The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
dataset is now reorgnizing, if you want to download it, please refer to the huggingface dataset evan0617/seniortalk
SeniorTalk: A Chinese Conversation Dataset with Rich Annotations for Super-Aged Seniors
Introduction
SeniorTalk is a comprehensive, open-source Mandarin Chinese speech dataset specifically designed for research on elderly aged 75 to 85. This dataset addresses the critical lack of publicly available resources for this age group, enabling advancements in automatic speech recognition (ASR), speaker verification (SV), speaker dirazation (SD), speech editing and other related fields. The dataset is released under a CC BY-NC-SA 4.0 license, meaning it is available for non-commercial use.
Dataset Details
This dataset contains 55.53 hours of high-quality speech data collected from 202 elderly across 16 provinces in China. Key features of the dataset include:
- Age Range: 75-85 years old (inclusive). This is a crucial age range often overlooked in speech datasets.
- Speakers: 202 unique elderly speakers.
- Geographic Diversity: Speakers from 16 of China's 34 provincial-level administrative divisions, capturing a range of regional accents.
- Gender Balance: Approximately 7:13 representation of male and female speakers, largely attributed to the differing average ages of males and females among the elderly.
- Recording Conditions: Recordings were made in quiet environments using a variety of smartphones (both Android and iPhone devices) to ensure real-world applicability.
- Content: Natural, conversational speech during age-appropriate activities. The content is unrestricted, promoting spontaneous and natural interactions.
- Audio Format: WAV files with a 16kHz sampling rate.
- Transcriptions: Carefully crafted, character-level manual transcriptions.
- Annotations: The dataset includes annotations for each utterance, and for the speakers level.
- Session-level:
sentence_start_time,sentence_end_time,overlapped speech - Utterance-level:
id,accent_level,text(transcription). - Token-level:
special token([SONANT],[MUSIC],[NOISE]....) - Speaker-level:
speaker_id,age,gender,location(province),device.
- Session-level:
Dataset Structure
Dialogue Dataset
The dataset is split into two subsets:
| Split | # Speakers | # Dialogues | Duration (hrs) | Avg. Dialogue Length (h) |
|---|---|---|---|---|
train |
182 | 91 | 49.83 | 0.54 |
test |
20 | 10 | 5.70 | 0.57 |
| Total | 202 | 101 | 55.53 | 0.55 |
The dataset file structure is as follows.
dialogue_data/
βββ wav
β βββ train/*.tar
β βββ test/*.tar
βββ transcript/*.txt
UTTERANCEINFO.txt # annotation of topics and duration
SPKINFO.txt # annotation of location , age , gender and device
Each WAV file has a corresponding TXT file with the same name, containing its annotations.
For more details, please refer to our paper SeniorTalk.
ASR Dataset
The dataset is split into three subsets:
| Split | # Speakers | # Utterances | Duration (hrs) | Avg. Utterance Length (s) |
|---|---|---|---|---|
train |
162 | 47,269 | 29.95 | 2.28 |
validation |
20 | 6,891 | 4.09 | 2.14 |
test |
20 | 5,869 | 3.77 | 2.31 |
| Total | 202 | 60,029 | 37.81 | 2.27 |
The dataset file structure is as follows.
sentence_data/
βββ wav
β βββ train/*.tar
β βββ dev/*.tar
β βββ test/*.tar
βββ transcript/*.txt
UTTERANCEINFO.txt # annotation of topics and duration
SPKINFO.txt # annotation of location , age , gender and device
Each WAV file has a corresponding TXT, containing its annotations.
For more details, please refer to our paper SeniorTalk.
Dataset Access Control
This dataset is available to researchers upon request for academic and non-commercial use. To request access, please follow these steps:
- Request Access on Hugging Face: Make sure you are logged into your Hugging Face account and click the "Request access to this dataset" button on this page.
- Submit Application via Email: Send an email to
[email protected]with the following information:- Subject: Dataset Access Request: [Your Name/Institution]
- Body:
- Your Hugging Face Username.
- Your full name, title, and academic/institutional affiliation.
- A link to your professional profile (e.g., university page, Google Scholar, LinkedIn).
- A brief description of your research project and how you intend to use the dataset.
We will review your application and grant access on Hugging Face upon approval. Please allow 3-5 business days for processing.
π Cite me
@misc{chen2025seniortalkchineseconversationdataset,
title={SeniorTalk: A Chinese Conversation Dataset with Rich Annotations for Super-Aged Seniors},
author={Yang Chen and Hui Wang and Shiyao Wang and Junyang Chen and Jiabei He and Jiaming Zhou and Xi Yang and Yequan Wang and Yonghua Lin and Yong Qin},
year={2025},
eprint={2503.16578},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.16578},
}
- Downloads last month
- 208