",
|
| 1338 |
-
" \"geography\": row[\"geography\"],\n",
|
| 1339 |
-
" \"date_start\": row[\"date_start\"],\n",
|
| 1340 |
-
" \"date_end\": row[\"date_end\"],\n",
|
| 1341 |
-
" \"platform_and_product\": row[\"platform_and_product\"],\n",
|
| 1342 |
-
" \"facet\": row[\"facet\"],\n",
|
| 1343 |
-
" \"level\": row[\"level\"],\n",
|
| 1344 |
-
" \"variable\": \"usage_tier\",\n",
|
| 1345 |
-
" \"cluster_name\": tier_label,\n",
|
| 1346 |
-
" \"value\": tier_value,\n",
|
| 1347 |
-
" }\n",
|
| 1348 |
-
" tier_rows.append(tier_row)\n",
|
| 1349 |
-
"\n",
|
| 1350 |
-
" # Add tier 0 for all zero usage countries\n",
|
| 1351 |
-
" for _, row in zero_usage.iterrows():\n",
|
| 1352 |
-
" tier_row = {\n",
|
| 1353 |
-
" \"geo_id\": row[\"geo_id\"],\n",
|
| 1354 |
-
" \"geography\": row[\"geography\"],\n",
|
| 1355 |
-
" \"date_start\": row[\"date_start\"],\n",
|
| 1356 |
-
" \"date_end\": row[\"date_end\"],\n",
|
| 1357 |
-
" \"platform_and_product\": row[\"platform_and_product\"],\n",
|
| 1358 |
-
" \"facet\": row[\"facet\"],\n",
|
| 1359 |
-
" \"level\": row[\"level\"],\n",
|
| 1360 |
-
" \"variable\": \"usage_tier\",\n",
|
| 1361 |
-
" \"cluster_name\": \"Minimal\",\n",
|
| 1362 |
-
" \"value\": 0,\n",
|
| 1363 |
-
" }\n",
|
| 1364 |
-
" tier_rows.append(tier_row)\n",
|
| 1365 |
-
"\n",
|
| 1366 |
-
" # Process states\n",
|
| 1367 |
-
" # Get all states with the index variable\n",
|
| 1368 |
-
" all_state_data = df_result[\n",
|
| 1369 |
-
" (df_result[\"variable\"] == var) & (df_result[\"geography\"] == \"state_us\")\n",
|
| 1370 |
-
" ].copy()\n",
|
| 1371 |
-
"\n",
|
| 1372 |
-
" if not all_state_data.empty:\n",
|
| 1373 |
-
" # Separate zero and non-zero usage\n",
|
| 1374 |
-
" zero_usage = all_state_data[all_state_data[\"value\"] == 0].copy()\n",
|
| 1375 |
-
" nonzero_usage = all_state_data[all_state_data[\"value\"] > 0].copy()\n",
|
| 1376 |
-
"\n",
|
| 1377 |
-
" # Calculate quartile thresholds using ONLY filtered states\n",
|
| 1378 |
-
" if filtered_states is not None and not nonzero_usage.empty:\n",
|
| 1379 |
-
" # Get only filtered states for quartile calculation\n",
|
| 1380 |
-
" filtered_for_quartiles = nonzero_usage[\n",
|
| 1381 |
-
" nonzero_usage[\"geo_id\"].isin(filtered_states)\n",
|
| 1382 |
-
" ].copy()\n",
|
| 1383 |
-
"\n",
|
| 1384 |
-
" if not filtered_for_quartiles.empty:\n",
|
| 1385 |
-
" # Calculate quartile thresholds from filtered states\n",
|
| 1386 |
-
" quartiles = (\n",
|
| 1387 |
-
" filtered_for_quartiles[\"value\"]\n",
|
| 1388 |
-
" .quantile([0.25, 0.5, 0.75])\n",
|
| 1389 |
-
" .values\n",
|
| 1390 |
-
" )\n",
|
| 1391 |
-
"\n",
|
| 1392 |
-
" # Apply thresholds to all non-zero states\n",
|
| 1393 |
-
" for _, row in nonzero_usage.iterrows():\n",
|
| 1394 |
-
" value = row[\"value\"]\n",
|
| 1395 |
-
"\n",
|
| 1396 |
-
" # Assign tier based on thresholds\n",
|
| 1397 |
-
" if value <= quartiles[0]:\n",
|
| 1398 |
-
" tier_label = quartile_labels[0] # Bottom 25%\n",
|
| 1399 |
-
" tier_value = 1\n",
|
| 1400 |
-
" elif value <= quartiles[1]:\n",
|
| 1401 |
-
" tier_label = quartile_labels[1] # 25-50%\n",
|
| 1402 |
-
" tier_value = 2\n",
|
| 1403 |
-
" elif value <= quartiles[2]:\n",
|
| 1404 |
-
" tier_label = quartile_labels[2] # 50-75%\n",
|
| 1405 |
-
" tier_value = 3\n",
|
| 1406 |
-
" else:\n",
|
| 1407 |
-
" tier_label = quartile_labels[3] # Top 25%\n",
|
| 1408 |
-
" tier_value = 4\n",
|
| 1409 |
-
"\n",
|
| 1410 |
-
" tier_row = {\n",
|
| 1411 |
-
" \"geo_id\": row[\"geo_id\"],\n",
|
| 1412 |
-
" \"geography\": row[\"geography\"],\n",
|
| 1413 |
-
" \"date_start\": row[\"date_start\"],\n",
|
| 1414 |
-
" \"date_end\": row[\"date_end\"],\n",
|
| 1415 |
-
" \"platform_and_product\": row[\"platform_and_product\"],\n",
|
| 1416 |
-
" \"facet\": row[\"facet\"],\n",
|
| 1417 |
-
" \"level\": row[\"level\"],\n",
|
| 1418 |
-
" \"variable\": \"usage_tier\",\n",
|
| 1419 |
-
" \"cluster_name\": tier_label,\n",
|
| 1420 |
-
" \"value\": tier_value,\n",
|
| 1421 |
-
" }\n",
|
| 1422 |
-
" tier_rows.append(tier_row)\n",
|
| 1423 |
-
"\n",
|
| 1424 |
-
" # Add tier 0 for all zero usage states\n",
|
| 1425 |
-
" for _, row in zero_usage.iterrows():\n",
|
| 1426 |
-
" tier_row = {\n",
|
| 1427 |
-
" \"geo_id\": row[\"geo_id\"],\n",
|
| 1428 |
-
" \"geography\": row[\"geography\"],\n",
|
| 1429 |
-
" \"date_start\": row[\"date_start\"],\n",
|
| 1430 |
-
" \"date_end\": row[\"date_end\"],\n",
|
| 1431 |
-
" \"platform_and_product\": row[\"platform_and_product\"],\n",
|
| 1432 |
-
" \"facet\": row[\"facet\"],\n",
|
| 1433 |
-
" \"level\": row[\"level\"],\n",
|
| 1434 |
-
" \"variable\": \"usage_tier\",\n",
|
| 1435 |
-
" \"cluster_name\": \"Minimal\",\n",
|
| 1436 |
-
" \"value\": 0,\n",
|
| 1437 |
-
" }\n",
|
| 1438 |
-
" tier_rows.append(tier_row)\n",
|
| 1439 |
-
"\n",
|
| 1440 |
-
" if tier_rows:\n",
|
| 1441 |
-
" df_result = pd.concat(\n",
|
| 1442 |
-
" [df_result, pd.DataFrame(tier_rows)], ignore_index=True\n",
|
| 1443 |
-
" )\n",
|
| 1444 |
-
"\n",
|
| 1445 |
-
" return df_result"
|
| 1446 |
-
]
|
| 1447 |
-
},
|
| 1448 |
-
{
|
| 1449 |
-
"cell_type": "code",
|
| 1450 |
-
"execution_count": null,
|
| 1451 |
-
"metadata": {},
|
| 1452 |
-
"outputs": [],
|
| 1453 |
-
"source": [
|
| 1454 |
-
"def calculate_automation_augmentation_metrics(\n",
|
| 1455 |
-
" df, filtered_countries=None, filtered_states=None\n",
|
| 1456 |
-
"):\n",
|
| 1457 |
-
" \"\"\"\n",
|
| 1458 |
-
" Calculate automation vs augmentation percentages for collaboration patterns.\n",
|
| 1459 |
-
"\n",
|
| 1460 |
-
" This function:\n",
|
| 1461 |
-
" 1. Categorizes collaboration patterns as automation or augmentation\n",
|
| 1462 |
-
" 2. Calculates percentages excluding 'none' and 'not_classified'\n",
|
| 1463 |
-
" 3. Only calculates for filtered geographies at country/state level\n",
|
| 1464 |
-
"\n",
|
| 1465 |
-
" Categorization:\n",
|
| 1466 |
-
" - Automation: directive, feedback loop (AI-centric patterns)\n",
|
| 1467 |
-
" - Augmentation: validation, task iteration, learning (human-centric patterns)\n",
|
| 1468 |
-
" - Excluded: none (no collaboration), not_classified (unknown)\n",
|
| 1469 |
-
"\n",
|
| 1470 |
-
" Args:\n",
|
| 1471 |
-
" df: Dataframe with collaboration data\n",
|
| 1472 |
-
" filtered_countries: List of countries that meet MIN_OBSERVATIONS\n",
|
| 1473 |
-
" filtered_states: List of states that meet MIN_OBSERVATIONS\n",
|
| 1474 |
-
"\n",
|
| 1475 |
-
" Returns:\n",
|
| 1476 |
-
" Dataframe with automation/augmentation percentage rows added\n",
|
| 1477 |
-
" \"\"\"\n",
|
| 1478 |
-
" if \"facet\" not in df.columns or \"cluster_name\" not in df.columns:\n",
|
| 1479 |
-
" return df\n",
|
| 1480 |
-
"\n",
|
| 1481 |
-
" df_result = df.copy()\n",
|
| 1482 |
-
"\n",
|
| 1483 |
-
" # Get collaboration data\n",
|
| 1484 |
-
" collab_data = df_result[\n",
|
| 1485 |
-
" (df_result[\"facet\"] == \"collaboration\")\n",
|
| 1486 |
-
" & (df_result[\"variable\"] == \"collaboration_count\")\n",
|
| 1487 |
-
" ].copy()\n",
|
| 1488 |
-
"\n",
|
| 1489 |
-
" if collab_data.empty:\n",
|
| 1490 |
-
" return df_result\n",
|
| 1491 |
-
"\n",
|
| 1492 |
-
" # Define pattern categorization\n",
|
| 1493 |
-
" def categorize_pattern(pattern_name):\n",
|
| 1494 |
-
" if pd.isna(pattern_name):\n",
|
| 1495 |
-
" return None\n",
|
| 1496 |
-
"\n",
|
| 1497 |
-
" pattern_clean = pattern_name.lower().replace(\"_\", \" \").replace(\"-\", \" \")\n",
|
| 1498 |
-
"\n",
|
| 1499 |
-
" # Augmentation patterns (human-centric)\n",
|
| 1500 |
-
" if \"validation\" in pattern_clean:\n",
|
| 1501 |
-
" return \"augmentation\"\n",
|
| 1502 |
-
" elif \"task iteration\" in pattern_clean or \"task_iteration\" in pattern_clean:\n",
|
| 1503 |
-
" return \"augmentation\"\n",
|
| 1504 |
-
" elif \"learning\" in pattern_clean:\n",
|
| 1505 |
-
" return \"augmentation\"\n",
|
| 1506 |
-
" # Automation patterns (AI-centric)\n",
|
| 1507 |
-
" elif \"directive\" in pattern_clean:\n",
|
| 1508 |
-
" return \"automation\"\n",
|
| 1509 |
-
" elif \"feedback loop\" in pattern_clean or \"feedback_loop\" in pattern_clean:\n",
|
| 1510 |
-
" return \"automation\"\n",
|
| 1511 |
-
" # Excluded patterns - return None to exclude from calculations\n",
|
| 1512 |
-
" elif \"none\" in pattern_clean or \"not_classified\" in pattern_clean:\n",
|
| 1513 |
-
" return None\n",
|
| 1514 |
-
" else:\n",
|
| 1515 |
-
" return None # Unknown patterns also excluded\n",
|
| 1516 |
-
"\n",
|
| 1517 |
-
" # Add category column\n",
|
| 1518 |
-
" collab_data[\"category\"] = collab_data[\"cluster_name\"].apply(categorize_pattern)\n",
|
| 1519 |
-
"\n",
|
| 1520 |
-
" # Filter to only patterns that have a category (excludes none, not_classified, etc.)\n",
|
| 1521 |
-
" collab_categorized = collab_data[collab_data[\"category\"].notna()].copy()\n",
|
| 1522 |
-
"\n",
|
| 1523 |
-
" if collab_categorized.empty:\n",
|
| 1524 |
-
" return df_result\n",
|
| 1525 |
-
"\n",
|
| 1526 |
-
" # Process by geography\n",
|
| 1527 |
-
" new_rows = []\n",
|
| 1528 |
-
"\n",
|
| 1529 |
-
" # Group by geography and geo_id\n",
|
| 1530 |
-
" for (geography, geo_id), geo_data in collab_categorized.groupby(\n",
|
| 1531 |
-
" [\"geography\", \"geo_id\"]\n",
|
| 1532 |
-
" ):\n",
|
| 1533 |
-
" # Apply filtering based on geography level\n",
|
| 1534 |
-
" if geography == \"country\" and filtered_countries is not None:\n",
|
| 1535 |
-
" if geo_id not in filtered_countries:\n",
|
| 1536 |
-
" continue # Skip countries that don't meet threshold\n",
|
| 1537 |
-
" elif geography == \"state_us\" and filtered_states is not None:\n",
|
| 1538 |
-
" if geo_id not in filtered_states:\n",
|
| 1539 |
-
" continue # Skip states that don't meet threshold\n",
|
| 1540 |
-
" # global is always included (no filtering)\n",
|
| 1541 |
-
"\n",
|
| 1542 |
-
" # Calculate totals by category\n",
|
| 1543 |
-
" automation_total = geo_data[geo_data[\"category\"] == \"automation\"][\"value\"].sum()\n",
|
| 1544 |
-
" augmentation_total = geo_data[geo_data[\"category\"] == \"augmentation\"][\n",
|
| 1545 |
-
" \"value\"\n",
|
| 1546 |
-
" ].sum()\n",
|
| 1547 |
-
"\n",
|
| 1548 |
-
" # Total of categorized patterns (excluding none and not_classified)\n",
|
| 1549 |
-
" total_categorized = automation_total + augmentation_total\n",
|
| 1550 |
-
"\n",
|
| 1551 |
-
" if total_categorized > 0:\n",
|
| 1552 |
-
" # Get a sample row for metadata\n",
|
| 1553 |
-
" sample_row = geo_data.iloc[0]\n",
|
| 1554 |
-
"\n",
|
| 1555 |
-
" # Create automation percentage row\n",
|
| 1556 |
-
" automation_row = {\n",
|
| 1557 |
-
" \"geo_id\": geo_id,\n",
|
| 1558 |
-
" \"geography\": geography,\n",
|
| 1559 |
-
" \"date_start\": sample_row[\"date_start\"],\n",
|
| 1560 |
-
" \"date_end\": sample_row[\"date_end\"],\n",
|
| 1561 |
-
" \"platform_and_product\": sample_row[\"platform_and_product\"],\n",
|
| 1562 |
-
" \"facet\": \"collaboration_automation_augmentation\",\n",
|
| 1563 |
-
" \"level\": 0,\n",
|
| 1564 |
-
" \"variable\": \"automation_pct\",\n",
|
| 1565 |
-
" \"cluster_name\": \"automation\",\n",
|
| 1566 |
-
" \"value\": (automation_total / total_categorized) * 100,\n",
|
| 1567 |
-
" }\n",
|
| 1568 |
-
" new_rows.append(automation_row)\n",
|
| 1569 |
-
"\n",
|
| 1570 |
-
" # Create augmentation percentage row\n",
|
| 1571 |
-
" augmentation_row = {\n",
|
| 1572 |
-
" \"geo_id\": geo_id,\n",
|
| 1573 |
-
" \"geography\": geography,\n",
|
| 1574 |
-
" \"date_start\": sample_row[\"date_start\"],\n",
|
| 1575 |
-
" \"date_end\": sample_row[\"date_end\"],\n",
|
| 1576 |
-
" \"platform_and_product\": sample_row[\"platform_and_product\"],\n",
|
| 1577 |
-
" \"facet\": \"collaboration_automation_augmentation\",\n",
|
| 1578 |
-
" \"level\": 0,\n",
|
| 1579 |
-
" \"variable\": \"augmentation_pct\",\n",
|
| 1580 |
-
" \"cluster_name\": \"augmentation\",\n",
|
| 1581 |
-
" \"value\": (augmentation_total / total_categorized) * 100,\n",
|
| 1582 |
-
" }\n",
|
| 1583 |
-
" new_rows.append(augmentation_row)\n",
|
| 1584 |
-
"\n",
|
| 1585 |
-
" # Add all new rows to result\n",
|
| 1586 |
-
" if new_rows:\n",
|
| 1587 |
-
" df_new = pd.DataFrame(new_rows)\n",
|
| 1588 |
-
" df_result = pd.concat([df_result, df_new], ignore_index=True)\n",
|
| 1589 |
-
"\n",
|
| 1590 |
-
" return df_result"
|
| 1591 |
-
]
|
| 1592 |
-
},
|
| 1593 |
-
{
|
| 1594 |
-
"cell_type": "code",
|
| 1595 |
-
"execution_count": null,
|
| 1596 |
-
"metadata": {},
|
| 1597 |
-
"outputs": [],
|
| 1598 |
-
"source": [
|
| 1599 |
-
"def add_iso3_and_names(df):\n",
|
| 1600 |
-
" \"\"\"\n",
|
| 1601 |
-
" Replace ISO-2 codes with ISO-3 codes and add geographic names.\n",
|
| 1602 |
-
"\n",
|
| 1603 |
-
" This function:\n",
|
| 1604 |
-
" 1. Replaces geo_id from ISO-2 to ISO-3 for countries\n",
|
| 1605 |
-
" 2. Adds geo_name column with human-readable names for all geographies\n",
|
| 1606 |
-
" 3. Preserves special geo_ids (like 'not_classified') that aren't in ISO mapping\n",
|
| 1607 |
-
"\n",
|
| 1608 |
-
" Args:\n",
|
| 1609 |
-
" df: Enriched dataframe with geo_id (ISO-2 for countries, state codes for US states)\n",
|
| 1610 |
-
"\n",
|
| 1611 |
-
" Returns:\n",
|
| 1612 |
-
" Dataframe with ISO-3 codes in geo_id and geo_name column added\n",
|
| 1613 |
-
" \"\"\"\n",
|
| 1614 |
-
" df_result = df.copy()\n",
|
| 1615 |
-
"\n",
|
| 1616 |
-
" # Initialize geo_name column\n",
|
| 1617 |
-
" df_result[\"geo_name\"] = \"\"\n",
|
| 1618 |
-
"\n",
|
| 1619 |
-
" # Load ISO mapping data for countries\n",
|
| 1620 |
-
" iso_path = Path(DATA_INTERMEDIATE_DIR) / \"iso_country_codes.csv\"\n",
|
| 1621 |
-
" if iso_path.exists():\n",
|
| 1622 |
-
" df_iso = pd.read_csv(iso_path, keep_default_na=False, na_values=[\"\"])\n",
|
| 1623 |
-
"\n",
|
| 1624 |
-
" # Create ISO-2 to ISO-3 mapping\n",
|
| 1625 |
-
" iso2_to_iso3 = dict(zip(df_iso[\"iso_alpha_2\"], df_iso[\"iso_alpha_3\"]))\n",
|
| 1626 |
-
"\n",
|
| 1627 |
-
" # Create ISO-2 to country name mapping\n",
|
| 1628 |
-
" iso2_to_name = dict(zip(df_iso[\"iso_alpha_2\"], df_iso[\"country_name\"]))\n",
|
| 1629 |
-
"\n",
|
| 1630 |
-
" # For all rows where geography is 'country', add country names and convert codes\n",
|
| 1631 |
-
" # This includes content facets that are broken down by country\n",
|
| 1632 |
-
" country_mask = df_result[\"geography\"] == \"country\"\n",
|
| 1633 |
-
"\n",
|
| 1634 |
-
" # First, identify which geo_ids don't have ISO mappings\n",
|
| 1635 |
-
" country_geo_ids = df_result.loc[country_mask, \"geo_id\"].unique()\n",
|
| 1636 |
-
" unmapped_geo_ids = [\n",
|
| 1637 |
-
" g for g in country_geo_ids if g not in iso2_to_iso3 and pd.notna(g)\n",
|
| 1638 |
-
" ]\n",
|
| 1639 |
-
"\n",
|
| 1640 |
-
" if unmapped_geo_ids:\n",
|
| 1641 |
-
" print(\n",
|
| 1642 |
-
" f\"\\nWarning: The following geo_ids are not in ISO-2 mapping and will be kept as-is:\"\n",
|
| 1643 |
-
" )\n",
|
| 1644 |
-
" for geo_id in unmapped_geo_ids:\n",
|
| 1645 |
-
" # Count rows and usage for this geo_id\n",
|
| 1646 |
-
" geo_mask = (df_result[\"geography\"] == \"country\") & (\n",
|
| 1647 |
-
" df_result[\"geo_id\"] == geo_id\n",
|
| 1648 |
-
" )\n",
|
| 1649 |
-
" row_count = geo_mask.sum()\n",
|
| 1650 |
-
" usage_mask = geo_mask & (df_result[\"variable\"] == \"usage_count\")\n",
|
| 1651 |
-
" usage_sum = (\n",
|
| 1652 |
-
" df_result.loc[usage_mask, \"value\"].sum() if usage_mask.any() else 0\n",
|
| 1653 |
-
" )\n",
|
| 1654 |
-
" print(f\" - '{geo_id}': {row_count} rows, {usage_sum:,.0f} usage count\")\n",
|
| 1655 |
-
"\n",
|
| 1656 |
-
" # Check for geo_ids without country names\n",
|
| 1657 |
-
" unmapped_names = [g for g in unmapped_geo_ids if g not in iso2_to_name]\n",
|
| 1658 |
-
" if unmapped_names:\n",
|
| 1659 |
-
" print(\n",
|
| 1660 |
-
" f\"\\nWarning: The following geo_ids don't have country names and will use geo_id as name:\"\n",
|
| 1661 |
-
" )\n",
|
| 1662 |
-
" for geo_id in unmapped_names:\n",
|
| 1663 |
-
" print(f\" - '{geo_id}'\")\n",
|
| 1664 |
-
"\n",
|
| 1665 |
-
" # Apply country names BEFORE converting ISO-2 to ISO-3\n",
|
| 1666 |
-
" # The iso2_to_name dictionary uses ISO-2 codes as keys\n",
|
| 1667 |
-
" df_result.loc[country_mask, \"geo_name\"] = (\n",
|
| 1668 |
-
" df_result.loc[country_mask, \"geo_id\"]\n",
|
| 1669 |
-
" .map(iso2_to_name)\n",
|
| 1670 |
-
" .fillna(df_result.loc[country_mask, \"geo_id\"])\n",
|
| 1671 |
-
" )\n",
|
| 1672 |
-
"\n",
|
| 1673 |
-
" # Convert ISO-2 to ISO-3 codes\n",
|
| 1674 |
-
" df_result.loc[country_mask, \"geo_id\"] = (\n",
|
| 1675 |
-
" df_result.loc[country_mask, \"geo_id\"]\n",
|
| 1676 |
-
" .map(iso2_to_iso3)\n",
|
| 1677 |
-
" .fillna(df_result.loc[country_mask, \"geo_id\"])\n",
|
| 1678 |
-
" )\n",
|
| 1679 |
-
" else:\n",
|
| 1680 |
-
" print(f\"Warning: ISO mapping file not found at {iso_path}\")\n",
|
| 1681 |
-
"\n",
|
| 1682 |
-
" # Load state names from census data\n",
|
| 1683 |
-
" state_codes_path = Path(DATA_INPUT_DIR) / \"census_state_codes.txt\"\n",
|
| 1684 |
-
" if state_codes_path.exists():\n",
|
| 1685 |
-
" df_state_codes = pd.read_csv(state_codes_path, sep=\"|\")\n",
|
| 1686 |
-
" # Create state code to name mapping (STUSAB is the 2-letter code, STATE_NAME is the full name)\n",
|
| 1687 |
-
" state_code_to_name = dict(\n",
|
| 1688 |
-
" zip(df_state_codes[\"STUSAB\"], df_state_codes[\"STATE_NAME\"])\n",
|
| 1689 |
-
" )\n",
