You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

πŸ§ͺ Lit2Vec Dataset

Lit2Vec is a large-scale, openly licensed dataset of 582,724 chemistry-specific research articles derived from the Semantic Scholar Open Research Corpus (S2ORC), curated to support semantic search, retrieval-augmented generation (RAG), and scientific NLP tasks in the chemistry domain.

Each article is distributed as a standalone JSON file containing:

  • Clean full text
  • Paragraph-level embeddings (1024-D vectors)
  • TL;DR summaries
  • Subfield classification scores
  • Structured metadata
  • Licensing information from Unpaywall, Crossref, and OpenAlex

πŸ“ Repository Structure

Lit2Vec-dataset/
β”œβ”€β”€ data/         # Full dataset split into multiple tar.gz archives (~4–5 GB each)
β”‚   β”œβ”€β”€ data_part_000.tar.gz
β”‚   β”œβ”€β”€ ...
β”‚
β”œβ”€β”€ sample/       # Small sample subset (~500MB) for quick testing
β”‚   └── data_part_000.tar.gz
β”‚
β”œβ”€β”€ validation/   # Lightweight validation set (~15–18 MB shards)
β”‚   β”œβ”€β”€ data_part_000.tar.gz
β”‚   β”œβ”€β”€ ...
β”‚
β”œβ”€β”€ .gitattributes
└── .gitignore

Each .tar.gz archive contains thousands of individual JSON files, named by their S2ORC corpus_id, for example:

12345678.json
12345679.json
...

πŸ“„ Data Record Format

Each JSON file contains a single research article, structured according to the Lit2Vec v1.0 schema.

πŸ”‘ Top-Level Fields

Field Type Description
schema_version string Schema version ("1.0")
corpus_id integer S2ORC Corpus ID (used as filename)
metadata object Title, authors, year, venue, identifiers
abstract string Abstract text
fulltext string Full article text
paragraphs array[string] Paragraph-level text units
embeddings array[array[float]] 1024-D float32 paragraph vectors (aligned with paragraphs)
abstract_embedding array[float] 1024-D float32 vector for abstract
predicted_subfield object Map of subfield label β†’ confidence score
tldr string Machine-generated two-sentence summary
unpaywall_license object | null License data from Unpaywall
crossref_license object | null License data from Crossref
openalex_license object | null License data from OpenAlex

πŸ“¦ Minimal Example

{
  "schema_version": "1.0",
  "corpus_id": 37254803,
  "metadata": {
    "title": "Protective effect of EGCG...",
    "year": 2016,
    "externalids": { "DOI": "10.xxxx/xxxxx" },
    "url": "https://..."
  },
  "abstract": "Epigallocatechin gallate ...",
  "fulltext": "# Protective effect of ...",
  "paragraphs": ["37254803P0: passage: ...", "..."],
  "embeddings": [[0.0123, -0.0456, ...], ...],
  "abstract_embedding": [0.0345, -0.0789, ...],
  "predicted_subfield": {
    "Biochemistry": 0.997,
    "Medicinal Chemistry": 0.759
  },
  "tldr": "EGCG reduces lipid peroxidation ...",
  "unpaywall_license": {
    "best_oa_location": {
      "license": "cc-by"
    }
  },
  "crossref_license": {
    "license": "http://creativecommons.org/licenses/by/4.0/"
  },
  "openalex_license": null
}

🧠 Use Cases

Lit2Vec is optimized for:

  • Semantic search β€” FAISS-style dense retrieval with paragraph embeddings
  • Retrieval-Augmented Generation (RAG) β€” grounding LLMs on full-text chemistry papers
  • Summarization β€” pre-generated TL;DRs for training and evaluation
  • Multi-label classification β€” 18 chemistry subfields per article with confidence scores
  • Citation & licensing analysis β€” metadata from Unpaywall, Crossref, OpenAlex
  • Knowledge graph construction β€” integrate with PubChem, ChEMBL, patents, etc.

πŸš€ Quickstart

Python (manual extraction)

from datasets import load_dataset

dataset = load_dataset(
     "Bocklitz-Lab/Lit2Vec-dataset",
     data_files={"train": "data/*.tar.gz"},
     trust_remote_code=True,)

# Peek at one example
sample = dataset["train"][0]
print(sample["metadata"])  # Raw JSON string with title, authors, etc.
print(sample["predicted_subfield"])  # List of {label, score}

# Extract title from metadata
import json
metadata = json.loads(sample["metadata"])
print("Title:", metadata.get("title"))

# Display subfield predictions
print("Predicted subfields:")
for sub in sample["predicted_subfield"]:
    print(f"  {sub['label']}: {sub['score']:.3f}")

βœ… Validation Subset

The /validation/ folder contains .tar.gz archives to:

  • Test schema compliance
  • Integrate with pipelines
  • Validate embeddings and metadata formats

πŸͺͺ Licensing

Lit2Vec is fully open-access, curated under FAIR principles. All included articles passed license validation via:

  • βœ… Unpaywall
  • βœ… Crossref
  • βœ… OpenAlex

Permissible licenses include:

  • CC-BY
  • CC-BY-SA
  • CC-BY-NC
  • CC-BY-NC-SA
  • Public Domain

πŸ“– Citation

Please cite the following if you use this dataset:

@article{amiri2025lit2vec,
  title={Lit2Vec: A Large-Scale, Derivative-Permissive Chemistry Corpus for Retrieval-Augmented Generation and Semantic Search},
  author={Amiri, Mahmoud and Bocklitz, Thomas},
  journal={Preprint},
  year={2025},
  note={\url{https://huggingface.co/datasets/Bocklitz-Lab/Lit2Vec-dataset}}
}

🀝 Contributing

We welcome community contributions for:

  • Dataset converters (e.g., Hugging Face datasets format)
  • Example notebooks and pipelines
  • Benchmarking scripts

Open a pull request or contact us!


Lit2Vec is developed at the Leibniz Institute of Photonic Technology and the Institute of Physical Chemistry, Friedrich Schiller University Jena to accelerate open science in chemistry and AI.

Downloads last month
6