|
| 1690 |
-
"\n",
|
| 1691 |
-
" # For all rows where geography is 'state_us', add state names\n",
|
| 1692 |
-
" state_mask = df_result[\"geography\"] == \"state_us\"\n",
|
| 1693 |
-
" df_result.loc[state_mask, \"geo_name\"] = df_result.loc[state_mask, \"geo_id\"].map(\n",
|
| 1694 |
-
" state_code_to_name\n",
|
| 1695 |
-
" )\n",
|
| 1696 |
-
" else:\n",
|
| 1697 |
-
" print(f\"Warning: State census file not found at {state_codes_path}\")\n",
|
| 1698 |
-
"\n",
|
| 1699 |
-
" # For global entries\n",
|
| 1700 |
-
" global_mask = df_result[\"geography\"] == \"global\"\n",
|
| 1701 |
-
" df_result.loc[global_mask, \"geo_name\"] = \"global\"\n",
|
| 1702 |
-
"\n",
|
| 1703 |
-
" # Fill any missing geo_names with geo_id as fallback\n",
|
| 1704 |
-
" df_result.loc[df_result[\"geo_name\"] == \"\", \"geo_name\"] = df_result.loc[\n",
|
| 1705 |
-
" df_result[\"geo_name\"] == \"\", \"geo_id\"\n",
|
| 1706 |
-
" ]\n",
|
| 1707 |
-
" df_result[\"geo_name\"] = df_result[\"geo_name\"].fillna(df_result[\"geo_id\"])\n",
|
| 1708 |
-
"\n",
|
| 1709 |
-
" return df_result"
|
| 1710 |
-
]
|
| 1711 |
-
},
|
| 1712 |
-
{
|
| 1713 |
-
"cell_type": "markdown",
|
| 1714 |
-
"metadata": {},
|
| 1715 |
-
"source": [
|
| 1716 |
-
"## Main Processing Function"
|
| 1717 |
-
]
|
| 1718 |
-
},
|
| 1719 |
-
{
|
| 1720 |
-
"cell_type": "code",
|
| 1721 |
-
"execution_count": null,
|
| 1722 |
-
"metadata": {},
|
| 1723 |
-
"outputs": [],
|
| 1724 |
-
"source": [
|
| 1725 |
-
"def enrich_clio_data(input_path, output_path, external_data=None):\n",
|
| 1726 |
-
" \"\"\"\n",
|
| 1727 |
-
" Enrich processed Clio data with external sources.\n",
|
| 1728 |
-
"\n",
|
| 1729 |
-
" Args:\n",
|
| 1730 |
-
" input_path: Path to processed Clio data\n",
|
| 1731 |
-
" output_path: Path for enriched CSV output\n",
|
| 1732 |
-
" external_data: Pre-loaded external data (optional)\n",
|
| 1733 |
-
"\n",
|
| 1734 |
-
" Returns:\n",
|
| 1735 |
-
" Path to enriched data file\n",
|
| 1736 |
-
" \"\"\"\n",
|
| 1737 |
-
" # Load processed Clio data - use keep_default_na=False to preserve \"NA\" (Namibia)\n",
|
| 1738 |
-
" df = pd.read_csv(input_path, keep_default_na=False, na_values=[\"\"])\n",
|
| 1739 |
-
"\n",
|
| 1740 |
-
" # Load external data if not provided\n",
|
| 1741 |
-
" if external_data is None:\n",
|
| 1742 |
-
" external_data = load_external_data()\n",
|
| 1743 |
-
"\n",
|
| 1744 |
-
" # Get filtered geographies (but keep all data in the dataframe)\n",
|
| 1745 |
-
" filtered_countries, filtered_states = get_filtered_geographies(df)\n",
|
| 1746 |
-
"\n",
|
| 1747 |
-
" # Merge with population data\n",
|
| 1748 |
-
" df = merge_population_data(df, external_data[\"population\"])\n",
|
| 1749 |
-
"\n",
|
| 1750 |
-
" # Merge with GDP data (pass population data for per capita calculation)\n",
|
| 1751 |
-
" df = merge_gdp_data(df, external_data[\"gdp\"], external_data[\"population\"])\n",
|
| 1752 |
-
"\n",
|
| 1753 |
-
" # Calculate SOC occupation distribution from O*NET tasks\n",
|
| 1754 |
-
" # Only for geographies that meet MIN_OBSERVATIONS threshold\n",
|
| 1755 |
-
" df = calculate_soc_distribution(\n",
|
| 1756 |
-
" df,\n",
|
| 1757 |
-
" external_data[\"task_statements\"],\n",
|
| 1758 |
-
" external_data[\"soc_structure\"],\n",
|
| 1759 |
-
" filtered_countries=filtered_countries,\n",
|
| 1760 |
-
" filtered_states=filtered_states,\n",
|
| 1761 |
-
" )\n",
|
| 1762 |
-
"\n",
|
| 1763 |
-
" # Calculate per capita metrics\n",
|
| 1764 |
-
" df = calculate_per_capita_metrics(df)\n",
|
| 1765 |
-
"\n",
|
| 1766 |
-
" # Calculate usage index - pass filtered countries/states to only use them for baseline\n",
|
| 1767 |
-
" df = calculate_usage_per_capita_index(\n",
|
| 1768 |
-
" df, filtered_countries=filtered_countries, filtered_states=filtered_states\n",
|
| 1769 |
-
" )\n",
|
| 1770 |
-
"\n",
|
| 1771 |
-
" # Calculate category percentage index - pass filtered countries/states\n",
|
| 1772 |
-
" df = calculate_category_percentage_index(\n",
|
| 1773 |
-
" df, filtered_countries=filtered_countries, filtered_states=filtered_states\n",
|
| 1774 |
-
" )\n",
|
| 1775 |
-
"\n",
|
| 1776 |
-
" # Calculate usage tiers - pass filtered countries/states to only use them\n",
|
| 1777 |
-
" df = calculate_usage_tiers(\n",
|
| 1778 |
-
" df, filtered_countries=filtered_countries, filtered_states=filtered_states\n",
|
| 1779 |
-
" )\n",
|
| 1780 |
-
"\n",
|
| 1781 |
-
" # Add collaboration categorization\n",
|
| 1782 |
-
" df = calculate_automation_augmentation_metrics(df)\n",
|
| 1783 |
-
"\n",
|
| 1784 |
-
" # Add ISO-3 codes and geographic names\n",
|
| 1785 |
-
" df = add_iso3_and_names(df)\n",
|
| 1786 |
-
"\n",
|
| 1787 |
-
" # Sort for consistent output ordering\n",
|
| 1788 |
-
" df = df.sort_values(\n",
|
| 1789 |
-
" [\"geography\", \"geo_id\", \"facet\", \"level\", \"cluster_name\", \"variable\"]\n",
|
| 1790 |
-
" )\n",
|
| 1791 |
-
"\n",
|
| 1792 |
-
" # Save enriched data as CSV\n",
|
| 1793 |
-
" df.to_csv(output_path, index=False)\n",
|
| 1794 |
-
"\n",
|
| 1795 |
-
" return str(output_path)"
|
| 1796 |
-
]
|
| 1797 |
-
},
|
| 1798 |
-
{
|
| 1799 |
-
"cell_type": "markdown",
|
| 1800 |
-
"metadata": {},
|
| 1801 |
-
"source": [
|
| 1802 |
-
"## Merge External Data"
|
| 1803 |
-
]
|
| 1804 |
-
},
|
| 1805 |
-
{
|
| 1806 |
-
"cell_type": "code",
|
| 1807 |
-
"execution_count": null,
|
| 1808 |
-
"metadata": {},
|
| 1809 |
-
"outputs": [],
|
| 1810 |
-
"source": [
|
| 1811 |
-
"input_path = \"../data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv\"\n",
|
| 1812 |
-
"output_path = \"../data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv\"\n",
|
| 1813 |
-
"\n",
|
| 1814 |
-
"enrich_clio_data(input_path, output_path)\n",
|
| 1815 |
-
"print(f\"\\n✅ Enrichment complete! Output: {output_path}\")"
|
| 1816 |
-
]
|
| 1817 |
-
}
|
| 1818 |
-
],
|
| 1819 |
-
"metadata": {
|
| 1820 |
-
"kernelspec": {
|
| 1821 |
-
"display_name": "py311",
|
| 1822 |
-
"language": "python",
|
| 1823 |
-
"name": "python3"
|
| 1824 |
-
},
|
| 1825 |
-
"language_info": {
|
| 1826 |
-
"codemirror_mode": {
|
| 1827 |
-
"name": "ipython",
|
| 1828 |
-
"version": 3
|
| 1829 |
-
},
|
| 1830 |
-
"file_extension": ".py",
|
| 1831 |
-
"mimetype": "text/x-python",
|
| 1832 |
-
"name": "python",
|
| 1833 |
-
"nbconvert_exporter": "python",
|
| 1834 |
-
"pygments_lexer": "ipython3",
|
| 1835 |
-
"version": "3.11.13"
|
| 1836 |
-
}
|
| 1837 |
-
},
|
| 1838 |
-
"nbformat": 4,
|
| 1839 |
-
"nbformat_minor": 4
|
| 1840 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/code/preprocess_gdp.py
DELETED
|
@@ -1,364 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Preprocess GDP data for economic analysis.
|
| 3 |
-
|
| 4 |
-
This script downloads and processes GDP data from:
|
| 5 |
-
1. IMF API for country-level GDP data
|
| 6 |
-
2. BEA (Bureau of Economic Analysis) for US state-level GDP data
|
| 7 |
-
|
| 8 |
-
Output files:
|
| 9 |
-
- gdp_YYYY_country.csv (e.g., gdp_2024_country.csv): Country-level total GDP
|
| 10 |
-
- gdp_YYYY_us_state.csv (e.g., gdp_2024_us_state.csv): US state-level total GDP
|
| 11 |
-
"""
|
| 12 |
-
|
| 13 |
-
import io
|
| 14 |
-
import json
|
| 15 |
-
import warnings
|
| 16 |
-
from pathlib import Path
|
| 17 |
-
|
| 18 |
-
import httpx
|
| 19 |
-
import pandas as pd
|
| 20 |
-
|
| 21 |
-
# Global configuration
|
| 22 |
-
YEAR = 2024
|
| 23 |
-
DATA_INPUT_DIR = Path("../data/input")
|
| 24 |
-
DATA_INTERMEDIATE_DIR = Path("../data/intermediate")
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# Countries where Claude AI service is not available
|
| 28 |
-
# These will be excluded from all GDP data
|
| 29 |
-
EXCLUDED_COUNTRIES = [
|
| 30 |
-
"AFG",
|
| 31 |
-
"BLR",
|
| 32 |
-
"COD",
|
| 33 |
-
"CAF",
|
| 34 |
-
"CHN",
|
| 35 |
-
"CUB",
|
| 36 |
-
"ERI",
|
| 37 |
-
"ETH",
|
| 38 |
-
"HKG",
|
| 39 |
-
"IRN",
|
| 40 |
-
"PRK",
|
| 41 |
-
"LBY",
|
| 42 |
-
"MLI",
|
| 43 |
-
"MMR",
|
| 44 |
-
"MAC",
|
| 45 |
-
"NIC",
|
| 46 |
-
"RUS",
|
| 47 |
-
"SDN",
|
| 48 |
-
"SOM",
|
| 49 |
-
"SSD",
|
| 50 |
-
"SYR",
|
| 51 |
-
"VEN",
|
| 52 |
-
"YEM",
|
| 53 |
-
]
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
def check_existing_files():
|
| 57 |
-
"""Check if processed GDP files already exist."""
|
| 58 |
-
gdp_country_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_country.csv"
|
| 59 |
-
gdp_state_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_us_state.csv"
|
| 60 |
-
|
| 61 |
-
if gdp_country_path.exists() and gdp_state_path.exists():
|
| 62 |
-
print("✅ GDP files already exist:")
|
| 63 |
-
print(f" - {gdp_country_path}")
|
| 64 |
-
print(f" - {gdp_state_path}")
|
| 65 |
-
print("Skipping GDP preprocessing. Delete these files if you want to re-run.")
|
| 66 |
-
return True
|
| 67 |
-
return False
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
def load_country_gdp_data():
|
| 71 |
-
"""
|
| 72 |
-
Load country-level GDP data from cache or IMF API.
|
| 73 |
-
|
| 74 |
-
Returns:
|
| 75 |
-
dict: Raw GDP data from IMF API, or None if fetch fails
|
| 76 |
-
"""
|
| 77 |
-
# Check if raw data already exists
|
| 78 |
-
raw_gdp_path = DATA_INPUT_DIR / f"imf_gdp_raw_{YEAR}.json"
|
| 79 |
-
if raw_gdp_path.exists():
|
| 80 |
-
print("Loading cached IMF GDP data...")
|
| 81 |
-
with open(raw_gdp_path) as f:
|
| 82 |
-
return json.load(f)
|
| 83 |
-
|
| 84 |
-
# Download if not cached
|
| 85 |
-
imf_total_gdp_url = "https://www.imf.org/external/datamapper/api/v1/NGDPD" # IMF returns GDP in billions USD
|
| 86 |
-
|
| 87 |
-
print("Fetching GDP data from IMF API...")
|
| 88 |
-
try:
|
| 89 |
-
with httpx.Client() as client:
|
| 90 |
-
response = client.get(imf_total_gdp_url, timeout=30)
|
| 91 |
-
response.raise_for_status()
|
| 92 |
-
gdp_data = response.json()
|
| 93 |
-
print("✓ Successfully fetched total GDP data from IMF API")
|
| 94 |
-
|
| 95 |
-
# Save raw data for future use
|
| 96 |
-
with open(raw_gdp_path, "w") as f:
|
| 97 |
-
json.dump(gdp_data, f, indent=2)
|
| 98 |
-
print(f"✓ Saved raw GDP data to {raw_gdp_path}")
|
| 99 |
-
|
| 100 |
-
return gdp_data
|
| 101 |
-
except Exception as e:
|
| 102 |
-
raise ConnectionError(f"Failed to fetch data from IMF API: {e}") from e
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
def process_country_gdp_data(gdp_data):
|
| 106 |
-
"""
|
| 107 |
-
Process IMF GDP data into standardized format.
|
| 108 |
-
|
| 109 |
-
Args:
|
| 110 |
-
gdp_data: Raw IMF API response
|
| 111 |
-
|
| 112 |
-
Returns:
|
| 113 |
-
pd.DataFrame: Processed country GDP data (excluding countries where service is not available)
|
| 114 |
-
"""
|
| 115 |
-
# Extract GDP data for target year
|
| 116 |
-
# Structure: {"values": {"NGDPD": {"countryiso3code": {"year": value}}}}
|
| 117 |
-
gdp_values = gdp_data.get("values", {}).get("NGDPD", {})
|
| 118 |
-
|
| 119 |
-
# Build records for target year data only
|
| 120 |
-
gdp_records = []
|
| 121 |
-
target_year = str(YEAR)
|
| 122 |
-
missing_countries = []
|
| 123 |
-
|
| 124 |
-
for countryiso3code, years_data in gdp_values.items():
|
| 125 |
-
if isinstance(years_data, dict):
|
| 126 |
-
if target_year in years_data and years_data[target_year]:
|
| 127 |
-
gdp_value = years_data[target_year]
|
| 128 |
-
# Convert from billions to actual dollars
|
| 129 |
-
gdp_records.append(
|
| 130 |
-
{
|
| 131 |
-
"iso_alpha_3": countryiso3code,
|
| 132 |
-
"gdp_total": float(gdp_value)
|
| 133 |
-
* 1e9, # Convert billions to dollars
|
| 134 |
-
"year": YEAR,
|
| 135 |
-
}
|
| 136 |
-
)
|
| 137 |
-
else:
|
| 138 |
-
missing_countries.append(countryiso3code)
|
| 139 |
-
|
| 140 |
-
if missing_countries:
|
| 141 |
-
warnings.warn(
|
| 142 |
-
f"{len(missing_countries)} countries missing {YEAR} GDP data. "
|
| 143 |
-
f"Examples: {missing_countries[:5]}",
|
| 144 |
-
UserWarning,
|
| 145 |
-
stacklevel=2,
|
| 146 |
-
)
|
| 147 |
-
|
| 148 |
-
df_gdp = pd.DataFrame(gdp_records)
|
| 149 |
-
|
| 150 |
-
if df_gdp.empty:
|
| 151 |
-
raise ValueError(f"No GDP data available for year {YEAR}")
|
| 152 |
-
|
| 153 |
-
# Apply country code mappings for mismatches between IMF and ISO3
|
| 154 |
-
country_code_mappings = {
|
| 155 |
-
"UVK": "XKX", # Kosovo
|
| 156 |
-
# Add more mappings as needed
|
| 157 |
-
}
|
| 158 |
-
|
| 159 |
-
for imf_code, iso3_code in country_code_mappings.items():
|
| 160 |
-
df_gdp.loc[df_gdp["iso_alpha_3"] == imf_code, "iso_alpha_3"] = iso3_code
|
| 161 |
-
|
| 162 |
-
# Filter to only keep countries with valid ISO-3 codes
|
| 163 |
-
# This removes regional aggregates like ADVEC, AFQ, etc.
|
| 164 |
-
iso_codes_path = DATA_INTERMEDIATE_DIR / "iso_country_codes.csv"
|
| 165 |
-
df_iso = pd.read_csv(iso_codes_path, keep_default_na=False, na_values=[""])
|
| 166 |
-
valid_iso3_codes = set(df_iso["iso_alpha_3"].unique())
|
| 167 |
-
|
| 168 |
-
initial_aggregate_count = len(df_gdp)
|
| 169 |
-
df_gdp = df_gdp[df_gdp["iso_alpha_3"].isin(valid_iso3_codes)]
|
| 170 |
-
filtered_aggregates = initial_aggregate_count - len(df_gdp)
|
| 171 |
-
|
| 172 |
-
if filtered_aggregates > 0:
|
| 173 |
-
print(
|
| 174 |
-
f" Filtered out {filtered_aggregates} non-country codes (regional aggregates)"
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
-
# Filter out excluded countries (now using 3-letter codes directly)
|
| 178 |
-
initial_count = len(df_gdp)
|
| 179 |
-
df_gdp = df_gdp[~df_gdp["iso_alpha_3"].isin(EXCLUDED_COUNTRIES)]
|
| 180 |
-
excluded_count = initial_count - len(df_gdp)
|
| 181 |
-
|
| 182 |
-
if excluded_count > 0:
|
| 183 |
-
print(f" Excluded {excluded_count} countries where service is not available")
|
| 184 |
-
|
| 185 |
-
# Save processed GDP data
|
| 186 |
-
processed_gdp_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_country.csv"
|
| 187 |
-
df_gdp.to_csv(processed_gdp_path, index=False)
|
| 188 |
-
|
| 189 |
-
print(f"✓ Saved processed GDP data to {processed_gdp_path}")
|
| 190 |
-
print(f" Countries with {YEAR} GDP data: {len(df_gdp)}")
|
| 191 |
-
print(f" Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}")
|
| 192 |
-
print(f" Total global GDP: ${df_gdp['gdp_total'].sum() / 1e12:.2f} trillion")
|
| 193 |
-
|
| 194 |
-
return df_gdp
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
def load_state_gdp_data():
|
| 198 |
-
"""
|
| 199 |
-
Load US state GDP data from BEA file.
|
| 200 |
-
|
| 201 |
-
Returns:
|
| 202 |
-
pd.DataFrame: Raw state GDP data, or None if file not found
|
| 203 |
-
"""
|
| 204 |
-
state_gdp_raw_path = DATA_INPUT_DIR / f"bea_us_state_gdp_{YEAR}.csv"
|
| 205 |
-
|
| 206 |
-
if not state_gdp_raw_path.exists():
|
| 207 |
-
error_msg = f"""
|
| 208 |
-
State GDP data not found at: {state_gdp_raw_path}
|
| 209 |
-
|
| 210 |
-
To obtain this data:
|
| 211 |
-
1. Go to: https://apps.bea.gov/itable/?ReqID=70&step=1
|
| 212 |
-
2. Select: SASUMMARY State annual summary statistics (area = "United States", statistic = Gross domestic product (GDP), unit of measure = "Levels")
|
| 213 |
-
3. Download the CSV file for year {YEAR}
|
| 214 |
-
4. Save it as: bea_us_state_gdp_{YEAR}.csv
|
| 215 |
-
5. Place it in your data input directory
|
| 216 |
-
"""
|
| 217 |
-
raise FileNotFoundError(error_msg)
|
| 218 |
-
|
| 219 |
-
print("Loading US state GDP data...")
|
| 220 |
-
# Parse CSV skipping the first 3 rows (BEA metadata)
|
| 221 |
-
df_state_gdp_raw = pd.read_csv(state_gdp_raw_path, skiprows=3)
|
| 222 |
-
df_state_gdp_raw.columns = ["GeoFips", "State", f"gdp_{YEAR}_millions"]
|
| 223 |
-
|
| 224 |
-
return df_state_gdp_raw
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
def process_state_gdp_data(df_state_gdp_raw):
|
| 228 |
-
"""
|
| 229 |
-
Process BEA state GDP data into standardized format.
|
| 230 |
-
|
| 231 |
-
Args:
|
| 232 |
-
df_state_gdp_raw: Raw BEA data
|
| 233 |
-
|
| 234 |
-
Returns:
|
| 235 |
-
pd.DataFrame: Processed state GDP data
|
| 236 |
-
"""
|
| 237 |
-
|
| 238 |
-
# Remove the US total row (GeoFips = "00000")
|
| 239 |
-
df_state_gdp = df_state_gdp_raw[df_state_gdp_raw["GeoFips"] != "00000"].copy()
|
| 240 |
-
|
| 241 |
-
# Remove all rows starting from empty line before "Legend/Footnotes" marker
|
| 242 |
-
# BEA files have footer information after the data, with an empty line before
|
| 243 |
-
legend_index = (
|
| 244 |
-
df_state_gdp[
|
| 245 |
-
df_state_gdp["GeoFips"].str.contains("Legend", case=False, na=False)
|
| 246 |
-
].index[0]
|
| 247 |
-
- 1
|
| 248 |
-
)
|
| 249 |
-
df_state_gdp = df_state_gdp.iloc[:legend_index].copy()
|
| 250 |
-
print(f" Removed footer rows starting from 'Legend/Footnotes'")
|
| 251 |
-
|
| 252 |
-
# Convert GDP from millions to actual dollars
|
| 253 |
-
df_state_gdp["gdp_total"] = df_state_gdp[f"gdp_{YEAR}_millions"] * 1e6
|
| 254 |
-
|
| 255 |
-
# Clean state names
|
| 256 |
-
df_state_gdp["State"] = df_state_gdp["State"].str.strip()
|
| 257 |
-
|
| 258 |
-
# Get state codes
|
| 259 |
-
state_code_dict = get_state_codes()
|
| 260 |
-
df_state_gdp["state_code"] = df_state_gdp["State"].map(state_code_dict)
|
| 261 |
-
|
| 262 |
-
# Check for missing state codes
|
| 263 |
-
missing_codes = df_state_gdp[df_state_gdp["state_code"].isna()]
|
| 264 |
-
if not missing_codes.empty:
|
| 265 |
-
raise ValueError(
|
| 266 |
-
f"Could not find state codes for: {missing_codes['State'].tolist()}\n"
|
| 267 |
-
f"All BEA state names should match Census state codes after filtering."
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
-
# Select and rename columns
|
| 271 |
-
df_state_gdp_final = df_state_gdp[
|
| 272 |
-
["state_code", "State", "gdp_total", f"gdp_{YEAR}_millions"]
|
| 273 |
-
].copy()
|
| 274 |
-
df_state_gdp_final.columns = [
|
| 275 |
-
"state_code",
|
| 276 |
-
"state_name",
|
| 277 |
-
"gdp_total",
|
| 278 |
-
"gdp_millions",
|
| 279 |
-
]
|
| 280 |
-
df_state_gdp_final["year"] = YEAR
|
| 281 |
-
|
| 282 |
-
# Save processed state GDP data
|
| 283 |
-
processed_state_gdp_path = DATA_INTERMEDIATE_DIR / f"gdp_{YEAR}_us_state.csv"
|
| 284 |
-
df_state_gdp_final.to_csv(processed_state_gdp_path, index=False)
|
| 285 |
-
|
| 286 |
-
print(
|
| 287 |
-
f"✓ Processed state GDP data for {len(df_state_gdp_final)} states/territories"
|
| 288 |
-
)
|
| 289 |
-
print(
|
| 290 |
-
f" Total US GDP: ${df_state_gdp_final['gdp_total'].sum() / 1e12:.2f} trillion"
|
| 291 |
-
)
|
| 292 |
-
print(f"✓ Saved to {processed_state_gdp_path}")
|
| 293 |
-
|
| 294 |
-
return df_state_gdp_final
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
def get_state_codes():
|
| 298 |
-
"""
|
| 299 |
-
Get US state codes from Census Bureau.
|
| 300 |
-
|
| 301 |
-
Returns:
|
| 302 |
-
dict: Mapping of state names to abbreviations
|
| 303 |
-
"""
|
| 304 |
-
state_codes_path = DATA_INPUT_DIR / "census_state_codes.txt"
|
| 305 |
-
|
| 306 |
-
if state_codes_path.exists():
|
| 307 |
-
print(" Loading cached state codes...")
|
| 308 |
-
df_state_codes = pd.read_csv(state_codes_path, sep="|")
|
| 309 |
-
else:
|
| 310 |
-
print(" Downloading state codes from Census Bureau...")
|
| 311 |
-
response = httpx.get("https://www2.census.gov/geo/docs/reference/state.txt")
|
| 312 |
-
response.raise_for_status()
|
| 313 |
-
|
| 314 |
-
# Save for future use
|
| 315 |
-
with open(state_codes_path, "w") as f:
|
| 316 |
-
f.write(response.text)
|
| 317 |
-
print(f" Cached state codes to {state_codes_path}")
|
| 318 |
-
|
| 319 |
-
df_state_codes = pd.read_csv(io.StringIO(response.text), sep="|")
|
| 320 |
-
|
| 321 |
-
# Create mapping dictionary
|
| 322 |
-
state_code_dict = dict(
|
| 323 |
-
zip(df_state_codes["STATE_NAME"], df_state_codes["STUSAB"], strict=True)
|
| 324 |
-
)
|
| 325 |
-
|
| 326 |
-
return state_code_dict
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
def main():
|
| 330 |
-
"""Main function to run GDP preprocessing."""
|
| 331 |
-
# Check if files already exist
|
| 332 |
-
if check_existing_files():
|
| 333 |
-
return
|
| 334 |
-
|
| 335 |
-
print("=" * 60)
|
| 336 |
-
print(f"PROCESSING {YEAR} GDP DATA")
|
| 337 |
-
print("=" * 60)
|
| 338 |
-
|
| 339 |
-
# Process country-level GDP from IMF
|
| 340 |
-
print(f"\n=== Country-Level GDP (IMF) - Year {YEAR} ===")
|
| 341 |
-
gdp_data = load_country_gdp_data()
|
| 342 |
-
df_gdp_country = process_country_gdp_data(gdp_data)
|
| 343 |
-
|
| 344 |
-
# Process US state-level GDP from BEA
|
| 345 |
-
print(f"\n=== US State-Level GDP (BEA) - Year {YEAR} ===")
|
| 346 |
-
df_state_gdp_raw = load_state_gdp_data()
|
| 347 |
-
df_gdp_state = process_state_gdp_data(df_state_gdp_raw)
|
| 348 |
-
|
| 349 |
-
# Final status
|
| 350 |
-
print(f"\n✅ {YEAR} GDP data preprocessing complete!")
|
| 351 |
-
print("\n=== Summary Statistics ===")
|
| 352 |
-
if df_gdp_country is not None:
|
| 353 |
-
print(f"Countries processed: {len(df_gdp_country)}")
|
| 354 |
-
print(f"Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}")
|
| 355 |
-
print(
|
| 356 |
-
f"Total global GDP: ${df_gdp_country['gdp_total'].sum() / 1e12:.2f} trillion"
|
| 357 |
-
)
|
| 358 |
-
if df_gdp_state is not None:
|
| 359 |
-
print(f"US states processed: {len(df_gdp_state)}")
|
| 360 |
-
print(f"Total US GDP: ${df_gdp_state['gdp_total'].sum() / 1e12:.2f} trillion")
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
if __name__ == "__main__":
|
| 364 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/code/preprocess_iso_codes.py
DELETED
|
@@ -1,111 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Fetch ISO country code mappings from GeoNames.
|
| 3 |
-
|
| 4 |
-
This script fetches comprehensive country data from GeoNames countryInfo.txt
|
| 5 |
-
and saves it as a CSV file for use in data preprocessing pipelines.
|
| 6 |
-
"""
|
| 7 |
-
|
| 8 |
-
import io
|
| 9 |
-
from pathlib import Path
|
| 10 |
-
|
| 11 |
-
import httpx
|
| 12 |
-
import pandas as pd
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
def fetch_country_mappings(save_raw=True):
|
| 16 |
-
"""
|
| 17 |
-
Fetch country code mappings from GeoNames.
|
| 18 |
-
|
| 19 |
-
Args:
|
| 20 |
-
save_raw: Whether to save raw data file to data/input
|
| 21 |
-
|
| 22 |
-
Returns:
|
| 23 |
-
pd.DataFrame: DataFrame with country information from GeoNames
|
| 24 |
-
"""
|
| 25 |
-
# Fetch countryInfo.txt from GeoNames
|
| 26 |
-
geonames_url = "https://download.geonames.org/export/dump/countryInfo.txt"
|
| 27 |
-
|
| 28 |
-
with httpx.Client() as client:
|
| 29 |
-
response = client.get(geonames_url)
|
| 30 |
-
response.raise_for_status()
|
| 31 |
-
content = response.text
|
| 32 |
-
|
| 33 |
-
# Save raw file to data/input for reference
|
| 34 |
-
if save_raw:
|
| 35 |
-
input_dir = Path("../data/input")
|
| 36 |
-
input_dir.mkdir(parents=True, exist_ok=True)
|
| 37 |
-
|
| 38 |
-
raw_path = input_dir / "geonames_countryInfo.txt"
|
| 39 |
-
with open(raw_path, "w", encoding="utf-8") as f:
|
| 40 |
-
f.write(content)
|
| 41 |
-
|
| 42 |
-
# Extract column names from the last comment line
|
| 43 |
-
lines = content.split("\n")
|
| 44 |
-
header_line = [line for line in lines if line.startswith("#")][-1]
|
| 45 |
-
column_names = header_line[1:].split("\t") # Remove # and split by tab
|
| 46 |
-
|
| 47 |
-
# Parse the tab-separated file
|
| 48 |
-
# keep_default_na=False to prevent "NA" (Namibia) from becoming NaN
|
| 49 |
-
df = pd.read_csv(
|
| 50 |
-
io.StringIO(content),
|
| 51 |
-
sep="\t",
|
| 52 |
-
comment="#",
|
| 53 |
-
header=None, # No header row in the data
|
| 54 |
-
keep_default_na=False, # Don't interpret "NA" as NaN (needed for Namibia)
|
| 55 |
-
na_values=[""], # Only treat empty strings as NaN
|
| 56 |
-
names=column_names, # Use the column names from the comment
|
| 57 |
-
)
|
| 58 |
-
|
| 59 |
-
# Rename columns to our standard format
|
| 60 |
-
df = df.rename(
|
| 61 |
-
columns={"ISO": "iso_alpha_2", "ISO3": "iso_alpha_3", "Country": "country_name"}
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
return df
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
def create_country_dataframe(geonames_df):
|
| 68 |
-
"""
|
| 69 |
-
Create a cleaned DataFrame with country codes and names.
|
| 70 |
-
|
| 71 |
-
Args:
|
| 72 |
-
geonames_df: DataFrame from GeoNames with all country information
|
| 73 |
-
|
| 74 |
-
Returns:
|
| 75 |
-
pd.DataFrame: DataFrame with columns [iso_alpha_2, iso_alpha_3, country_name]
|
| 76 |
-
"""
|
| 77 |
-
# Select only the columns we need
|
| 78 |
-
df = geonames_df[["iso_alpha_2", "iso_alpha_3", "country_name"]].copy()
|
| 79 |
-
|
| 80 |
-
# Sort by country name for consistency
|
| 81 |
-
df = df.sort_values("country_name").reset_index(drop=True)
|
| 82 |
-
|
| 83 |
-
return df
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
def save_country_codes(output_path="../data/intermediate/iso_country_codes.csv"):
|
| 87 |
-
"""
|
| 88 |
-
Fetch country codes from GeoNames and save to CSV.
|
| 89 |
-
|
| 90 |
-
Args:
|
| 91 |
-
output_path: Path to save the CSV file
|
| 92 |
-
"""
|
| 93 |
-
# Fetch full GeoNames data
|
| 94 |
-
geonames_df = fetch_country_mappings()
|
| 95 |
-
|
| 96 |
-
# Create cleaned DataFrame with just the columns we need
|
| 97 |
-
df = create_country_dataframe(geonames_df)
|
| 98 |
-
|
| 99 |
-
# Ensure output directory exists
|
| 100 |
-
output_file = Path(output_path)
|
| 101 |
-
output_file.parent.mkdir(parents=True, exist_ok=True)
|
| 102 |
-
|
| 103 |
-
# Save to CSV
|
| 104 |
-
df.to_csv(output_file, index=False)
|
| 105 |
-
|
| 106 |
-
return df
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
if __name__ == "__main__":
|
| 110 |
-
# Fetch and save country codes
|
| 111 |
-
df = save_country_codes()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/code/preprocess_onet.py
DELETED
|
@@ -1,179 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Preprocess O*NET and SOC data for economic analysis.
|
| 3 |
-
|
| 4 |
-
This script downloads and processes occupational data from:
|
| 5 |
-
1. O*NET Resource Center for task statements
|
| 6 |
-
2. O*NET Resource Center for SOC structure
|
| 7 |
-
|
| 8 |
-
Output files:
|
| 9 |
-
- onet_task_statements.csv: O*NET task statements with SOC major groups
|
| 10 |
-
- soc_structure.csv: SOC occupational classification structure
|
| 11 |
-
"""
|
| 12 |
-
|
| 13 |
-
import io
|
| 14 |
-
import os
|
| 15 |
-
import tempfile
|
| 16 |
-
from pathlib import Path
|
| 17 |
-
|
| 18 |
-
import httpx
|
| 19 |
-
import pandas as pd
|
| 20 |
-
|
| 21 |
-
# Global configuration
|
| 22 |
-
DATA_INPUT_DIR = Path("../data/input")
|
| 23 |
-
DATA_INTERMEDIATE_DIR = Path("../data/intermediate")
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def check_existing_files():
|
| 27 |
-
"""Check if processed O*NET/SOC files already exist."""
|
| 28 |
-
onet_task_statements_path = DATA_INTERMEDIATE_DIR / "onet_task_statements.csv"
|
| 29 |
-
soc_structure_path = DATA_INTERMEDIATE_DIR / "soc_structure.csv"
|
| 30 |
-
|
| 31 |
-
if onet_task_statements_path.exists() and soc_structure_path.exists():
|
| 32 |
-
print("✅ SOC/O*NET files already exist:")
|
| 33 |
-
print(f" - {onet_task_statements_path}")
|
| 34 |
-
print(f" - {soc_structure_path}")
|
| 35 |
-
print("Skipping SOC preprocessing. Delete these files if you want to re-run.")
|
| 36 |
-
return True
|
| 37 |
-
return False
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
def load_task_data():
|
| 41 |
-
"""
|
| 42 |
-
Load O*NET Task Statements from cache or O*NET Resource Center.
|
| 43 |
-
|
| 44 |
-
Returns:
|
| 45 |
-
pd.DataFrame: O*NET task statements data
|
| 46 |
-
"""
|
| 47 |
-
# Check if raw data already exists
|
| 48 |
-
raw_onet_path = DATA_INPUT_DIR / "onet_task_statements_raw.xlsx"
|
| 49 |
-
if raw_onet_path.exists():
|
| 50 |
-
df_onet = pd.read_excel(raw_onet_path)
|
| 51 |
-
return df_onet
|
| 52 |
-
|
| 53 |
-
# Download if not cached
|
| 54 |
-
# O*NET Database version 20.1
|
| 55 |
-
onet_url = "https://www.onetcenter.org/dl_files/database/db_20_1_excel/Task%20Statements.xlsx"
|
| 56 |
-
|
| 57 |
-
print("Downloading O*NET task statements...")
|
| 58 |
-
try:
|
| 59 |
-
with httpx.Client(follow_redirects=True) as client:
|
| 60 |
-
response = client.get(onet_url, timeout=60)
|
| 61 |
-
response.raise_for_status()
|
| 62 |
-
excel_content = response.content
|
| 63 |
-
# Save raw data for future use
|
| 64 |
-
with open(raw_onet_path, "wb") as f:
|
| 65 |
-
f.write(excel_content)
|
| 66 |
-
|
| 67 |
-
# Save to temporary file for pandas to read
|
| 68 |
-
with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp_file:
|
| 69 |
-
tmp_file.write(excel_content)
|
| 70 |
-
tmp_path = tmp_file.name
|
| 71 |
-
|
| 72 |
-
try:
|
| 73 |
-
df_onet = pd.read_excel(tmp_path)
|
| 74 |
-
return df_onet
|
| 75 |
-
finally:
|
| 76 |
-
os.unlink(tmp_path)
|
| 77 |
-
|
| 78 |
-
except Exception as e:
|
| 79 |
-
raise ConnectionError(f"Failed to download O*NET data: {e}") from e
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
def process_task_data(df_tasks):
|
| 83 |
-
"""
|
| 84 |
-
Process task statements data.
|
| 85 |
-
|
| 86 |
-
Args:
|
| 87 |
-
df_tasks: Raw task data
|
| 88 |
-
|
| 89 |
-
Returns:
|
| 90 |
-
pd.DataFrame: Processed O*NET data with SOC major groups
|
| 91 |
-
"""
|
| 92 |
-
# Extract SOC major group from O*NET-SOC Code (first 2 digits)
|
| 93 |
-
df_tasks["soc_major_group"] = df_tasks["O*NET-SOC Code"].str[:2]
|
| 94 |
-
|
| 95 |
-
# Save processed task data
|
| 96 |
-
processed_tasks_path = DATA_INTERMEDIATE_DIR / "onet_task_statements.csv"
|
| 97 |
-
df_tasks.to_csv(processed_tasks_path, index=False)
|
| 98 |
-
|
| 99 |
-
print(
|
| 100 |
-
f"✓ Processed {len(df_tasks):,} task statements from {df_tasks['O*NET-SOC Code'].nunique()} occupations"
|
| 101 |
-
)
|
| 102 |
-
|
| 103 |
-
return df_tasks
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
def load_soc_data():
|
| 107 |
-
"""
|
| 108 |
-
Load SOC Structure from cache or O*NET Resource Center.
|
| 109 |
-
|
| 110 |
-
Returns:
|
| 111 |
-
pd.DataFrame: SOC structure data
|
| 112 |
-
"""
|
| 113 |
-
# Check if raw data already exists
|
| 114 |
-
raw_soc_path = DATA_INPUT_DIR / "soc_structure_raw.csv"
|
| 115 |
-
if raw_soc_path.exists():
|
| 116 |
-
return pd.read_csv(raw_soc_path)
|
| 117 |
-
|
| 118 |
-
# Download if not cached
|
| 119 |
-
soc_url = "https://www.onetcenter.org/taxonomy/2019/structure/?fmt=csv"
|
| 120 |
-
|
| 121 |
-
print("Downloading SOC structure...")
|
| 122 |
-
try:
|
| 123 |
-
with httpx.Client(follow_redirects=True) as client:
|
| 124 |
-
response = client.get(soc_url, timeout=30)
|
| 125 |
-
response.raise_for_status()
|
| 126 |
-
soc_content = response.text
|
| 127 |
-
# Save raw data for future use
|
| 128 |
-
with open(raw_soc_path, "w") as f:
|
| 129 |
-
f.write(soc_content)
|
| 130 |
-
|
| 131 |
-
# Parse the CSV
|
| 132 |
-
df_soc = pd.read_csv(io.StringIO(soc_content))
|
| 133 |
-
return df_soc
|
| 134 |
-
|
| 135 |
-
except Exception as e:
|
| 136 |
-
raise ConnectionError(f"Failed to download SOC structure: {e}") from e
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
def process_soc_data(df_soc):
|
| 140 |
-
"""
|
| 141 |
-
Process SOC structure data.
|
| 142 |
-
|
| 143 |
-
Args:
|
| 144 |
-
df_soc: Raw SOC structure data
|
| 145 |
-
|
| 146 |
-
Returns:
|
| 147 |
-
pd.DataFrame: Processed SOC structure
|
| 148 |
-
"""
|
| 149 |
-
# Extract the 2-digit code from Major Group (e.g., "11-0000" -> "11")
|
| 150 |
-
df_soc["soc_major_group"] = df_soc["Major Group"].str[:2]
|
| 151 |
-
|
| 152 |
-
# Save processed SOC structure
|
| 153 |
-
processed_soc_path = DATA_INTERMEDIATE_DIR / "soc_structure.csv"
|
| 154 |
-
df_soc.to_csv(processed_soc_path, index=False)
|
| 155 |
-
|
| 156 |
-
print(f"✓ Processed {len(df_soc):,} SOC entries")
|
| 157 |
-
|
| 158 |
-
return df_soc
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
def main():
|
| 162 |
-
"""Main function to run O*NET/SOC preprocessing."""
|
| 163 |
-
# Check if files already exist
|
| 164 |
-
if check_existing_files():
|
| 165 |
-
return
|
| 166 |
-
|
| 167 |
-
# Process Task Statements
|
| 168 |
-
df_tasks_raw = load_task_data()
|
| 169 |
-
process_task_data(df_tasks_raw)
|
| 170 |
-
|
| 171 |
-
# Process SOC Structure
|
| 172 |
-
df_soc_raw = load_soc_data()
|
| 173 |
-
process_soc_data(df_soc_raw)
|
| 174 |
-
|
| 175 |
-
print("\n✅ O*NET/SOC data preprocessing complete!")
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
if __name__ == "__main__":
|
| 179 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/code/preprocess_population.py
DELETED
|
@@ -1,407 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Preprocess population data for economic analysis.
|
| 3 |
-
|
| 4 |
-
This script downloads and processes working-age population data (ages 15-64) from:
|
| 5 |
-
1. World Bank API for country-level data
|
| 6 |
-
2. Taiwan National Development Council for Taiwan data (not in World Bank)
|
| 7 |
-
3. US Census Bureau for US state-level data
|
| 8 |
-
|
| 9 |
-
Output files:
|
| 10 |
-
- working_age_pop_YYYY_country.csv (e.g., working_age_pop_2024_country.csv): Country-level working age population
|
| 11 |
-
- working_age_pop_YYYY_us_state.csv (e.g., working_age_pop_2024_us_state.csv): US state-level working age population
|
| 12 |
-
"""
|
| 13 |
-
|
| 14 |
-
import io
|
| 15 |
-
import warnings
|
| 16 |
-
from pathlib import Path
|
| 17 |
-
|
| 18 |
-
import httpx
|
| 19 |
-
import pandas as pd
|
| 20 |
-
|
| 21 |
-
# Global configuration
|
| 22 |
-
YEAR = 2024
|
| 23 |
-
DATA_INPUT_DIR = Path("../data/input")
|
| 24 |
-
DATA_INTERMEDIATE_DIR = Path("../data/intermediate")
|
| 25 |
-
|
| 26 |
-
# Countries where Claude AI service is not available
|
| 27 |
-
# These will be excluded from all population data
|
| 28 |
-
EXCLUDED_COUNTRIES = [
|
| 29 |
-
"AF", # Afghanistan
|
| 30 |
-
"BY", # Belarus
|
| 31 |
-
"CD", # Democratic Republic of the Congo
|
| 32 |
-
"CF", # Central African Republic
|
| 33 |
-
"CN", # China
|
| 34 |
-
"CU", # Cuba
|
| 35 |
-
"ER", # Eritrea
|
| 36 |
-
"ET", # Ethiopia
|
| 37 |
-
"HK", # Hong Kong
|
| 38 |
-
"IR", # Iran
|
| 39 |
-
"KP", # North Korea
|
| 40 |
-
"LY", # Libya
|
| 41 |
-
"ML", # Mali
|
| 42 |
-
"MM", # Myanmar
|
| 43 |
-
"MO", # Macau
|
| 44 |
-
"NI", # Nicaragua
|
| 45 |
-
"RU", # Russia
|
| 46 |
-
"SD", # Sudan
|
| 47 |
-
"SO", # Somalia
|
| 48 |
-
"SS", # South Sudan
|
| 49 |
-
"SY", # Syria
|
| 50 |
-
"VE", # Venezuela
|
| 51 |
-
"YE", # Yemen
|
| 52 |
-
]
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def check_existing_files():
|
| 56 |
-
"""Check if processed population files already exist."""
|
| 57 |
-
processed_country_pop_path = (
|
| 58 |
-
DATA_INTERMEDIATE_DIR / f"working_age_pop_{YEAR}_country.csv"
|
| 59 |
-
)
|
| 60 |
-
processed_state_pop_path = (
|
| 61 |
-
DATA_INTERMEDIATE_DIR / f"working_age_pop_{YEAR}_us_state.csv"
|
| 62 |
-
)
|
| 63 |
-
|
| 64 |
-
if processed_country_pop_path.exists() and processed_state_pop_path.exists():
|
| 65 |
-
print("✅ Population files already exist:")
|
| 66 |
-
print(f" - {processed_country_pop_path}")
|
| 67 |
-
print(f" - {processed_state_pop_path}")
|
| 68 |
-
print(
|
| 69 |
-
"Skipping population preprocessing. Delete these files if you want to re-run."
|
| 70 |
-
)
|
| 71 |
-
return True
|
| 72 |
-
return False
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
def load_world_bank_population_data():
|
| 76 |
-
"""
|
| 77 |
-
Load country-level working age population data from cache or World Bank API.
|
| 78 |
-
|
| 79 |
-
Returns:
|
| 80 |
-
pd.DataFrame: Raw population data from World Bank
|
| 81 |
-
"""
|
| 82 |
-
# Check if raw data already exists
|
| 83 |
-
raw_country_pop_path = DATA_INPUT_DIR / f"working_age_pop_{YEAR}_country_raw.csv"
|
| 84 |
-
if raw_country_pop_path.exists():
|
| 85 |
-
print("Loading cached country population data...")
|
| 86 |
-
return pd.read_csv(raw_country_pop_path, keep_default_na=False, na_values=[""])
|
| 87 |
-
|
| 88 |
-
# Download if not cached
|
| 89 |
-
url = "https://api.worldbank.org/v2/country/all/indicator/SP.POP.1564.TO"
|
| 90 |
-
params = {"format": "json", "date": str(YEAR), "per_page": "1000"}
|
| 91 |
-
|
| 92 |
-
print("Downloading country population data from World Bank API...")
|
| 93 |
-
response = httpx.get(url, params=params)
|
| 94 |
-
response.raise_for_status()
|
| 95 |
-
|
| 96 |
-
# World Bank API returns [metadata, data] structure
|
| 97 |
-
data = response.json()[1]
|
| 98 |
-
df_raw = pd.json_normalize(data)
|
| 99 |
-
|
| 100 |
-
return df_raw
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def filter_to_country_level_data(df_raw):
|
| 104 |
-
"""
|
| 105 |
-
Filter World Bank data to exclude regional aggregates and keep only countries.
|
| 106 |
-
|
| 107 |
-
The World Bank data starts with regional aggregates (Arab World, Caribbean small states, etc.)
|
| 108 |
-
followed by actual countries starting with Afghanistan (AFG).
|
| 109 |
-
|
| 110 |
-
Args:
|
| 111 |
-
df_raw: Raw World Bank data
|
| 112 |
-
|
| 113 |
-
Returns:
|
| 114 |
-
pd.DataFrame: Filtered data with only country-level records
|
| 115 |
-
"""
|
| 116 |
-
# Find Afghanistan (AFG) - the first real country after aggregates
|
| 117 |
-
afg_index = df_raw[df_raw["countryiso3code"] == "AFG"].index[0]
|
| 118 |
-
|
| 119 |
-
# Keep everything from AFG onwards
|
| 120 |
-
df_filtered = df_raw.iloc[afg_index:].copy()
|
| 121 |
-
print(f"Filtered to {len(df_filtered)} countries (excluding regional aggregates)")
|
| 122 |
-
|
| 123 |
-
return df_filtered
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
def process_country_population_data(df_raw):
|
| 127 |
-
"""
|
| 128 |
-
Process raw World Bank population data.
|
| 129 |
-
|
| 130 |
-
Args:
|
| 131 |
-
df_raw: Raw data from World Bank API
|
| 132 |
-
|
| 133 |
-
Returns:
|
| 134 |
-
pd.DataFrame: Processed country population data (excluding countries where service is not available)
|
| 135 |
-
"""
|
| 136 |
-
# Filter to country level only
|
| 137 |
-
df_country = filter_to_country_level_data(df_raw)
|
| 138 |
-
|
| 139 |
-
# Select and rename columns
|
| 140 |
-
df_processed = df_country[
|
| 141 |
-
["countryiso3code", "date", "value", "country.id", "country.value"]
|
| 142 |
-
].copy()
|
| 143 |
-
|
| 144 |
-
df_processed.columns = [
|
| 145 |
-
"iso_alpha_3",
|
| 146 |
-
"year",
|
| 147 |
-
"working_age_pop",
|
| 148 |
-
"country_code",
|
| 149 |
-
"country_name",
|
| 150 |
-
]
|
| 151 |
-
|
| 152 |
-
# Convert year to int
|
| 153 |
-
df_processed["year"] = pd.to_numeric(df_processed["year"])
|
| 154 |
-
df_processed = df_processed.dropna(subset=["working_age_pop"])
|
| 155 |
-
|
| 156 |
-
# Remove Channel Islands entry with invalid JG code
|
| 157 |
-
channel_islands_mask = df_processed["country_code"] == "JG"
|
| 158 |
-
if channel_islands_mask.any():
|
| 159 |
-
print(f"Removing Channel Islands entry with invalid code 'JG'")
|
| 160 |
-
df_processed = df_processed[~channel_islands_mask].copy()
|
| 161 |
-
|
| 162 |
-
# Exclude countries where service is not available
|
| 163 |
-
initial_count = len(df_processed)
|
| 164 |
-
df_processed = df_processed[~df_processed["country_code"].isin(EXCLUDED_COUNTRIES)]
|
| 165 |
-
excluded_count = initial_count - len(df_processed)
|
| 166 |
-
|
| 167 |
-
if excluded_count > 0:
|
| 168 |
-
print(f"Excluded {excluded_count} countries where service is not available")
|
| 169 |
-
|
| 170 |
-
return df_processed
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
def add_taiwan_population(df_country):
|
| 174 |
-
"""
|
| 175 |
-
Add Taiwan population data from National Development Council.
|
| 176 |
-
|
| 177 |
-
The World Bank API excludes Taiwan, so we use data directly from Taiwan's NDC.
|
| 178 |
-
Source: https://pop-proj.ndc.gov.tw/main_en/Custom_Detail_Statistics_Search.aspx
|
| 179 |
-
|
| 180 |
-
Args:
|
| 181 |
-
df_country: Country population dataframe
|
| 182 |
-
|
| 183 |
-
Returns:
|
| 184 |
-
pd.DataFrame: Country data with Taiwan added
|
| 185 |
-
"""
|
| 186 |
-
taiwan_file = DATA_INPUT_DIR / "Population by single age _20250903072924.csv"
|
| 187 |
-
|
| 188 |
-
if not taiwan_file.exists():
|
| 189 |
-
error_msg = f"""
|
| 190 |
-
Taiwan population data not found at: {taiwan_file}
|
| 191 |
-
|
| 192 |
-
To obtain this data:
|
| 193 |
-
1. Go to: https://pop-proj.ndc.gov.tw/main_en/Custom_Detail_Statistics_Search.aspx?n=175&_Query=258170a1-1394-49fe-8d21-dc80562b72fb&page=1&PageSize=10&ToggleType=
|
| 194 |
-
2. The following options should have been selected:
|
| 195 |
-
- Estimate type: Medium variant
|
| 196 |
-
- Gender: Total
|
| 197 |
-
- Year: {YEAR}
|
| 198 |
-
- Age: Single age (ages 15-64)
|
| 199 |
-
- Data attribute: data value
|
| 200 |
-
3. Download the CSV file
|
| 201 |
-
4. Save it as: "Population by single age _20250903072924.csv"
|
| 202 |
-
5. Place it in your data input directory
|
| 203 |
-
|
| 204 |
-
Note: Taiwan data is not available from World Bank API and must be obtained separately.
|
| 205 |
-
"""
|
| 206 |
-
raise FileNotFoundError(error_msg)
|
| 207 |
-
|
| 208 |
-
print("Adding Taiwan population data from NDC...")
|
| 209 |
-
|
| 210 |
-
# Load the NDC data (skip metadata rows)
|
| 211 |
-
df_taiwan = pd.read_csv(taiwan_file, skiprows=10)
|
| 212 |
-
|
| 213 |
-
# Clean the age column and sum population
|
| 214 |
-
df_taiwan["Age"] = df_taiwan["Age"].str.replace("'", "")
|
| 215 |
-
df_taiwan["Age"] = pd.to_numeric(df_taiwan["Age"])
|
| 216 |
-
|
| 217 |
-
# The data is pre-filtered to ages 15-64, so sum all values
|
| 218 |
-
taiwan_working_age_pop = df_taiwan["Data value (persons)"].sum()
|
| 219 |
-
|
| 220 |
-
# Create Taiwan row
|
| 221 |
-
taiwan_row = pd.DataFrame(
|
| 222 |
-
{
|
| 223 |
-
"iso_alpha_3": ["TWN"],
|
| 224 |
-
"year": [YEAR],
|
| 225 |
-
"working_age_pop": [taiwan_working_age_pop],
|
| 226 |
-
"country_code": ["TW"],
|
| 227 |
-
"country_name": ["Taiwan"],
|
| 228 |
-
}
|
| 229 |
-
)
|
| 230 |
-
|
| 231 |
-
# Add Taiwan to the country data
|
| 232 |
-
df_with_taiwan = pd.concat([df_country, taiwan_row], ignore_index=True)
|
| 233 |
-
print(f"Added Taiwan: {taiwan_working_age_pop:,.0f} working age population")
|
| 234 |
-
|
| 235 |
-
return df_with_taiwan
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
def load_us_state_population_data():
|
| 239 |
-
"""
|
| 240 |
-
Load US state population data from cache or Census Bureau.
|
| 241 |
-
|
| 242 |
-
Returns:
|
| 243 |
-
pd.DataFrame: Raw US state population data
|
| 244 |
-
"""
|
| 245 |
-
# Check if raw data already exists
|
| 246 |
-
raw_state_pop_path = DATA_INPUT_DIR / f"sc-est{YEAR}-agesex-civ.csv"
|
| 247 |
-
if raw_state_pop_path.exists():
|
| 248 |
-
print("Loading cached state population data...")
|
| 249 |
-
return pd.read_csv(raw_state_pop_path)
|
| 250 |
-
|
| 251 |
-
# Download if not cached
|
| 252 |
-
url = f"https://www2.census.gov/programs-surveys/popest/datasets/2020-{YEAR}/state/asrh/sc-est{YEAR}-agesex-civ.csv"
|
| 253 |
-
|
| 254 |
-
print("Downloading US state population data from Census Bureau...")
|
| 255 |
-
response = httpx.get(url)
|
| 256 |
-
response.raise_for_status()
|
| 257 |
-
|
| 258 |
-
df_raw = pd.read_csv(io.StringIO(response.text))
|
| 259 |
-
return df_raw
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
def process_state_population_data(df_raw):
|
| 263 |
-
"""
|
| 264 |
-
Process US state population data to get working age population.
|
| 265 |
-
|
| 266 |
-
Args:
|
| 267 |
-
df_raw: Raw Census Bureau data
|
| 268 |
-
|
| 269 |
-
Returns:
|
| 270 |
-
pd.DataFrame: Processed state population data with state codes
|
| 271 |
-
"""
|
| 272 |
-
# Filter for working age (15-64) and sum by state
|
| 273 |
-
# SEX=0 means "Both sexes" to avoid double counting
|
| 274 |
-
df_working_age = df_raw[
|
| 275 |
-
(df_raw["AGE"] >= 15) & (df_raw["AGE"] <= 64) & (df_raw["SEX"] == 0)
|
| 276 |
-
]
|
| 277 |
-
|
| 278 |
-
# Sum by state
|
| 279 |
-
working_age_by_state = (
|
| 280 |
-
df_working_age.groupby("NAME")[f"POPEST{YEAR}_CIV"].sum().reset_index()
|
| 281 |
-
)
|
| 282 |
-
working_age_by_state.columns = ["state", "working_age_pop"]
|
| 283 |
-
|
| 284 |
-
# Get state codes
|
| 285 |
-
state_code_dict = get_state_codes()
|
| 286 |
-
|
| 287 |
-
# Filter out "United States" row (national total, not a state)
|
| 288 |
-
working_age_by_state = working_age_by_state[
|
| 289 |
-
working_age_by_state["state"] != "United States"
|
| 290 |
-
]
|
| 291 |
-
|
| 292 |
-
# Map state names to abbreviations
|
| 293 |
-
working_age_by_state["state_code"] = working_age_by_state["state"].map(
|
| 294 |
-
state_code_dict
|
| 295 |
-
)
|
| 296 |
-
|
| 297 |
-
# Check for missing state codes (should be none after filtering United States)
|
| 298 |
-
missing_codes = working_age_by_state[working_age_by_state["state_code"].isna()]
|
| 299 |
-
if not missing_codes.empty:
|
| 300 |
-
warnings.warn(
|
| 301 |
-
f"Could not find state codes for: {missing_codes['state'].tolist()}",
|
| 302 |
-
UserWarning,
|
| 303 |
-
stacklevel=2,
|
| 304 |
-
)
|
| 305 |
-
|
| 306 |
-
return working_age_by_state
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
def get_state_codes():
|
| 310 |
-
"""
|
| 311 |
-
Get US state codes from Census Bureau.
|
| 312 |
-
|
| 313 |
-
Returns:
|
| 314 |
-
dict: Mapping of state names to abbreviations
|
| 315 |
-
"""
|
| 316 |
-
state_codes_path = DATA_INPUT_DIR / "census_state_codes.txt"
|
| 317 |
-
|
| 318 |
-
if state_codes_path.exists():
|
| 319 |
-
print("Loading cached state codes...")
|
| 320 |
-
df_state_codes = pd.read_csv(state_codes_path, sep="|")
|
| 321 |
-
else:
|
| 322 |
-
print("Downloading state codes from Census Bureau...")
|
| 323 |
-
response = httpx.get("https://www2.census.gov/geo/docs/reference/state.txt")
|
| 324 |
-
response.raise_for_status()
|
| 325 |
-
|
| 326 |
-
# Save for future use
|
| 327 |
-
with open(state_codes_path, "w") as f:
|
| 328 |
-
f.write(response.text)
|
| 329 |
-
print(f"Cached state codes to {state_codes_path}")
|
| 330 |
-
|
| 331 |
-
df_state_codes = pd.read_csv(io.StringIO(response.text), sep="|")
|
| 332 |
-
|
| 333 |
-
# Create mapping dictionary
|
| 334 |
-
state_code_dict = dict(
|
| 335 |
-
zip(df_state_codes["STATE_NAME"], df_state_codes["STUSAB"], strict=True)
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
return state_code_dict
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
def save_data(df_country, df_state, df_world_bank_raw, df_state_raw):
|
| 342 |
-
"""
|
| 343 |
-
Save raw and processed population data.
|
| 344 |
-
|
| 345 |
-
Args:
|
| 346 |
-
df_country: Processed country population data
|
| 347 |
-
df_state: Processed state population data
|
| 348 |
-
df_world_bank_raw: Raw World Bank data
|
| 349 |
-
df_state_raw: Raw Census Bureau data
|
| 350 |
-
"""
|
| 351 |
-
# Save raw data (only if doesn't exist)
|
| 352 |
-
raw_country_pop_path = DATA_INPUT_DIR / f"working_age_pop_{YEAR}_country_raw.csv"
|
| 353 |
-
if not raw_country_pop_path.exists():
|
| 354 |
-
df_world_bank_raw.to_csv(raw_country_pop_path, index=False)
|
| 355 |
-
print(f"Saved raw country data to {raw_country_pop_path}")
|
| 356 |
-
|
| 357 |
-
raw_state_pop_path = DATA_INPUT_DIR / f"sc-est{YEAR}-agesex-civ.csv"
|
| 358 |
-
if not raw_state_pop_path.exists():
|
| 359 |
-
df_state_raw.to_csv(raw_state_pop_path, index=False)
|
| 360 |
-
print(f"Saved raw state data to {raw_state_pop_path}")
|
| 361 |
-
|
| 362 |
-
# Save processed data
|
| 363 |
-
country_output_path = DATA_INTERMEDIATE_DIR / f"working_age_pop_{YEAR}_country.csv"
|
| 364 |
-
df_country.to_csv(country_output_path, index=False)
|
| 365 |
-
print(f"Saved processed country population data to {country_output_path}")
|
| 366 |
-
|
| 367 |
-
state_output_path = DATA_INTERMEDIATE_DIR / f"working_age_pop_{YEAR}_us_state.csv"
|
| 368 |
-
df_state.to_csv(state_output_path, index=False)
|
| 369 |
-
print(f"Saved processed US state population data to {state_output_path}")
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
def main():
|
| 373 |
-
"""Main function to run population preprocessing."""
|
| 374 |
-
# Check if files already exist
|
| 375 |
-
if check_existing_files():
|
| 376 |
-
return
|
| 377 |
-
|
| 378 |
-
# Process country-level data
|
| 379 |
-
print("\n=== Processing Country-Level Population Data ===")
|
| 380 |
-
df_world_bank_raw = load_world_bank_population_data()
|
| 381 |
-
df_country = process_country_population_data(df_world_bank_raw)
|
| 382 |
-
df_country = add_taiwan_population(df_country)
|
| 383 |
-
|
| 384 |
-
# Process US state-level data
|
| 385 |
-
print("\n=== Processing US State-Level Population Data ===")
|
| 386 |
-
df_state_raw = load_us_state_population_data()
|
| 387 |
-
df_state = process_state_population_data(df_state_raw)
|
| 388 |
-
|
| 389 |
-
# Save all data (raw and processed)
|
| 390 |
-
print("\n=== Saving Data ===")
|
| 391 |
-
save_data(df_country, df_state, df_world_bank_raw, df_state_raw)
|
| 392 |
-
|
| 393 |
-
print("\n✅ Population data preprocessing complete!")
|
| 394 |
-
|
| 395 |
-
# Print summary statistics
|
| 396 |
-
print("\n=== Summary Statistics ===")
|
| 397 |
-
print(f"Countries processed: {len(df_country)}")
|
| 398 |
-
print(f"Countries excluded (service not available): {len(EXCLUDED_COUNTRIES)}")
|
| 399 |
-
print(
|
| 400 |
-
f"Total global working age population: {df_country['working_age_pop'].sum():,.0f}"
|
| 401 |
-
)
|
| 402 |
-
print(f"US states processed: {len(df_state)}")
|
| 403 |
-
print(f"Total US working age population: {df_state['working_age_pop'].sum():,.0f}")
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
if __name__ == "__main__":
|
| 407 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/BTOS_National.xlsx
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c55e2fc6892941a1a536e87445de0bee8ea327526081389b93b85c54a8d69761
|
| 3 |
-
size 63052
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/Population by single age _20250903072924.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:89c1e953dbab481760a966c40bdb121ed4e301b4cd0cbaea8a44990caa91ce8e
|
| 3 |
-
size 2176
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/automation_vs_augmentation_v1.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:d1e264882b17618db4f4a00b6f87f48134222bc5c15eefb3d46aae9519e89d11
|
| 3 |
-
size 197
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/automation_vs_augmentation_v2.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:0d7d8b1666f3d942d728f9b2177681ca6756edfe01fb8fc130e29264d41a391e
|
| 3 |
-
size 198
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/bea_us_state_gdp_2024.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:913bc0d017570e711c71bc838016b3b52cbf49e717d0cabc4cc2d70306acfa5a
|
| 3 |
-
size 1663
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/census_state_codes.txt
DELETED
|
@@ -1,58 +0,0 @@
|
|
| 1 |
-
STATE|STUSAB|STATE_NAME|STATENS
|
| 2 |
-
01|AL|Alabama|01779775
|
| 3 |
-
02|AK|Alaska|01785533
|
| 4 |
-
04|AZ|Arizona|01779777
|
| 5 |
-
05|AR|Arkansas|00068085
|
| 6 |
-
06|CA|California|01779778
|
| 7 |
-
08|CO|Colorado|01779779
|
| 8 |
-
09|CT|Connecticut|01779780
|
| 9 |
-
10|DE|Delaware|01779781
|
| 10 |
-
11|DC|District of Columbia|01702382
|
| 11 |
-
12|FL|Florida|00294478
|
| 12 |
-
13|GA|Georgia|01705317
|
| 13 |
-
15|HI|Hawaii|01779782
|
| 14 |
-
16|ID|Idaho|01779783
|
| 15 |
-
17|IL|Illinois|01779784
|
| 16 |
-
18|IN|Indiana|00448508
|
| 17 |
-
19|IA|Iowa|01779785
|
| 18 |
-
20|KS|Kansas|00481813
|
| 19 |
-
21|KY|Kentucky|01779786
|
| 20 |
-
22|LA|Louisiana|01629543
|
| 21 |
-
23|ME|Maine|01779787
|
| 22 |
-
24|MD|Maryland|01714934
|
| 23 |
-
25|MA|Massachusetts|00606926
|
| 24 |
-
26|MI|Michigan|01779789
|
| 25 |
-
27|MN|Minnesota|00662849
|
| 26 |
-
28|MS|Mississippi|01779790
|
| 27 |
-
29|MO|Missouri|01779791
|
| 28 |
-
30|MT|Montana|00767982
|
| 29 |
-
31|NE|Nebraska|01779792
|
| 30 |
-
32|NV|Nevada|01779793
|
| 31 |
-
33|NH|New Hampshire|01779794
|
| 32 |
-
34|NJ|New Jersey|01779795
|
| 33 |
-
35|NM|New Mexico|00897535
|
| 34 |
-
36|NY|New York|01779796
|
| 35 |
-
37|NC|North Carolina|01027616
|
| 36 |
-
38|ND|North Dakota|01779797
|
| 37 |
-
39|OH|Ohio|01085497
|
| 38 |
-
40|OK|Oklahoma|01102857
|
| 39 |
-
41|OR|Oregon|01155107
|
| 40 |
-
42|PA|Pennsylvania|01779798
|
| 41 |
-
44|RI|Rhode Island|01219835
|
| 42 |
-
45|SC|South Carolina|01779799
|
| 43 |
-
46|SD|South Dakota|01785534
|
| 44 |
-
47|TN|Tennessee|01325873
|
| 45 |
-
48|TX|Texas|01779801
|
| 46 |
-
49|UT|Utah|01455989
|
| 47 |
-
50|VT|Vermont|01779802
|
| 48 |
-
51|VA|Virginia|01779803
|
| 49 |
-
53|WA|Washington|01779804
|
| 50 |
-
54|WV|West Virginia|01779805
|
| 51 |
-
55|WI|Wisconsin|01779806
|
| 52 |
-
56|WY|Wyoming|01779807
|
| 53 |
-
60|AS|American Samoa|01802701
|
| 54 |
-
66|GU|Guam|01802705
|
| 55 |
-
69|MP|Northern Mariana Islands|01779809
|
| 56 |
-
72|PR|Puerto Rico|01779808
|
| 57 |
-
74|UM|U.S. Minor Outlying Islands|01878752
|
| 58 |
-
78|VI|U.S. Virgin Islands|01802710
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/geonames_countryInfo.txt
DELETED
|
@@ -1,302 +0,0 @@
|
|
| 1 |
-
# ================================
|
| 2 |
-
#
|
| 3 |
-
#
|
| 4 |
-
# CountryCodes:
|
| 5 |
-
# ============
|
| 6 |
-
#
|
| 7 |
-
# The official ISO country code for the United Kingdom is 'GB'. The code 'UK' is reserved.
|
| 8 |
-
#
|
| 9 |
-
# A list of dependent countries is available here:
|
| 10 |
-
# https://spreadsheets.google.com/ccc?key=pJpyPy-J5JSNhe7F_KxwiCA&hl=en
|
| 11 |
-
#
|
| 12 |
-
#
|
| 13 |
-
# The countrycode XK temporarily stands for Kosvo:
|
| 14 |
-
# http://geonames.wordpress.com/2010/03/08/xk-country-code-for-kosovo/
|
| 15 |
-
#
|
| 16 |
-
#
|
| 17 |
-
# CS (Serbia and Montenegro) with geonameId = 8505033 no longer exists.
|
| 18 |
-
# AN (the Netherlands Antilles) with geonameId = 8505032 was dissolved on 10 October 2010.
|
| 19 |
-
#
|
| 20 |
-
#
|
| 21 |
-
# Currencies :
|
| 22 |
-
# ============
|
| 23 |
-
#
|
| 24 |
-
# A number of territories are not included in ISO 4217, because their currencies are not per se an independent currency,
|
| 25 |
-
# but a variant of another currency. These currencies are:
|
| 26 |
-
#
|
| 27 |
-
# 1. FO : Faroese krona (1:1 pegged to the Danish krone)
|
| 28 |
-
# 2. GG : Guernsey pound (1:1 pegged to the pound sterling)
|
| 29 |
-
# 3. JE : Jersey pound (1:1 pegged to the pound sterling)
|
| 30 |
-
# 4. IM : Isle of Man pound (1:1 pegged to the pound sterling)
|
| 31 |
-
# 5. TV : Tuvaluan dollar (1:1 pegged to the Australian dollar).
|
| 32 |
-
# 6. CK : Cook Islands dollar (1:1 pegged to the New Zealand dollar).
|
| 33 |
-
#
|
| 34 |
-
# The following non-ISO codes are, however, sometimes used: GGP for the Guernsey pound,
|
| 35 |
-
# JEP for the Jersey pound and IMP for the Isle of Man pound (http://en.wikipedia.org/wiki/ISO_4217)
|
| 36 |
-
#
|
| 37 |
-
#
|
| 38 |
-
# A list of currency symbols is available here : http://forum.geonames.org/gforum/posts/list/437.page
|
| 39 |
-
# another list with fractional units is here: http://forum.geonames.org/gforum/posts/list/1961.page
|
| 40 |
-
#
|
| 41 |
-
#
|
| 42 |
-
# Languages :
|
| 43 |
-
# ===========
|
| 44 |
-
#
|
| 45 |
-
# The column 'languages' lists the languages spoken in a country ordered by the number of speakers. The language code is a 'locale'
|
| 46 |
-
# where any two-letter primary-tag is an ISO-639 language abbreviation and any two-letter initial subtag is an ISO-3166 country code.
|
| 47 |
-
#
|
| 48 |
-
# Example : es-AR is the Spanish variant spoken in Argentina.
|
| 49 |
-
#
|
| 50 |
-
#ISO ISO3 ISO-Numeric fips Country Capital Area(in sq km) Population Continent tld CurrencyCode CurrencyName Phone Postal Code Format Postal Code Regex Languages geonameid neighbours EquivalentFipsCode
|
| 51 |
-
AD AND 020 AN Andorra Andorra la Vella 468 77006 EU .ad EUR Euro 376 AD### ^(?:AD)*(\d{3})$ ca 3041565 ES,FR
|
| 52 |
-
AE ARE 784 AE United Arab Emirates Abu Dhabi 82880 9630959 AS .ae AED Dirham 971 ##### ##### ^\d{5}-\d{5}$ ar-AE,fa,en,hi,ur 290557 SA,OM
|
| 53 |
-
AF AFG 004 AF Afghanistan Kabul 647500 37172386 AS .af AFN Afghani 93 fa-AF,ps,uz-AF,tk 1149361 TM,CN,IR,TJ,PK,UZ
|
| 54 |
-
AG ATG 028 AC Antigua and Barbuda St. John's 443 96286 NA .ag XCD Dollar +1-268 en-AG 3576396
|
| 55 |
-
AI AIA 660 AV Anguilla The Valley 102 13254 NA .ai XCD Dollar +1-264 AI-#### ^(?:AZ)*(\d{4})$ en-AI 3573511
|
| 56 |
-
AL ALB 008 AL Albania Tirana 28748 2866376 EU .al ALL Lek 355 #### ^(\d{4})$ sq,el 783754 MK,GR,ME,RS,XK
|
| 57 |
-
AM ARM 051 AM Armenia Yerevan 29800 3076200 AS .am AMD Dram 374 ###### ^(\d{6})$ hy 174982 GE,IR,AZ,TR
|
| 58 |
-
AO AGO 024 AO Angola Luanda 1246700 30809762 AF .ao AOA Kwanza 244 pt-AO 3351879 CD,NA,ZM,CG
|
| 59 |
-
AQ ATA 010 AY Antarctica 14000000 0 AN .aq 6697173
|
| 60 |
-
AR ARG 032 AR Argentina Buenos Aires 2766890 44494502 SA .ar ARS Peso 54 @####@@@ ^[A-Z]?\d{4}[A-Z]{0,3}$ es-AR,en,it,de,fr,gn 3865483 CL,BO,UY,PY,BR
|
| 61 |
-
AS ASM 016 AQ American Samoa Pago Pago 199 55465 OC .as USD Dollar +1-684 #####-#### 96799 en-AS,sm,to 5880801
|
| 62 |
-
AT AUT 040 AU Austria Vienna 83858 8847037 EU .at EUR Euro 43 #### ^(\d{4})$ de-AT,hr,hu,sl 2782113 CH,DE,HU,SK,CZ,IT,SI,LI
|
| 63 |
-
AU AUS 036 AS Australia Canberra 7686850 24992369 OC .au AUD Dollar 61 #### ^(\d{4})$ en-AU 2077456
|
| 64 |
-
AW ABW 533 AA Aruba Oranjestad 193 105845 NA .aw AWG Guilder 297 nl-AW,pap,es,en 3577279
|
| 65 |
-
AX ALA 248 Aland Islands Mariehamn 1580 26711 EU .ax EUR Euro +358-18 ##### ^(?:FI)*(\d{5})$ sv-AX 661882 FI
|
| 66 |
-
AZ AZE 031 AJ Azerbaijan Baku 86600 9942334 AS .az AZN Manat 994 AZ #### ^(?:AZ )*(\d{4})$ az,ru,hy 587116 GE,IR,AM,TR,RU
|
| 67 |
-
BA BIH 070 BK Bosnia and Herzegovina Sarajevo 51129 3323929 EU .ba BAM Marka 387 ##### ^(\d{5})$ bs,hr-BA,sr-BA 3277605 HR,ME,RS
|
| 68 |
-
BB BRB 052 BB Barbados Bridgetown 431 286641 NA .bb BBD Dollar +1-246 BB##### ^(?:BB)*(\d{5})$ en-BB 3374084
|
| 69 |
-
BD BGD 050 BG Bangladesh Dhaka 144000 161356039 AS .bd BDT Taka 880 #### ^(\d{4})$ bn-BD,en 1210997 MM,IN
|
| 70 |
-
BE BEL 056 BE Belgium Brussels 30510 11422068 EU .be EUR Euro 32 #### ^(\d{4})$ nl-BE,fr-BE,de-BE 2802361 DE,NL,LU,FR
|
| 71 |
-
BF BFA 854 UV Burkina Faso Ouagadougou 274200 19751535 AF .bf XOF Franc 226 fr-BF,mos 2361809 NE,BJ,GH,CI,TG,ML
|
| 72 |
-
BG BGR 100 BU Bulgaria Sofia 110910 7000039 EU .bg BGN Lev 359 #### ^(\d{4})$ bg,tr-BG,rom 732800 MK,GR,RO,TR,RS
|
| 73 |
-
BH BHR 048 BA Bahrain Manama 665 1569439 AS .bh BHD Dinar 973 ####|### ^(\d{3}\d?)$ ar-BH,en,fa,ur 290291
|
| 74 |
-
BI BDI 108 BY Burundi Gitega 27830 11175378 AF .bi BIF Franc 257 fr-BI,rn 433561 TZ,CD,RW
|
| 75 |
-
BJ BEN 204 BN Benin Porto-Novo 112620 11485048 AF .bj XOF Franc 229 fr-BJ 2395170 NE,TG,BF,NG
|
| 76 |
-
BL BLM 652 TB Saint Barthelemy Gustavia 21 8450 NA .gp EUR Euro 590 ##### ^(\d{5})$ fr 3578476
|
| 77 |
-
BM BMU 060 BD Bermuda Hamilton 53 63968 NA .bm BMD Dollar +1-441 @@ ## ^([A-Z]{2}\d{2})$ en-BM,pt 3573345
|
| 78 |
-
BN BRN 096 BX Brunei Bandar Seri Begawan 5770 428962 AS .bn BND Dollar 673 @@#### ^([A-Z]{2}\d{4})$ ms-BN,en-BN 1820814 MY
|
| 79 |
-
BO BOL 068 BL Bolivia Sucre 1098580 11353142 SA .bo BOB Boliviano 591 es-BO,qu,ay 3923057 PE,CL,PY,BR,AR
|
| 80 |
-
BQ BES 535 Bonaire, Saint Eustatius and Saba 328 18012 NA .bq USD Dollar 599 nl,pap,en 7626844
|
| 81 |
-
BR BRA 076 BR Brazil Brasilia 8511965 209469333 SA .br BRL Real 55 #####-### ^\d{5}-\d{3}$ pt-BR,es,en,fr 3469034 SR,PE,BO,UY,GY,PY,GF,VE,CO,AR
|
| 82 |
-
BS BHS 044 BF Bahamas Nassau 13940 385640 NA .bs BSD Dollar +1-242 en-BS 3572887
|
| 83 |
-
BT BTN 064 BT Bhutan Thimphu 47000 754394 AS .bt BTN Ngultrum 975 dz 1252634 CN,IN
|
| 84 |
-
BV BVT 074 BV Bouvet Island 49 0 AN .bv NOK Krone 3371123
|
| 85 |
-
BW BWA 072 BC Botswana Gaborone 600370 2254126 AF .bw BWP Pula 267 en-BW,tn-BW 933860 ZW,ZA,NA
|
| 86 |
-
BY BLR 112 BO Belarus Minsk 207600 9485386 EU .by BYN Belarusian ruble 375 ###### ^(\d{6})$ be,ru 630336 PL,LT,UA,RU,LV
|
| 87 |
-
BZ BLZ 084 BH Belize Belmopan 22966 383071 NA .bz BZD Dollar 501 en-BZ,es 3582678 GT,MX
|
| 88 |
-
CA CAN 124 CA Canada Ottawa 9984670 37058856 NA .ca CAD Dollar 1 @#@ #@# ^([ABCEGHJKLMNPRSTVXY]\d[ABCEGHJKLMNPRSTVWXYZ]) ?(\d[ABCEGHJKLMNPRSTVWXYZ]\d)$ en-CA,fr-CA,iu 6251999 US
|
| 89 |
-
CC CCK 166 CK Cocos Islands West Island 14 628 AS .cc AUD Dollar 61 #### ^(\d{4})$ ms-CC,en 1547376
|
| 90 |
-
CD COD 180 CG Democratic Republic of the Congo Kinshasa 2345410 84068091 AF .cd CDF Franc 243 fr-CD,ln,ktu,kg,sw,lua 203312 TZ,CF,SS,RW,ZM,BI,UG,CG,AO
|
| 91 |
-
CF CAF 140 CT Central African Republic Bangui 622984 4666377 AF .cf XAF Franc 236 fr-CF,sg,ln,kg 239880 TD,SD,CD,SS,CM,CG
|
| 92 |
-
CG COG 178 CF Republic of the Congo Brazzaville 342000 5244363 AF .cg XAF Franc 242 fr-CG,kg,ln-CG 2260494 CF,GA,CD,CM,AO
|
| 93 |
-
CH CHE 756 SZ Switzerland Bern 41290 8516543 EU .ch CHF Franc 41 #### ^(\d{4})$ de-CH,fr-CH,it-CH,rm 2658434 DE,IT,LI,FR,AT
|
| 94 |
-
CI CIV 384 IV Ivory Coast Yamoussoukro 322460 25069229 AF .ci XOF Franc 225 fr-CI 2287781 LR,GH,GN,BF,ML
|
| 95 |
-
CK COK 184 CW Cook Islands Avarua 240 21388 OC .ck NZD Dollar 682 en-CK,mi 1899402
|
| 96 |
-
CL CHL 152 CI Chile Santiago 756950 18729160 SA .cl CLP Peso 56 ####### ^(\d{7})$ es-CL 3895114 PE,BO,AR
|
| 97 |
-
CM CMR 120 CM Cameroon Yaounde 475440 25216237 AF .cm XAF Franc 237 en-CM,fr-CM 2233387 TD,CF,GA,GQ,CG,NG
|
| 98 |
-
CN CHN 156 CH China Beijing 9596960 1411778724 AS .cn CNY Yuan Renminbi 86 ###### ^(\d{6})$ zh-CN,yue,wuu,dta,ug,za 1814991 LA,BT,TJ,KZ,MN,AF,NP,MM,KG,PK,KP,RU,VN,IN
|
| 99 |
-
CO COL 170 CO Colombia Bogota 1138910 49648685 SA .co COP Peso 57 ###### ^(\d{6})$ es-CO 3686110 EC,PE,PA,BR,VE
|
| 100 |
-
CR CRI 188 CS Costa Rica San Jose 51100 4999441 NA .cr CRC Colon 506 ##### ^(\d{5})$ es-CR,en 3624060 PA,NI
|
| 101 |
-
CU CUB 192 CU Cuba Havana 110860 11338138 NA .cu CUP Peso 53 CP ##### ^(?:CP)*(\d{5})$ es-CU,pap 3562981 US
|
| 102 |
-
CV CPV 132 CV Cabo Verde Praia 4033 543767 AF .cv CVE Escudo 238 #### ^(\d{4})$ pt-CV 3374766
|
| 103 |
-
CW CUW 531 UC Curacao Willemstad 444 159849 NA .cw ANG Guilder 599 nl,pap 7626836
|
| 104 |
-
CX CXR 162 KT Christmas Island Flying Fish Cove 135 1500 OC .cx AUD Dollar 61 #### ^(\d{4})$ en,zh,ms-CX 2078138
|
| 105 |
-
CY CYP 196 CY Cyprus Nicosia 9250 1189265 EU .cy EUR Euro 357 #### ^(\d{4})$ el-CY,tr-CY,en 146669
|
| 106 |
-
CZ CZE 203 EZ Czechia Prague 78866 10625695 EU .cz CZK Koruna 420 ### ## ^\d{3}\s?\d{2}$ cs,sk 3077311 PL,DE,SK,AT
|
| 107 |
-
DE DEU 276 GM Germany Berlin 357021 82927922 EU .de EUR Euro 49 ##### ^(\d{5})$ de 2921044 CH,PL,NL,DK,BE,CZ,LU,FR,AT
|
| 108 |
-
DJ DJI 262 DJ Djibouti Djibouti 23000 958920 AF .dj DJF Franc 253 fr-DJ,ar,so-DJ,aa 223816 ER,ET,SO
|
| 109 |
-
DK DNK 208 DA Denmark Copenhagen 43094 5797446 EU .dk DKK Krone 45 #### ^(\d{4})$ da-DK,en,fo,de-DK 2623032 DE
|
| 110 |
-
DM DMA 212 DO Dominica Roseau 754 71625 NA .dm XCD Dollar +1-767 en-DM 3575830
|
| 111 |
-
DO DOM 214 DR Dominican Republic Santo Domingo 48730 10627165 NA .do DOP Peso +1-809 and 1-829 ##### ^(\d{5})$ es-DO 3508796 HT
|
| 112 |
-
DZ DZA 012 AG Algeria Algiers 2381740 42228429 AF .dz DZD Dinar 213 ##### ^(\d{5})$ ar-DZ 2589581 NE,EH,LY,MR,TN,MA,ML
|
| 113 |
-
EC ECU 218 EC Ecuador Quito 283560 17084357 SA .ec USD Dollar 593 @####@ ^([a-zA-Z]\d{4}[a-zA-Z])$ es-EC 3658394 PE,CO
|
| 114 |
-
EE EST 233 EN Estonia Tallinn 45226 1320884 EU .ee EUR Euro 372 ##### ^(\d{5})$ et,ru 453733 RU,LV
|
| 115 |
-
EG EGY 818 EG Egypt Cairo 1001450 98423595 AF .eg EGP Pound 20 ##### ^(\d{5})$ ar-EG,en,fr 357994 LY,SD,IL,PS
|
| 116 |
-
EH ESH 732 WI Western Sahara El-Aaiun 266000 273008 AF .eh MAD Dirham 212 ar,mey 2461445 DZ,MR,MA
|
| 117 |
-
ER ERI 232 ER Eritrea Asmara 121320 6209262 AF .er ERN Nakfa 291 aa-ER,ar,tig,kun,ti-ER 338010 ET,SD,DJ
|
| 118 |
-
ES ESP 724 SP Spain Madrid 504782 46723749 EU .es EUR Euro 34 ##### ^(\d{5})$ es-ES,ca,gl,eu,oc 2510769 AD,PT,GI,FR,MA
|
| 119 |
-
ET ETH 231 ET Ethiopia Addis Ababa 1127127 109224559 AF .et ETB Birr 251 #### ^(\d{4})$ am,en-ET,om-ET,ti-ET,so-ET,sid 337996 ER,KE,SD,SS,SO,DJ
|
| 120 |
-
FI FIN 246 FI Finland Helsinki 337030 5518050 EU .fi EUR Euro 358 ##### ^(?:FI)*(\d{5})$ fi-FI,sv-FI,smn 660013 NO,RU,SE
|
| 121 |
-
FJ FJI 242 FJ Fiji Suva 18270 883483 OC .fj FJD Dollar 679 en-FJ,fj 2205218
|
| 122 |
-
FK FLK 238 FK Falkland Islands Stanley 12173 2638 SA .fk FKP Pound 500 FIQQ 1ZZ FIQQ 1ZZ en-FK 3474414
|
| 123 |
-
FM FSM 583 FM Micronesia Palikir 702 112640 OC .fm USD Dollar 691 ##### ^(\d{5})$ en-FM,chk,pon,yap,kos,uli,woe,nkr,kpg 2081918
|
| 124 |
-
FO FRO 234 FO Faroe Islands Torshavn 1399 48497 EU .fo DKK Krone 298 ### ^(?:FO)*(\d{3})$ fo,da-FO 2622320
|
| 125 |
-
FR FRA 250 FR France Paris 547030 66987244 EU .fr EUR Euro 33 ##### ^(\d{5})$ fr-FR,frp,br,co,ca,eu,oc 3017382 CH,DE,BE,LU,IT,AD,MC,ES
|
| 126 |
-
GA GAB 266 GB Gabon Libreville 267667 2119275 AF .ga XAF Franc 241 fr-GA 2400553 CM,GQ,CG
|
| 127 |
-
GB GBR 826 UK United Kingdom London 244820 66488991 EU .uk GBP Pound 44 @# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA ^([Gg][Ii][Rr]\s?0[Aa]{2})|((([A-Za-z][0-9]{1,2})|(([A-Za-z][A-Ha-hJ-Yj-y][0-9]{1,2})|(([A-Za-z][0-9][A-Za-z])|([A-Za-z][A-Ha-hJ-Yj-y][0-9]?[A-Za-z]))))\s?[0-9][A-Za-z]{2})$ en-GB,cy-GB,gd 2635167 IE
|
| 128 |
-
GD GRD 308 GJ Grenada St. George's 344 111454 NA .gd XCD Dollar +1-473 en-GD 3580239
|
| 129 |
-
GE GEO 268 GG Georgia Tbilisi 69700 3731000 AS .ge GEL Lari 995 #### ^(\d{4})$ ka,ru,hy,az 614540 AM,AZ,TR,RU
|
| 130 |
-
GF GUF 254 FG French Guiana Cayenne 91000 195506 SA .gf EUR Euro 594 ##### ^((97|98)3\d{2})$ fr-GF 3381670 SR,BR
|
| 131 |
-
GG GGY 831 GK Guernsey St Peter Port 78 65228 EU .gg GBP Pound +44-1481 @# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA ^((?:(?:[A-PR-UWYZ][A-HK-Y]\d[ABEHMNPRV-Y0-9]|[A-PR-UWYZ]\d[A-HJKPS-UW0-9])\s\d[ABD-HJLNP-UW-Z]{2})|GIR\s?0AA)$ en,nrf 3042362
|
| 132 |
-
GH GHA 288 GH Ghana Accra 239460 29767108 AF .gh GHS Cedi 233 en-GH,ak,ee,tw 2300660 CI,TG,BF
|
| 133 |
-
GI GIB 292 GI Gibraltar Gibraltar 6.5 33718 EU .gi GIP Pound 350 GX11 1AA GX11 1AA en-GI,es,it,pt 2411586 ES
|
| 134 |
-
GL GRL 304 GL Greenland Nuuk 2166086 56025 NA .gl DKK Krone 299 #### ^(\d{4})$ kl,da-GL,en 3425505
|
| 135 |
-
GM GMB 270 GA Gambia Banjul 11300 2280102 AF .gm GMD Dalasi 220 en-GM,mnk,wof,wo,ff 2413451 SN
|
| 136 |
-
GN GIN 324 GV Guinea Conakry 245857 12414318 AF .gn GNF Franc 224 fr-GN 2420477 LR,SN,SL,CI,GW,ML
|
| 137 |
-
GP GLP 312 GP Guadeloupe Basse-Terre 1780 443000 NA .gp EUR Euro 590 ##### ^((97|98)\d{3})$ fr-GP 3579143
|
| 138 |
-
GQ GNQ 226 EK Equatorial Guinea Malabo 28051 1308974 AF .gq XAF Franc 240 es-GQ,fr,pt 2309096 GA,CM
|
| 139 |
-
GR GRC 300 GR Greece Athens 131940 10727668 EU .gr EUR Euro 30 ### ## ^(\d{5})$ el-GR,en,fr 390903 AL,MK,TR,BG
|
| 140 |
-
GS SGS 239 SX South Georgia and the South Sandwich Islands Grytviken 3903 30 AN .gs GBP Pound SIQQ 1ZZ SIQQ 1ZZ en 3474415
|
| 141 |
-
GT GTM 320 GT Guatemala Guatemala City 108890 17247807 NA .gt GTQ Quetzal 502 ##### ^(\d{5})$ es-GT 3595528 MX,HN,BZ,SV
|
| 142 |
-
GU GUM 316 GQ Guam Hagatna 549 165768 OC .gu USD Dollar +1-671 969## ^(969\d{2})$ en-GU,ch-GU 4043988
|
| 143 |
-
GW GNB 624 PU Guinea-Bissau Bissau 36120 1874309 AF .gw XOF Franc 245 #### ^(\d{4})$ pt-GW,pov 2372248 SN,GN
|
| 144 |
-
GY GUY 328 GY Guyana Georgetown 214970 779004 SA .gy GYD Dollar 592 en-GY 3378535 SR,BR,VE
|
| 145 |
-
HK HKG 344 HK Hong Kong Hong Kong 1092 7396076 AS .hk HKD Dollar 852 ###### ^(\d{6})$ zh-HK,yue,zh,en 1819730
|
| 146 |
-
HM HMD 334 HM Heard Island and McDonald Islands 412 0 AN .hm AUD Dollar #### ^(\d{4})$ 1547314
|
| 147 |
-
HN HND 340 HO Honduras Tegucigalpa 112090 9587522 NA .hn HNL Lempira 504 ##### ^(\d{6})$ es-HN,cab,miq 3608932 GT,NI,SV
|
| 148 |
-
HR HRV 191 HR Croatia Zagreb 56542 3871833 EU .hr EUR Euro 385 ##### ^(?:HR)*(\d{5})$ hr-HR,sr 3202326 HU,SI,BA,ME,RS
|
| 149 |
-
HT HTI 332 HA Haiti Port-au-Prince 27750 11123176 NA .ht HTG Gourde 509 HT#### ^(?:HT)*(\d{4})$ ht,fr-HT 3723988 DO
|
| 150 |
-
HU HUN 348 HU Hungary Budapest 93030 9768785 EU .hu HUF Forint 36 #### ^(\d{4})$ hu-HU 719819 SK,SI,RO,UA,HR,AT,RS
|
| 151 |
-
ID IDN 360 ID Indonesia Jakarta 1919440 267663435 AS .id IDR Rupiah 62 ##### ^(\d{5})$ id,en,nl,jv 1643084 PG,TL,MY
|
| 152 |
-
IE IRL 372 EI Ireland Dublin 70280 4853506 EU .ie EUR Euro 353 @@@ @@@@ ^(D6W|[AC-FHKNPRTV-Y][0-9]{2})\s?([AC-FHKNPRTV-Y0-9]{4}) en-IE,ga-IE 2963597 GB
|
| 153 |
-
IL ISR 376 IS Israel Jerusalem 20770 8883800 AS .il ILS Shekel 972 ####### ^(\d{7}|\d{5})$ he,ar-IL,en-IL, 294640 SY,JO,LB,EG,PS
|
| 154 |
-
IM IMN 833 IM Isle of Man Douglas 572 84077 EU .im GBP Pound +44-1624 @# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA ^((?:(?:[A-PR-UWYZ][A-HK-Y]\d[ABEHMNPRV-Y0-9]|[A-PR-UWYZ]\d[A-HJKPS-UW0-9])\s\d[ABD-HJLNP-UW-Z]{2})|GIR\s?0AA)$ en,gv 3042225
|
| 155 |
-
IN IND 356 IN India New Delhi 3287590 1352617328 AS .in INR Rupee 91 ###### ^(\d{6})$ en-IN,hi,bn,te,mr,ta,ur,gu,kn,ml,or,pa,as,bh,sat,ks,ne,sd,kok,doi,mni,sit,sa,fr,lus,inc 1269750 CN,NP,MM,BT,PK,BD
|
| 156 |
-
IO IOT 086 IO British Indian Ocean Territory Diego Garcia 60 4000 AS .io USD Dollar 246 BBND 1ZZ BBND 1ZZ en-IO 1282588
|
| 157 |
-
IQ IRQ 368 IZ Iraq Baghdad 437072 38433600 AS .iq IQD Dinar 964 ##### ^(\d{5})$ ar-IQ,ku,hy 99237 SY,SA,IR,JO,TR,KW
|
| 158 |
-
IR IRN 364 IR Iran Tehran 1648000 81800269 AS .ir IRR Rial 98 ########## ^(\d{10})$ fa-IR,ku 130758 TM,AF,IQ,AM,PK,AZ,TR
|
| 159 |
-
IS ISL 352 IC Iceland Reykjavik 103000 353574 EU .is ISK Krona 354 ### ^(\d{3})$ is,en,de,da,sv,no 2629691
|
| 160 |
-
IT ITA 380 IT Italy Rome 301230 60431283 EU .it EUR Euro 39 ##### ^(\d{5})$ it-IT,de-IT,fr-IT,sc,ca,co,sl 3175395 CH,VA,SI,SM,FR,AT
|
| 161 |
-
JE JEY 832 JE Jersey Saint Helier 116 90812 EU .je GBP Pound +44-1534 @# #@@|@## #@@|@@# #@@|@@## #@@|@#@ #@@|@@#@ #@@|GIR0AA ^((?:(?:[A-PR-UWYZ][A-HK-Y]\d[ABEHMNPRV-Y0-9]|[A-PR-UWYZ]\d[A-HJKPS-UW0-9])\s\d[ABD-HJLNP-UW-Z]{2})|GIR\s?0AA)$ en,fr,nrf 3042142
|
| 162 |
-
JM JAM 388 JM Jamaica Kingston 10991 2934855 NA .jm JMD Dollar +1-876 en-JM 3489940
|
| 163 |
-
JO JOR 400 JO Jordan Amman 92300 9956011 AS .jo JOD Dinar 962 ##### ^(\d{5})$ ar-JO,en 248816 SY,SA,IQ,IL,PS
|
| 164 |
-
JP JPN 392 JA Japan Tokyo 377835 126529100 AS .jp JPY Yen 81 ###-#### ^\d{3}-\d{4}$ ja 1861060
|
| 165 |
-
KE KEN 404 KE Kenya Nairobi 582650 51393010 AF .ke KES Shilling 254 ##### ^(\d{5})$ en-KE,sw-KE 192950 ET,TZ,SS,SO,UG
|
| 166 |
-
KG KGZ 417 KG Kyrgyzstan Bishkek 198500 6315800 AS .kg KGS Som 996 ###### ^(\d{6})$ ky,uz,ru 1527747 CN,TJ,UZ,KZ
|
| 167 |
-
KH KHM 116 CB Cambodia Phnom Penh 181040 16249798 AS .kh KHR Riels 855 ##### ^(\d{5})$ km,fr,en 1831722 LA,TH,VN
|
| 168 |
-
KI KIR 296 KR Kiribati Tarawa 811 115847 OC .ki AUD Dollar 686 en-KI,gil 4030945
|
| 169 |
-
KM COM 174 CN Comoros Moroni 2170 832322 AF .km KMF Franc 269 ar,fr-KM 921929
|
| 170 |
-
KN KNA 659 SC Saint Kitts and Nevis Basseterre 261 52441 NA .kn XCD Dollar +1-869 en-KN 3575174
|
| 171 |
-
KP PRK 408 KN North Korea Pyongyang 120540 25549819 AS .kp KPW Won 850 ###-### ^(\d{6})$ ko-KP 1873107 CN,KR,RU
|
| 172 |
-
KR KOR 410 KS South Korea Seoul 98480 51635256 AS .kr KRW Won 82 ##### ^(\d{5})$ ko-KR,en 1835841 KP
|
| 173 |
-
XK XKX 0 KV Kosovo Pristina 10908 1845300 EU EUR Euro sq,sr 831053 RS,AL,MK,ME
|
| 174 |
-
KW KWT 414 KU Kuwait Kuwait City 17820 4137309 AS .kw KWD Dinar 965 ##### ^(\d{5})$ ar-KW,en 285570 SA,IQ
|
| 175 |
-
KY CYM 136 CJ Cayman Islands George Town 262 64174 NA .ky KYD Dollar +1-345 en-KY 3580718
|
| 176 |
-
KZ KAZ 398 KZ Kazakhstan Nur-Sultan 2717300 18276499 AS .kz KZT Tenge 7 ###### ^(\d{6})$ kk,ru 1522867 TM,CN,KG,UZ,RU
|
| 177 |
-
LA LAO 418 LA Laos Vientiane 236800 7061507 AS .la LAK Kip 856 ##### ^(\d{5})$ lo,fr,en 1655842 CN,MM,KH,TH,VN
|
| 178 |
-
LB LBN 422 LE Lebanon Beirut 10400 6848925 AS .lb LBP Pound 961 #### ####|#### ^(\d{4}(\d{4})?)$ ar-LB,fr-LB,en,hy 272103 SY,IL
|
| 179 |
-
LC LCA 662 ST Saint Lucia Castries 616 181889 NA .lc XCD Dollar +1-758 en-LC 3576468
|
| 180 |
-
LI LIE 438 LS Liechtenstein Vaduz 160 37910 EU .li CHF Franc 423 #### ^(\d{4})$ de-LI 3042058 CH,AT
|
| 181 |
-
LK LKA 144 CE Sri Lanka Colombo 65610 21670000 AS .lk LKR Rupee 94 ##### ^(\d{5})$ si,ta,en 1227603
|
| 182 |
-
LR LBR 430 LI Liberia Monrovia 111370 4818977 AF .lr LRD Dollar 231 #### ^(\d{4})$ en-LR 2275384 SL,CI,GN
|
| 183 |
-
LS LSO 426 LT Lesotho Maseru 30355 2108132 AF .ls LSL Loti 266 ### ^(\d{3})$ en-LS,st,zu,xh 932692 ZA
|
| 184 |
-
LT LTU 440 LH Lithuania Vilnius 65200 2789533 EU .lt EUR Euro 370 LT-##### ^(?:LT)*(\d{5})$ lt,ru,pl 597427 PL,BY,RU,LV
|
| 185 |
-
LU LUX 442 LU Luxembourg Luxembourg 2586 607728 EU .lu EUR Euro 352 L-#### ^(?:L-)?\d{4}$ lb,de-LU,fr-LU 2960313 DE,BE,FR
|
| 186 |
-
LV LVA 428 LG Latvia Riga 64589 1926542 EU .lv EUR Euro 371 LV-#### ^(?:LV)*(\d{4})$ lv,ru,lt 458258 LT,EE,BY,RU
|
| 187 |
-
LY LBY 434 LY Libya Tripoli 1759540 6678567 AF .ly LYD Dinar 218 ar-LY,it,en 2215636 TD,NE,DZ,SD,TN,EG
|
| 188 |
-
MA MAR 504 MO Morocco Rabat 446550 36029138 AF .ma MAD Dirham 212 ##### ^(\d{5})$ ar-MA,ber,fr 2542007 DZ,EH,ES
|
| 189 |
-
MC MCO 492 MN Monaco Monaco 1.95 38682 EU .mc EUR Euro 377 ##### ^(\d{5})$ fr-MC,en,it 2993457 FR
|
| 190 |
-
MD MDA 498 MD Moldova Chisinau 33843 3545883 EU .md MDL Leu 373 MD-#### ^MD-\d{4}$ ro,ru,gag,tr 617790 RO,UA
|
| 191 |
-
ME MNE 499 MJ Montenegro Podgorica 14026 622345 EU .me EUR Euro 382 ##### ^(\d{5})$ sr,hu,bs,sq,hr,rom 3194884 AL,HR,BA,RS,XK
|
| 192 |
-
MF MAF 663 RN Saint Martin Marigot 53 37264 NA .gp EUR Euro 590 ##### ^(\d{5})$ fr 3578421 SX
|
| 193 |
-
MG MDG 450 MA Madagascar Antananarivo 587040 26262368 AF .mg MGA Ariary 261 ### ^(\d{3})$ fr-MG,mg 1062947
|
| 194 |
-
MH MHL 584 RM Marshall Islands Majuro 181.3 58413 OC .mh USD Dollar 692 #####-#### ^969\d{2}(-\d{4})$ mh,en-MH 2080185
|
| 195 |
-
MK MKD 807 MK North Macedonia Skopje 25333 2082958 EU .mk MKD Denar 389 #### ^(\d{4})$ mk,sq,tr,rmm,sr 718075 AL,GR,BG,RS,XK
|
| 196 |
-
ML MLI 466 ML Mali Bamako 1240000 19077690 AF .ml XOF Franc 223 fr-ML,bm 2453866 SN,NE,DZ,CI,GN,MR,BF
|
| 197 |
-
MM MMR 104 BM Myanmar Nay Pyi Taw 678500 53708395 AS .mm MMK Kyat 95 ##### ^(\d{5})$ my 1327865 CN,LA,TH,BD,IN
|
| 198 |
-
MN MNG 496 MG Mongolia Ulaanbaatar 1565000 3170208 AS .mn MNT Tugrik 976 ###### ^(\d{6})$ mn,ru 2029969 CN,RU
|
| 199 |
-
MO MAC 446 MC Macao Macao 254 631636 AS .mo MOP Pataca 853 ###### ^(\d{6})$ zh,zh-MO,pt 1821275
|
| 200 |
-
MP MNP 580 CQ Northern Mariana Islands Saipan 477 56882 OC .mp USD Dollar +1-670 ##### ^9695\d{1}$ fil,tl,zh,ch-MP,en-MP 4041468
|
| 201 |
-
MQ MTQ 474 MB Martinique Fort-de-France 1100 432900 NA .mq EUR Euro 596 ##### ^(\d{5})$ fr-MQ 3570311
|
| 202 |
-
MR MRT 478 MR Mauritania Nouakchott 1030700 4403319 AF .mr MRU Ouguiya 222 ar-MR,fuc,snk,fr,mey,wo 2378080 SN,DZ,EH,ML
|
| 203 |
-
MS MSR 500 MH Montserrat Plymouth 102 9341 NA .ms XCD Dollar +1-664 en-MS 3578097
|
| 204 |
-
MT MLT 470 MT Malta Valletta 316 483530 EU .mt EUR Euro 356 @@@ #### ^[A-Z]{3}\s?\d{4}$ mt,en-MT 2562770
|
| 205 |
-
MU MUS 480 MP Mauritius Port Louis 2040 1265303 AF .mu MUR Rupee 230 en-MU,bho,fr 934292
|
| 206 |
-
MV MDV 462 MV Maldives Male 300 515696 AS .mv MVR Rufiyaa 960 ##### ^(\d{5})$ dv,en 1282028
|
| 207 |
-
MW MWI 454 MI Malawi Lilongwe 118480 17563749 AF .mw MWK Kwacha 265 ###### ^(\d{6})$ ny,yao,tum,swk 927384 TZ,MZ,ZM
|
| 208 |
-
MX MEX 484 MX Mexico Mexico City 1972550 126190788 NA .mx MXN Peso 52 ##### ^(\d{5})$ es-MX 3996063 GT,US,BZ
|
| 209 |
-
MY MYS 458 MY Malaysia Kuala Lumpur 329750 31528585 AS .my MYR Ringgit 60 ##### ^(\d{5})$ ms-MY,en,zh,ta,te,ml,pa,th 1733045 BN,TH,ID
|
| 210 |
-
MZ MOZ 508 MZ Mozambique Maputo 801590 29495962 AF .mz MZN Metical 258 #### ^(\d{4})$ pt-MZ,vmw 1036973 ZW,TZ,SZ,ZA,ZM,MW
|
| 211 |
-
NA NAM 516 WA Namibia Windhoek 825418 2448255 AF .na NAD Dollar 264 en-NA,af,de,hz,naq 3355338 ZA,BW,ZM,AO
|
| 212 |
-
NC NCL 540 NC New Caledonia Noumea 19060 284060 OC .nc XPF Franc 687 ##### ^(\d{5})$ fr-NC 2139685
|
| 213 |
-
NE NER 562 NG Niger Niamey 1267000 22442948 AF .ne XOF Franc 227 #### ^(\d{4})$ fr-NE,ha,kr,dje 2440476 TD,BJ,DZ,LY,BF,NG,ML
|
| 214 |
-
NF NFK 574 NF Norfolk Island Kingston 34.6 1828 OC .nf AUD Dollar 672 #### ^(\d{4})$ en-NF 2155115
|
| 215 |
-
NG NGA 566 NI Nigeria Abuja 923768 195874740 AF .ng NGN Naira 234 ###### ^(\d{6})$ en-NG,ha,yo,ig,ff 2328926 TD,NE,BJ,CM
|
| 216 |
-
NI NIC 558 NU Nicaragua Managua 129494 6465513 NA .ni NIO Cordoba 505 ###-###-# ^(\d{7})$ es-NI,en 3617476 CR,HN
|
| 217 |
-
NL NLD 528 NL The Netherlands Amsterdam 41526 17231017 EU .nl EUR Euro 31 #### @@ ^(\d{4}\s?[a-zA-Z]{2})$ nl-NL,fy-NL 2750405 DE,BE
|
| 218 |
-
NO NOR 578 NO Norway Oslo 324220 5314336 EU .no NOK Krone 47 #### ^(\d{4})$ no,nb,nn,se,fi 3144096 FI,RU,SE
|
| 219 |
-
NP NPL 524 NP Nepal Kathmandu 140800 28087871 AS .np NPR Rupee 977 ##### ^(\d{5})$ ne,en 1282988 CN,IN
|
| 220 |
-
NR NRU 520 NR Nauru Yaren 21 12704 OC .nr AUD Dollar 674 NRU68 NRU68 na,en-NR 2110425
|
| 221 |
-
NU NIU 570 NE Niue Alofi 260 2166 OC .nu NZD Dollar 683 #### ^(\d{4})$ niu,en-NU 4036232
|
| 222 |
-
NZ NZL 554 NZ New Zealand Wellington 268680 4885500 OC .nz NZD Dollar 64 #### ^(\d{4})$ en-NZ,mi 2186224
|
| 223 |
-
OM OMN 512 MU Oman Muscat 212460 4829483 AS .om OMR Rial 968 ### ^(\d{3})$ ar-OM,en,bal,ur 286963 SA,YE,AE
|
| 224 |
-
PA PAN 591 PM Panama Panama City 78200 4176873 NA .pa PAB Balboa 507 ##### ^(\d{5})$ es-PA,en 3703430 CR,CO
|
| 225 |
-
PE PER 604 PE Peru Lima 1285220 31989256 SA .pe PEN Sol 51 ##### ^(\d{5})$ es-PE,qu,ay 3932488 EC,CL,BO,BR,CO
|
| 226 |
-
PF PYF 258 FP French Polynesia Papeete 4167 277679 OC .pf XPF Franc 689 ##### ^((97|98)7\d{2})$ fr-PF,ty 4030656
|
| 227 |
-
PG PNG 598 PP Papua New Guinea Port Moresby 462840 8606316 OC .pg PGK Kina 675 ### ^(\d{3})$ en-PG,ho,meu,tpi 2088628 ID
|
| 228 |
-
PH PHL 608 RP Philippines Manila 300000 106651922 AS .ph PHP Peso 63 #### ^(\d{4})$ tl,en-PH,fil,ceb,ilo,hil,war,pam,bik,bcl,pag,mrw,tsg,mdh,cbk,krj,sgd,msb,akl,ibg,yka,mta,abx 1694008
|
| 229 |
-
PK PAK 586 PK Pakistan Islamabad 803940 212215030 AS .pk PKR Rupee 92 ##### ^(\d{5})$ ur-PK,en-PK,pa,sd,ps,brh 1168579 CN,AF,IR,IN
|
| 230 |
-
PL POL 616 PL Poland Warsaw 312685 37978548 EU .pl PLN Zloty 48 ##-### ^\d{2}-\d{3}$ pl 798544 DE,LT,SK,CZ,BY,UA,RU
|
| 231 |
-
PM SPM 666 SB Saint Pierre and Miquelon Saint-Pierre 242 7012 NA .pm EUR Euro 508 ##### ^(97500)$ fr-PM 3424932
|
| 232 |
-
PN PCN 612 PC Pitcairn Adamstown 47 46 OC .pn NZD Dollar 870 PCRN 1ZZ PCRN 1ZZ en-PN 4030699
|
| 233 |
-
PR PRI 630 RQ Puerto Rico San Juan 9104 3195153 NA .pr USD Dollar +1-787 and 1-939 #####-#### ^00[679]\d{2}(?:-\d{4})?$ en-PR,es-PR 4566966
|
| 234 |
-
PS PSE 275 WE Palestinian Territory East Jerusalem 5970 4569087 AS .ps ILS Shekel 970 ar-PS 6254930 JO,IL,EG
|
| 235 |
-
PT PRT 620 PO Portugal Lisbon 92391 10281762 EU .pt EUR Euro 351 ####-### ^\d{4}-\d{3}\s?[a-zA-Z]{0,25}$ pt-PT,mwl 2264397 ES
|
| 236 |
-
PW PLW 585 PS Palau Melekeok 458 17907 OC .pw USD Dollar 680 96940 ^(96940)$ pau,sov,en-PW,tox,ja,fil,zh 1559582
|
| 237 |
-
PY PRY 600 PA Paraguay Asuncion 406750 6956071 SA .py PYG Guarani 595 #### ^(\d{4})$ es-PY,gn 3437598 BO,BR,AR
|
| 238 |
-
QA QAT 634 QA Qatar Doha 11437 2781677 AS .qa QAR Rial 974 ar-QA,es 289688 SA
|
| 239 |
-
RE REU 638 RE Reunion Saint-Denis 2517 776948 AF .re EUR Euro 262 ##### ^((97|98)(4|7|8)\d{2})$ fr-RE 935317
|
| 240 |
-
RO ROU 642 RO Romania Bucharest 237500 19473936 EU .ro RON Leu 40 ###### ^(\d{6})$ ro,hu,rom 798549 MD,HU,UA,BG,RS
|
| 241 |
-
RS SRB 688 RI Serbia Belgrade 88361 6982084 EU .rs RSD Dinar 381 ##### ^(\d{5})$ sr,hu,bs,rom 6290252 AL,HU,MK,RO,HR,BA,BG,ME,XK
|
| 242 |
-
RU RUS 643 RS Russia Moscow 17100000 144478050 EU .ru RUB Ruble 7 ###### ^(\d{6})$ ru,tt,xal,cau,ady,kv,ce,tyv,cv,udm,tut,mns,bua,myv,mdf,chm,ba,inh,kbd,krc,av,sah,nog 2017370 GE,CN,BY,UA,KZ,LV,PL,EE,LT,FI,MN,NO,AZ,KP
|
| 243 |
-
RW RWA 646 RW Rwanda Kigali 26338 12301939 AF .rw RWF Franc 250 rw,en-RW,fr-RW,sw 49518 TZ,CD,BI,UG
|
| 244 |
-
SA SAU 682 SA Saudi Arabia Riyadh 1960582 33699947 AS .sa SAR Rial 966 ##### ^(\d{5})$ ar-SA 102358 QA,OM,IQ,YE,JO,AE,KW
|
| 245 |
-
SB SLB 090 BP Solomon Islands Honiara 28450 652858 OC .sb SBD Dollar 677 en-SB,tpi 2103350
|
| 246 |
-
SC SYC 690 SE Seychelles Victoria 455 96762 AF .sc SCR Rupee 248 en-SC,fr-SC 241170
|
| 247 |
-
SD SDN 729 SU Sudan Khartoum 1861484 41801533 AF .sd SDG Pound 249 ##### ^(\d{5})$ ar-SD,en,fia 366755 SS,TD,EG,ET,ER,LY,CF
|
| 248 |
-
SS SSD 728 OD South Sudan Juba 644329 8260490 AF .ss SSP Pound 211 en 7909807 CD,CF,ET,KE,SD,UG
|
| 249 |
-
SE SWE 752 SW Sweden Stockholm 449964 10183175 EU .se SEK Krona 46 ### ## ^(?:SE)?\d{3}\s\d{2}$ sv-SE,se,sma,fi-SE 2661886 NO,FI
|
| 250 |
-
SG SGP 702 SN Singapore Singapore 692.7 5638676 AS .sg SGD Dollar 65 ###### ^(\d{6})$ cmn,en-SG,ms-SG,ta-SG,zh-SG 1880251
|
| 251 |
-
SH SHN 654 SH Saint Helena Jamestown 410 7460 AF .sh SHP Pound 290 STHL 1ZZ ^(STHL1ZZ)$ en-SH 3370751
|
| 252 |
-
SI SVN 705 SI Slovenia Ljubljana 20273 2067372 EU .si EUR Euro 386 #### ^(?:SI)*(\d{4})$ sl,sh 3190538 HU,IT,HR,AT
|
| 253 |
-
SJ SJM 744 SV Svalbard and Jan Mayen Longyearbyen 62049 2550 EU .sj NOK Krone 47 #### ^(\d{4})$ no,ru 607072
|
| 254 |
-
SK SVK 703 LO Slovakia Bratislava 48845 5447011 EU .sk EUR Euro 421 ### ## ^\d{3}\s?\d{2}$ sk,hu 3057568 PL,HU,CZ,UA,AT
|
| 255 |
-
SL SLE 694 SL Sierra Leone Freetown 71740 7650154 AF .sl SLE Leone 232 en-SL,men,tem 2403846 LR,GN
|
| 256 |
-
SM SMR 674 SM San Marino San Marino 61.2 33785 EU .sm EUR Euro 378 4789# ^(4789\d)$ it-SM 3168068 IT
|
| 257 |
-
SN SEN 686 SG Senegal Dakar 196190 15854360 AF .sn XOF Franc 221 ##### ^(\d{5})$ fr-SN,wo,fuc,mnk 2245662 GN,MR,GW,GM,ML
|
| 258 |
-
SO SOM 706 SO Somalia Mogadishu 637657 15008154 AF .so SOS Shilling 252 @@ ##### ^([A-Z]{2}\d{5})$ so-SO,ar-SO,it,en-SO 51537 ET,KE,DJ
|
| 259 |
-
SR SUR 740 NS Suriname Paramaribo 163270 575991 SA .sr SRD Dollar 597 nl-SR,en,srn,hns,jv 3382998 GY,BR,GF
|
| 260 |
-
ST STP 678 TP Sao Tome and Principe Sao Tome 1001 197700 AF .st STN Dobra 239 pt-ST 2410758
|
| 261 |
-
SV SLV 222 ES El Salvador San Salvador 21040 6420744 NA .sv USD Dollar 503 CP #### ^(?:CP)*(\d{4})$ es-SV 3585968 GT,HN
|
| 262 |
-
SX SXM 534 NN Sint Maarten Philipsburg 21 40654 NA .sx ANG Guilder 599 nl,en 7609695 MF
|
| 263 |
-
SY SYR 760 SY Syria Damascus 185180 16906283 AS .sy SYP Pound 963 ar-SY,ku,hy,arc,fr,en 163843 IQ,JO,IL,TR,LB
|
| 264 |
-
SZ SWZ 748 WZ Eswatini Mbabane 17363 1136191 AF .sz SZL Lilangeni 268 @### ^([A-Z]\d{3})$ en-SZ,ss-SZ 934841 ZA,MZ
|
| 265 |
-
TC TCA 796 TK Turks and Caicos Islands Cockburn Town 430 37665 NA .tc USD Dollar +1-649 TKCA 1ZZ ^(TKCA 1ZZ)$ en-TC 3576916
|
| 266 |
-
TD TCD 148 CD Chad N'Djamena 1284000 15477751 AF .td XAF Franc 235 TKCA 1ZZ ^(TKCA 1ZZ)$ fr-TD,ar-TD,sre 2434508 NE,LY,CF,SD,CM,NG
|
| 267 |
-
TF ATF 260 FS French Southern Territories Port-aux-Francais 7829 140 AN .tf EUR Euro fr 1546748
|
| 268 |
-
TG TGO 768 TO Togo Lome 56785 7889094 AF .tg XOF Franc 228 fr-TG,ee,hna,kbp,dag,ha 2363686 BJ,GH,BF
|
| 269 |
-
TH THA 764 TH Thailand Bangkok 514000 69428524 AS .th THB Baht 66 ##### ^(\d{5})$ th,en 1605651 LA,MM,KH,MY
|
| 270 |
-
TJ TJK 762 TI Tajikistan Dushanbe 143100 9100837 AS .tj TJS Somoni 992 ###### ^(\d{6})$ tg,ru 1220409 CN,AF,KG,UZ
|
| 271 |
-
TK TKL 772 TL Tokelau 10 1466 OC .tk NZD Dollar 690 tkl,en-TK 4031074
|
| 272 |
-
TL TLS 626 TT Timor Leste Dili 15007 1267972 OC .tl USD Dollar 670 tet,pt-TL,id,en 1966436 ID
|
| 273 |
-
TM TKM 795 TX Turkmenistan Ashgabat 488100 5850908 AS .tm TMT Manat 993 ###### ^(\d{6})$ tk,ru,uz 1218197 AF,IR,UZ,KZ
|
| 274 |
-
TN TUN 788 TS Tunisia Tunis 163610 11565204 AF .tn TND Dinar 216 #### ^(\d{4})$ ar-TN,fr 2464461 DZ,LY
|
| 275 |
-
TO TON 776 TN Tonga Nuku'alofa 748 103197 OC .to TOP Pa'anga 676 to,en-TO 4032283
|
| 276 |
-
TR TUR 792 TU Turkey Ankara 780580 82319724 AS .tr TRY Lira 90 ##### ^(\d{5})$ tr-TR,ku,diq,az,av 298795 SY,GE,IQ,IR,GR,AM,AZ,BG
|
| 277 |
-
TT TTO 780 TD Trinidad and Tobago Port of Spain 5128 1389858 NA .tt TTD Dollar +1-868 en-TT,hns,fr,es,zh 3573591
|
| 278 |
-
TV TUV 798 TV Tuvalu Funafuti 26 11508 OC .tv AUD Dollar 688 tvl,en,sm,gil 2110297
|
| 279 |
-
TW TWN 158 TW Taiwan Taipei 35980 23451837 AS .tw TWD Dollar 886 ##### ^(\d{5})$ zh-TW,zh,nan,hak 1668284
|
| 280 |
-
TZ TZA 834 TZ Tanzania Dodoma 945087 56318348 AF .tz TZS Shilling 255 sw-TZ,en,ar 149590 MZ,KE,CD,RW,ZM,BI,UG,MW
|
| 281 |
-
UA UKR 804 UP Ukraine Kyiv 603700 44622516 EU .ua UAH Hryvnia 380 ##### ^(\d{5})$ uk,ru-UA,rom,pl,hu 690791 PL,MD,HU,SK,BY,RO,RU
|
| 282 |
-
UG UGA 800 UG Uganda Kampala 236040 42723139 AF .ug UGX Shilling 256 en-UG,lg,sw,ar 226074 TZ,KE,SS,CD,RW
|
| 283 |
-
UM UMI 581 United States Minor Outlying Islands 0 0 OC .um USD Dollar 1 en-UM 5854968
|
| 284 |
-
US USA 840 US United States Washington 9629091 327167434 NA .us USD Dollar 1 #####-#### ^\d{5}(-\d{4})?$ en-US,es-US,haw,fr 6252001 CA,MX,CU
|
| 285 |
-
UY URY 858 UY Uruguay Montevideo 176220 3449299 SA .uy UYU Peso 598 ##### ^(\d{5})$ es-UY 3439705 BR,AR
|
| 286 |
-
UZ UZB 860 UZ Uzbekistan Tashkent 447400 32955400 AS .uz UZS Som 998 ###### ^(\d{6})$ uz,ru,tg 1512440 TM,AF,KG,TJ,KZ
|
| 287 |
-
VA VAT 336 VT Vatican Vatican City 0.44 921 EU .va EUR Euro 379 ##### ^(\d{5})$ la,it,fr 3164670 IT
|
| 288 |
-
VC VCT 670 VC Saint Vincent and the Grenadines Kingstown 389 110211 NA .vc XCD Dollar +1-784 en-VC,fr 3577815
|
| 289 |
-
VE VEN 862 VE Venezuela Caracas 912050 28870195 SA .ve VES Bolivar Soberano 58 #### ^(\d{4})$ es-VE 3625428 GY,BR,CO
|
| 290 |
-
VG VGB 092 VI British Virgin Islands Road Town 153 29802 NA .vg USD Dollar +1-284 en-VG 3577718
|
| 291 |
-
VI VIR 850 VQ U.S. Virgin Islands Charlotte Amalie 352 106977 NA .vi USD Dollar +1-340 #####-#### ^008\d{2}(?:-\d{4})?$ en-VI 4796775
|
| 292 |
-
VN VNM 704 VM Vietnam Hanoi 329560 95540395 AS .vn VND Dong 84 ###### ^(\d{6})$ vi,en,fr,zh,km 1562822 CN,LA,KH
|
| 293 |
-
VU VUT 548 NH Vanuatu Port Vila 12200 292680 OC .vu VUV Vatu 678 bi,en-VU,fr-VU 2134431
|
| 294 |
-
WF WLF 876 WF Wallis and Futuna Mata Utu 274 16025 OC .wf XPF Franc 681 ##### ^(986\d{2})$ wls,fud,fr-WF 4034749
|
| 295 |
-
WS WSM 882 WS Samoa Apia 2944 196130 OC .ws WST Tala 685 AS 96799 AS 96799 sm,en-WS 4034894
|
| 296 |
-
YE YEM 887 YM Yemen Sanaa 527970 28498687 AS .ye YER Rial 967 ar-YE 69543 SA,OM
|
| 297 |
-
YT MYT 175 MF Mayotte Mamoudzou 374 279471 AF .yt EUR Euro 262 ##### ^(\d{5})$ fr-YT 1024031
|
| 298 |
-
ZA ZAF 710 SF South Africa Pretoria 1219912 57779622 AF .za ZAR Rand 27 #### ^(\d{4})$ zu,xh,af,nso,en-ZA,tn,st,ts,ss,ve,nr 953987 ZW,SZ,MZ,BW,NA,LS
|
| 299 |
-
ZM ZMB 894 ZA Zambia Lusaka 752614 17351822 AF .zm ZMW Kwacha 260 ##### ^(\d{5})$ en-ZM,bem,loz,lun,lue,ny,toi 895949 ZW,TZ,MZ,CD,NA,MW,AO
|
| 300 |
-
ZW ZWE 716 ZI Zimbabwe Harare 390580 16868409 AF .zw ZWG Zimbabwe Gold 263 en-ZW,sn,nr,nd 878675 ZA,MZ,BW,ZM
|
| 301 |
-
CS SCG 891 YI Serbia and Montenegro Belgrade 102350 10829175 EU .cs RSD Dinar 381 ##### ^(\d{5})$ cu,hu,sq,sr 8505033 AL,HU,MK,RO,HR,BA,BG
|
| 302 |
-
AN ANT 530 NT Netherlands Antilles Willemstad 960 300000 NA .an ANG Guilder 599 nl-AN,en,es 8505032 GP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/imf_gdp_raw_2024.json
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:d8583c093381da17225f57ee69ab39285f4c9557d53fa1ce5a8ce1160950c509
|
| 3 |
-
size 265358
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/onet_task_statements_raw.xlsx
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:373cdc961891d04bcd29db66c43c7cf412d61fe3ef1f49e634dd979f4d5a3a95
|
| 3 |
-
size 1204658
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/sc-est2024-agesex-civ.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:334210a5080a6e470db22e42346ba7e6d0d43490887e08c5ed3ece62a7adfa9c
|
| 3 |
-
size 818707
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/soc_structure_raw.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:05eb5e689fb471b7a66962b57bba6666dee2c3e6a6854f0f84faf423af68dd17
|
| 3 |
-
size 77176
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/task_pct_v1.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:8de89c99f762146c9e46b2202c3501e2a14f11c5b44c61c8007021127b6c676e
|
| 3 |
-
size 461306
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/task_pct_v2.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:0c20f184cd4a1e3d8ef3d77f500b32b62431ce61a3c2f133c3af7fa8429f97db
|
| 3 |
-
size 435372
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/input/working_age_pop_2024_country_raw.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:7c86dcb133a3f9f54f5f22e74683f5d6c5cc97faa9ddc2cdd466a4422cd4124c
|
| 3 |
-
size 22974
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/intermediate/aei_raw_1p_api_2025-08-04_to_2025-08-11.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c0fc061ea7d4feb71a7bd88c528d54e2d3a11e2045574f1e1fb2d594eebffd0f
|
| 3 |
-
size 7027019
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/intermediate/aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c8ef9c5eee0c42febc73e358ecc7d2358e0a0ce3b50122c0c15ae8ec569aceff
|
| 3 |
-
size 18894517
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/intermediate/gdp_2024_country.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:e0618d6ba634a612b97b1c82f521ab38a387216069818a86f50c9aaf8e2bda6c
|
| 3 |
-
size 4115
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/intermediate/gdp_2024_us_state.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:cb1573e8143bd407c2ea7c43f5a6822852568c596dbde843fc5d8692c9e967ec
|
| 3 |
-
size 2179
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/intermediate/iso_country_codes.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:eee318d4ab2c2c30f5a7da11f2bc7e0e36c246f6be5bb9b323fdb12b8e4809e0
|
| 3 |
-
size 4564
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/intermediate/onet_task_statements.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:88427f8d2a9f37a7c08b5420c6c66a01cdae6467b716bbbd31989128504b8ebb
|
| 3 |
-
size 3650862
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/intermediate/soc_structure.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:97dee70470182ac642872839f71a4a938c03677829aadca9bfbf250cb4021863
|
| 3 |
-
size 78834
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/intermediate/working_age_pop_2024_country.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:3a9e0edc0453702e8efb63d7cab57e5b1a689bc09e070626bbf513e37edd5dd3
|
| 3 |
-
size 6321
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/intermediate/working_age_pop_2024_us_state.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:e2d0fb7239934f4f6d0ae3444ab12ad8ff1dd323b71ccfc4295d074b537f17ec
|
| 3 |
-
size 1079
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/output/aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:48a2c39f8a98ce7c2ba72767cbe3760fd55ba4a64a193abfecefc76d19852c09
|
| 3 |
-
size 26840881
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/output/request_hierarchy_tree_1p_api.json
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:83ad607dace603931ef663768edc63738fe3547b41e5ab47739b49e3b1cdbad7
|
| 3 |
-
size 302699
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data/output/request_hierarchy_tree_claude_ai.json
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:79f9f7939ba8c2dda1a5e52967dd9c6def3238e9fe024772330a411c849de7e0
|
| 3 |
-
size 438531
|
|
|
|
|
|
|
|
|
|
|
|
release_2025_09_15/data_documentation.md
DELETED
|
@@ -1,373 +0,0 @@
|
|
| 1 |
-
# Data Documentation
|
| 2 |
-
|
| 3 |
-
This document describes the data sources and variables used in the third Anthropic Economic Index (AEI) report.
|
| 4 |
-
|
| 5 |
-
## Claude.ai Usage Data
|
| 6 |
-
|
| 7 |
-
### Overview
|
| 8 |
-
The core dataset contains Claude AI usage metrics aggregated by geography and analysis dimensions (facets).
|
| 9 |
-
|
| 10 |
-
**Source files**:
|
| 11 |
-
- `aei_raw_claude_ai_2025-08-04_to_2025-08-11.csv` (pre-enrichment data in data/intermediate/)
|
| 12 |
-
- `aei_enriched_claude_ai_2025-08-04_to_2025-08-11.csv` (enriched data in data/output/)
|
| 13 |
-
|
| 14 |
-
**Note on data sources**: The AEI raw file contains raw counts and percentages. Derived metrics (indices, tiers, per capita calculations, automation/augmentation percentages) are calculated during the enrichment process in `aei_report_v3_preprocessing_claude_ai.ipynb`.
|
| 15 |
-
|
| 16 |
-
### Data Schema
|
| 17 |
-
Each row represents one metric value for a specific geography and facet combination:
|
| 18 |
-
|
| 19 |
-
| Column | Type | Description |
|
| 20 |
-
|--------|------|-------------|
|
| 21 |
-
| `geo_id` | string | Geographic identifier (ISO-2 country code for countries, US state code, or "GLOBAL", ISO-3 country codes in enriched data) |
|
| 22 |
-
| `geography` | string | Geographic level: "country", "state_us", or "global" |
|
| 23 |
-
| `date_start` | date | Start of data collection period |
|
| 24 |
-
| `date_end` | date | End of data collection period |
|
| 25 |
-
| `platform_and_product` | string | "Claude AI (Free and Pro)" |
|
| 26 |
-
| `facet` | string | Analysis dimension (see Facets below) |
|
| 27 |
-
| `level` | integer | Sub-level within facet (0-2) |
|
| 28 |
-
| `variable` | string | Metric name (see Variables below) |
|
| 29 |
-
| `cluster_name` | string | Specific entity within facet (task, pattern, etc.). For intersections, format is "base::category" |
|
| 30 |
-
| `value` | float | Numeric metric value |
|
| 31 |
-
|
| 32 |
-
### Facets
|
| 33 |
-
- **country**: Country-level aggregations
|
| 34 |
-
- **state_us**: US state-level aggregations
|
| 35 |
-
- **onet_task**: O*NET occupational tasks
|
| 36 |
-
- **collaboration**: Human-AI collaboration patterns
|
| 37 |
-
- **request**: Request complexity levels (0=highest granularity, 1=middle granularity, 2=lowest granularity)
|
| 38 |
-
- **onet_task::collaboration**: Intersection of tasks and collaboration patterns
|
| 39 |
-
- **request::collaboration**: Intersection of request categories and collaboration patterns
|
| 40 |
-
|
| 41 |
-
### Core Variables
|
| 42 |
-
|
| 43 |
-
Variables follow the pattern `{prefix}_{suffix}` with specific meanings:
|
| 44 |
-
|
| 45 |
-
**From AEI processing**: `*_count`, `*_pct`
|
| 46 |
-
**From enrichment**: `*_per_capita`, `*_per_capita_index`, `*_pct_index`, `*_tier`, `automation_pct`, `augmentation_pct`, `soc_pct`
|
| 47 |
-
|
| 48 |
-
#### Usage Metrics
|
| 49 |
-
- **usage_count**: Total number of conversations/interactions in a geography
|
| 50 |
-
- **usage_pct**: Percentage of total usage (relative to parent geography - gobal for countries, US for states)
|
| 51 |
-
- **usage_per_capita**: Usage count divided by working age population
|
| 52 |
-
- **usage_per_capita_index**: Concentration index showing if a geography has more/less usage than expected based on population share (1.0 = proportional, >1.0 = over-representation, <1.0 = under-representation)
|
| 53 |
-
- **usage_tier**: Usage adoption tier (0 = no/little adoption, 1-4 = quartiles of adoption among geographies with sufficient usage)
|
| 54 |
-
|
| 55 |
-
#### Content Facet Metrics
|
| 56 |
-
**O*NET Task Metrics**:
|
| 57 |
-
- **onet_task_count**: Number of conversations using this specific O*NET task
|
| 58 |
-
- **onet_task_pct**: Percentage of geographic total using this task
|
| 59 |
-
- **onet_task_pct_index**: Specialization index comparing task usage to baseline (global for countries, US for states)
|
| 60 |
-
- **onet_task_collaboration_count**: Number of conversations with both this task and collaboration pattern (intersection)
|
| 61 |
-
- **onet_task_collaboration_pct**: Percentage of the base task's total that has this collaboration pattern (sums to 100% within each task)
|
| 62 |
-
|
| 63 |
-
#### Occupation Metrics
|
| 64 |
-
- **soc_pct**: Percentage of classified O*NET tasks associated with this SOC major occupation group (e.g., Management, Computer and Mathematical)
|
| 65 |
-
|
| 66 |
-
**Request Metrics**:
|
| 67 |
-
- **request_count**: Number of conversations in this request category level
|
| 68 |
-
- **request_pct**: Percentage of geographic total in this category
|
| 69 |
-
- **request_pct_index**: Specialization index comparing request usage to baseline
|
| 70 |
-
- **request_collaboration_count**: Number of conversations with both this request category and collaboration pattern (intersection)
|
| 71 |
-
- **request_collaboration_pct**: Percentage of the base request's total that has this collaboration pattern (sums to 100% within each request)
|
| 72 |
-
|
| 73 |
-
**Collaboration Pattern Metrics**:
|
| 74 |
-
- **collaboration_count**: Number of conversations with this collaboration pattern
|
| 75 |
-
- **collaboration_pct**: Percentage of geographic total with this pattern
|
| 76 |
-
- **collaboration_pct_index**: Specialization index comparing pattern to baseline
|
| 77 |
-
- **automation_pct**: Percentage of classifiable collaboration that is automation-focused (directive, feedback loop patterns)
|
| 78 |
-
- **augmentation_pct**: Percentage of classifiable collaboration that is augmentation-focused (validation, task iteration, learning patterns)
|
| 79 |
-
|
| 80 |
-
#### Demographic & Economic Metrics
|
| 81 |
-
- **working_age_pop**: Population aged 15-64 (working age definition used by World Bank)
|
| 82 |
-
- **gdp_per_working_age_capita**: Total GDP divided by working age population (in USD)
|
| 83 |
-
|
| 84 |
-
#### Special Values
|
| 85 |
-
- **not_classified**: Indicates data that was filtered for privacy protection or could not be classified
|
| 86 |
-
- **none**: Indicates the absence of the attribute (e.g., no collaboration, no task selected)
|
| 87 |
-
|
| 88 |
-
### Data Processing Notes
|
| 89 |
-
- **Minimum Observations**: 200 conversations per country, 100 per US state (applied in enrichment step, not raw preprocessing)
|
| 90 |
-
- **Population Base**: Working-age population (ages 15-64)
|
| 91 |
-
- **not_classified**:
|
| 92 |
-
- For regular facets: Captures filtered/unclassified conversations
|
| 93 |
-
- For intersection facets: Each base cluster has its own not_classified (e.g., "task1::not_classified")
|
| 94 |
-
- **Intersection Percentages**: Calculated relative to base cluster totals, ensuring each base cluster's percentages sum to 100%
|
| 95 |
-
- **Percentage Index Calculations**:
|
| 96 |
-
- Exclude `not_classified` and `none` categories from index calculations as they are not meaningful
|
| 97 |
-
- **Country Codes**: ISO-2 format (e.g., "US" in raw data), ISO-3 (e.g., "USA", "GBR", "FRA") for countries after enrichment
|
| 98 |
-
- **Variable Definitions**: See Core Variables section above
|
| 99 |
-
|
| 100 |
-
## 1P API Usage Data
|
| 101 |
-
|
| 102 |
-
### Overview
|
| 103 |
-
Dataset containing first-party API usage metrics along various dimensions based on a sample of 1P API traffic and analyzed using privacy-preserving methods.
|
| 104 |
-
|
| 105 |
-
**Source file**: `aei_raw_1p_api_2025-08-04_to_2025-08-11.csv` (in data/intermediate/)
|
| 106 |
-
|
| 107 |
-
### Data Schema
|
| 108 |
-
Each row represents one metric value for a specific facet combination at global level:
|
| 109 |
-
|
| 110 |
-
| Column | Type | Description |
|
| 111 |
-
|--------|------|-------------|
|
| 112 |
-
| `geo_id` | string | Geographic identifier (always "GLOBAL" for API data) |
|
| 113 |
-
| `geography` | string | Geographic level (always "global" for API data) |
|
| 114 |
-
| `date_start` | date | Start of data collection period |
|
| 115 |
-
| `date_end` | date | End of data collection period |
|
| 116 |
-
| `platform_and_product` | string | "1P API" |
|
| 117 |
-
| `facet` | string | Analysis dimension (see Facets below) |
|
| 118 |
-
| `level` | integer | Sub-level within facet (0-2) |
|
| 119 |
-
| `variable` | string | Metric name (see Variables below) |
|
| 120 |
-
| `cluster_name` | string | Specific entity within facet. For intersections, format is "base::category" or "base::index"/"base::count" for mean value metrics |
|
| 121 |
-
| `value` | float | Numeric metric value |
|
| 122 |
-
|
| 123 |
-
### Facets
|
| 124 |
-
- **onet_task**: O*NET occupational tasks
|
| 125 |
-
- **collaboration**: Human-AI collaboration patterns
|
| 126 |
-
- **request**: Request categories (hierarchical levels 0-2 from bottom-up taxonomy)
|
| 127 |
-
- **onet_task::collaboration**: Intersection of tasks and collaboration patterns
|
| 128 |
-
- **onet_task::prompt_tokens**: Mean prompt tokens per task (normalized, average = 1.0)
|
| 129 |
-
- **onet_task::completion_tokens**: Mean completion tokens per task (normalized, average = 1.0)
|
| 130 |
-
- **onet_task::cost**: Mean cost per task (normalized, average = 1.0)
|
| 131 |
-
- **request::collaboration**: Intersection of request categories and collaboration patterns
|
| 132 |
-
|
| 133 |
-
### Core Variables
|
| 134 |
-
|
| 135 |
-
#### Usage Metrics
|
| 136 |
-
- **collaboration_count**: Number of 1P API records with this collaboration pattern
|
| 137 |
-
- **collaboration_pct**: Percentage of total with this pattern
|
| 138 |
-
|
| 139 |
-
#### Content Facet Metrics
|
| 140 |
-
**O*NET Task Metrics**:
|
| 141 |
-
- **onet_task_count**: Number of 1P API records using this specific O*NET task
|
| 142 |
-
- **onet_task_pct**: Percentage of total using this task
|
| 143 |
-
- **onet_task_collaboration_count**: Records with both this task and collaboration pattern
|
| 144 |
-
- **onet_task_collaboration_pct**: Percentage of the task's total with this collaboration pattern
|
| 145 |
-
|
| 146 |
-
**Mean Value Intersection Metrics** (unique to API data):
|
| 147 |
-
- **prompt_tokens_index**: Re-indexed mean prompt tokens (1.0 = average across all tasks)
|
| 148 |
-
- **prompt_tokens_count**: Number of records for this metric
|
| 149 |
-
- **completion_tokens_index**: Re-indexed mean completion tokens (1.0 = average across all tasks)
|
| 150 |
-
- **completion_tokens_count**: Number of records for this metric
|
| 151 |
-
- **cost_index**: Re-indexed mean cost (1.0 = average across all tasks)
|
| 152 |
-
- **cost_count**: Number of records for this metric
|
| 153 |
-
|
| 154 |
-
**Request Metrics**:
|
| 155 |
-
- **request_count**: Number of 1P API records in this request category
|
| 156 |
-
- **request_pct**: Percentage of total in this category
|
| 157 |
-
- **request_collaboration_count**: Records with both this request category and collaboration pattern
|
| 158 |
-
- **request_collaboration_pct**: Percentage of the request's total with this collaboration pattern
|
| 159 |
-
|
| 160 |
-
## Claude.ai Request Hierarchy
|
| 161 |
-
|
| 162 |
-
Contains the hierarchy of request clusters for Claude.ai usage with their names and descriptions.
|
| 163 |
-
|
| 164 |
-
**Source file**: `request_hierarchy_tree_claude_ai.json` (in data/output/)
|
| 165 |
-
|
| 166 |
-
## 1P API Request Hierarchy
|
| 167 |
-
|
| 168 |
-
Contains the hierarchy of request clusters for 1P API usage with their names and descriptions.
|
| 169 |
-
|
| 170 |
-
**Source file**: `request_hierarchy_tree_1p_api.json` (in data/output/)
|
| 171 |
-
|
| 172 |
-
## Claude.ai Usage Data from Prior Anthropic Economic Index Releases
|
| 173 |
-
|
| 174 |
-
Data on task usage and automation/augmentation patterns from the first and second Anthropic Economic Index reports.
|
| 175 |
-
|
| 176 |
-
- **Source**: Anthropic/EconomicIndex dataset on Hugging Face
|
| 177 |
-
- **URL**: https://huggingface.co/datasets/Anthropic/EconomicIndex/tree/main/release_2025_03_27
|
| 178 |
-
- **License**: Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)
|
| 179 |
-
- **Files**:
|
| 180 |
-
- `automation_vs_augmentation_v1.csv`
|
| 181 |
-
- `automation_vs_augmentation_v2.csv`
|
| 182 |
-
- `task_pct_v1.csv`
|
| 183 |
-
- `task_pct_v2.csv`
|
| 184 |
-
|
| 185 |
-
## External Data Sources
|
| 186 |
-
|
| 187 |
-
We use external data to enrich Claude usage data with external economic and demographic sources.
|
| 188 |
-
|
| 189 |
-
### ISO Country Codes
|
| 190 |
-
|
| 191 |
-
**ISO 3166 Country Codes**
|
| 192 |
-
|
| 193 |
-
International standard codes for representing countries and territories, used for mapping IP-based geolocation data to standardized country identifiers.
|
| 194 |
-
|
| 195 |
-
- **Standard**: ISO 3166-1
|
| 196 |
-
- **Source**: GeoNames geographical database
|
| 197 |
-
- **URL**: https://download.geonames.org/export/dump/countryInfo.txt
|
| 198 |
-
- **License**: Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)
|
| 199 |
-
- **Attribution note**: Data in the data/intermediate and data/output folders have been processed and modified from original source; modifications to data in data/intermediate include extracting only tabular data, selecting a subset of columns, and renaming columns; modifications to data in data/output include transforming data to long format
|
| 200 |
-
- **Download date**: September 2, 2025
|
| 201 |
-
- **Output files**:
|
| 202 |
-
- `geonames_countryInfo.txt` (raw GeoNames data in data/input/)
|
| 203 |
-
- `iso_country_codes.csv` (processed country codes in data/intermediate/)
|
| 204 |
-
- **Key fields**:
|
| 205 |
-
- `iso_alpha_2`: Two-letter country code (e.g., "US", "GB", "FR")
|
| 206 |
-
- `iso_alpha_3`: Three-letter country code (e.g., "USA", "GBR", "FRA")
|
| 207 |
-
- `country_name`: Country name from GeoNames
|
| 208 |
-
- **Usage**: Maps IP-based country identification to standardized ISO codes for consistent geographic aggregation
|
| 209 |
-
|
| 210 |
-
### US State Codes
|
| 211 |
-
|
| 212 |
-
**State FIPS Codes and USPS Abbreviations**
|
| 213 |
-
|
| 214 |
-
Official state and territory codes including FIPS codes and two-letter USPS abbreviations for all U.S. states, territories, and the District of Columbia.
|
| 215 |
-
|
| 216 |
-
- **Series**: State FIPS Codes
|
| 217 |
-
- **Source**: U.S. Census Bureau, Geography Division
|
| 218 |
-
- **URL**: https://www2.census.gov/geo/docs/reference/state.txt
|
| 219 |
-
- **License**: Public Domain (U.S. Government Work)
|
| 220 |
-
- **Download date**: September 2, 2025
|
| 221 |
-
- **Output files**:
|
| 222 |
-
- `census_state_codes.txt` (raw pipe-delimited text file in data/input/)
|
| 223 |
-
- **Usage**: Maps state names to two-letter abbreviations (e.g., "California" → "CA")
|
| 224 |
-
|
| 225 |
-
### Population Data
|
| 226 |
-
|
| 227 |
-
### US State Population
|
| 228 |
-
|
| 229 |
-
**State Characteristics Estimates - Age and Sex - Civilian Population**
|
| 230 |
-
|
| 231 |
-
Annual estimates of the civilian population by single year of age, sex, race, and Hispanic origin for states and the District of Columbia.
|
| 232 |
-
|
| 233 |
-
- **Series**: SC-EST2024-AGESEX-CIV
|
| 234 |
-
- **Source**: U.S. Census Bureau, Population Division
|
| 235 |
-
- **URL**: https://www2.census.gov/programs-surveys/popest/datasets/2020-2024/state/asrh/sc-est2024-agesex-civ.csv
|
| 236 |
-
- **License**: Public Domain (U.S. Government Work)
|
| 237 |
-
- **Download date**: September 2, 2025
|
| 238 |
-
- **Output files**:
|
| 239 |
-
- `sc-est2024-agesex-civ.csv` (raw Census data in data/input/)
|
| 240 |
-
- `working_age_pop_2024_us_state.csv` (processed data summed for ages 15-64 by state in data/intermediate/)
|
| 241 |
-
- **Documentation**: https://www2.census.gov/programs-surveys/popest/technical-documentation/file-layouts/2020-2024/SC-EST2024-AGESEX-CIV.pdf
|
| 242 |
-
|
| 243 |
-
### Country Population
|
| 244 |
-
|
| 245 |
-
**Population ages 15-64, total**
|
| 246 |
-
|
| 247 |
-
Total population between the ages 15 to 64. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
|
| 248 |
-
|
| 249 |
-
- **Series**: SP.POP.1564.TO
|
| 250 |
-
- **Source**: World Population Prospects, United Nations (UN), publisher: UN Population Division; Staff estimates, World Bank (WB)
|
| 251 |
-
- **URL**: https://api.worldbank.org/v2/country/all/indicator/SP.POP.1564.TO?format=json&date=2024&per_page=1000
|
| 252 |
-
- **License**: Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)
|
| 253 |
-
- **Attribution note**: Data in the data/intermediate folder have been processed and modified from original source; modifications to data in data/input include changing the file format; modifications to data/intermediate include adding Taiwan population data, removing non-country aggregates, removing invalid country codes, removing excluded countries, and renaming columns; modifications to data in data/output include transforming data to long format
|
| 254 |
-
- **Download date**: September 2, 2025
|
| 255 |
-
- **Output files**:
|
| 256 |
-
- `working_age_pop_2024_country_raw.csv` (raw World Bank data in data/input/)
|
| 257 |
-
- `working_age_pop_2024_country.csv` (processed country-level data including Taiwan in data/intermediate/)
|
| 258 |
-
|
| 259 |
-
### Taiwan Population
|
| 260 |
-
|
| 261 |
-
**Population by single age**
|
| 262 |
-
|
| 263 |
-
Population projections by single year of age for Taiwan (Republic of China). This data supplements the World Bank country data which excludes Taiwan.
|
| 264 |
-
|
| 265 |
-
- **Series**: Population by single age (Medium variant, Total gender)
|
| 266 |
-
- **Source**: National Development Council, Population Projections for the R.O.C (Taiwan)
|
| 267 |
-
- **URL**: https://pop-proj.ndc.gov.tw/main_en/Custom_Detail_Statistics_Search.aspx?n=175&_Query=258170a1-1394-49fe-8d21-dc80562b72fb&page=1&PageSize=10&ToggleType=
|
| 268 |
-
- **License**: Open Government Data License (Taiwan) (https://data.gov.tw/en/license)
|
| 269 |
-
- **Update date**: 2025.06.17
|
| 270 |
-
- **Download date**: September 2, 2025
|
| 271 |
-
- **Reference year**: 2024
|
| 272 |
-
- **Variable name in script**: `df_taiwan` (raw data), added to `df_working_age_pop_country`
|
| 273 |
-
- **Output files**:
|
| 274 |
-
- `Population by single age _20250802235608.csv` (raw data in data/input/, pre-filtered to ages 15-64)
|
| 275 |
-
- Merged into `working_age_pop_2024_country.csv` (processed country-level data in data/intermediate/)
|
| 276 |
-
|
| 277 |
-
## GDP Data
|
| 278 |
-
|
| 279 |
-
### Country GDP
|
| 280 |
-
|
| 281 |
-
**Gross Domestic Product, Current Prices (Billions of U.S. Dollars)**
|
| 282 |
-
|
| 283 |
-
Total gross domestic product at current market prices for all countries and territories.
|
| 284 |
-
|
| 285 |
-
- **Series**: NGDPD
|
| 286 |
-
- **Source**: International Monetary Fund (IMF), World Economic Outlook Database
|
| 287 |
-
- **URL**: https://www.imf.org/external/datamapper/api/v1/NGDPD
|
| 288 |
-
- **License**: IMF Data Terms and Conditions (https://www.imf.org/en/About/copyright-and-terms#data)
|
| 289 |
-
- **Reference year**: 2024
|
| 290 |
-
- **Download date**: September 2, 2025
|
| 291 |
-
- **Output files**:
|
| 292 |
-
- `imf_gdp_raw_2024.json` (raw API response in data/input/)
|
| 293 |
-
- `gdp_2024_country.csv` (processed country GDP data in data/intermediate/)
|
| 294 |
-
|
| 295 |
-
### US State GDP
|
| 296 |
-
|
| 297 |
-
**SASUMMARY State Annual Summary Statistics: Personal Income, GDP, Consumer Spending, Price Indexes, and Employment**
|
| 298 |
-
|
| 299 |
-
Gross domestic product by state in millions of current U.S. dollars.
|
| 300 |
-
|
| 301 |
-
- **Series**: SASUMMARY (Gross Domestic Product by State)
|
| 302 |
-
- **Source**: U.S. Bureau of Economic Analysis (BEA)
|
| 303 |
-
- **URL**: https://apps.bea.gov/itable/?ReqID=70&step=1
|
| 304 |
-
- **License**: Public Domain (U.S. Government Work)
|
| 305 |
-
- **Download date**: September 2, 2025
|
| 306 |
-
- **Reference year**: 2024
|
| 307 |
-
- **Output files**:
|
| 308 |
-
- `bea_us_state_gdp_2024.csv` (raw data in data/input/, manually downloaded from BEA)
|
| 309 |
-
- `gdp_2024_us_state.csv` (processed state GDP data in data/intermediate/)
|
| 310 |
-
- **Citation**: U.S. Bureau of Economic Analysis, "SASUMMARY State annual summary statistics: personal income, GDP, consumer spending, price indexes, and employment" (accessed September 2, 2025)
|
| 311 |
-
|
| 312 |
-
## SOC and O*NET Data
|
| 313 |
-
|
| 314 |
-
### O*NET Task Statements
|
| 315 |
-
|
| 316 |
-
**O*NET Task Statements Dataset**
|
| 317 |
-
|
| 318 |
-
Comprehensive database of task statements associated with occupations in the O*NET-SOC taxonomy, providing detailed work activities for each occupation.
|
| 319 |
-
|
| 320 |
-
- **Database Version**: O*NET Database 20.1
|
| 321 |
-
- **Source**: O*NET Resource Center, U.S. Department of Labor
|
| 322 |
-
- **URL**: https://www.onetcenter.org/dl_files/database/db_20_1_excel/Task%20Statements.xlsx
|
| 323 |
-
- **License**: Public Domain (U.S. Government Work)
|
| 324 |
-
- **Download date**: September 2, 2025
|
| 325 |
-
- **Output files**:
|
| 326 |
-
- `onet_task_statements_raw.xlsx` (raw Excel file in data/input/)
|
| 327 |
-
- `onet_task_statements.csv` (processed data with soc_major_group in data/intermediate/)
|
| 328 |
-
- **Key fields**:
|
| 329 |
-
- `O*NET-SOC Code`: Full occupation code (e.g., "11-1011.00")
|
| 330 |
-
- `Title`: Occupation title
|
| 331 |
-
- `Task ID`: Unique task identifier
|
| 332 |
-
- `Task`: Description of work task
|
| 333 |
-
- `Task Type`: Core or Supplemental
|
| 334 |
-
- `soc_major_group`: First 2 digits of SOC code (e.g., "11" for Management)
|
| 335 |
-
- **Notes**:
|
| 336 |
-
- SOC major group codes extracted from O*NET-SOC codes for aggregation
|
| 337 |
-
- Used to map Claude usage patterns to occupational categories
|
| 338 |
-
|
| 339 |
-
### SOC Structure
|
| 340 |
-
|
| 341 |
-
**Standard Occupational Classification (SOC) Structure**
|
| 342 |
-
|
| 343 |
-
Hierarchical classification system for occupations, providing standardized occupation titles and codes.
|
| 344 |
-
|
| 345 |
-
- **SOC Version**: 2019
|
| 346 |
-
- **Source**: O*NET Resource Center (SOC taxonomy)
|
| 347 |
-
- **URL**: https://www.onetcenter.org/taxonomy/2019/structure/?fmt=csv
|
| 348 |
-
- **License**: Public Domain (U.S. Government Work)
|
| 349 |
-
- **Download date**: September 2, 2025
|
| 350 |
-
- **Variable name in script**: `df_soc` (SOC structure dataframe)
|
| 351 |
-
- **Output files**:
|
| 352 |
-
- `soc_structure_raw.csv` (raw data in data/input/)
|
| 353 |
-
- `soc_structure.csv` (processed SOC structure in data/intermediate/)
|
| 354 |
-
- **Key fields**:
|
| 355 |
-
- `Major Group`: SOC major group code (e.g., "11-0000")
|
| 356 |
-
- `Minor Group`: SOC minor group code
|
| 357 |
-
- `Broad Occupation`: Broad occupation code
|
| 358 |
-
- `Detailed Occupation`: Detailed occupation code
|
| 359 |
-
- `soc_major_group`: 2-digit major group code (e.g., "11")
|
| 360 |
-
- `SOC or O*NET-SOC 2019 Title`: Occupation group title
|
| 361 |
-
- **Notes**:
|
| 362 |
-
- Provides hierarchical structure for occupational classification
|
| 363 |
-
|
| 364 |
-
### Business Trends and Outlook Survey
|
| 365 |
-
|
| 366 |
-
Core questions, National.
|
| 367 |
-
|
| 368 |
-
- **Source**: U.S. Census Bureau
|
| 369 |
-
- **URL**: https://www.census.gov/hfp/btos/downloads/National.xlsx
|
| 370 |
-
- **License**: Public Domain (U.S. Government Work)
|
| 371 |
-
- **Download date**: September 5, 2025
|
| 372 |
-
- **Reference periods**: Ending in September 2023 and August 2025
|
| 373 |
-
- **Input file**: `BTOS_National.xlsx`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|