π§ͺ Lit2Vec Dataset
Lit2Vec is a large-scale, openly licensed dataset of 582,724 chemistry-specific research articles derived from the Semantic Scholar Open Research Corpus (S2ORC), curated to support semantic search, retrieval-augmented generation (RAG), and scientific NLP tasks in the chemistry domain.
Each article is distributed as a standalone JSON file containing:
- Clean full text
- Paragraph-level embeddings (1024-D vectors)
- TL;DR summaries
- Subfield classification scores
- Structured metadata
- Licensing information from Unpaywall, Crossref, and OpenAlex
π Repository Structure
Lit2Vec-dataset/
βββ data/ # Full dataset split into multiple tar.gz archives (~4β5 GB each)
β βββ data_part_000.tar.gz
β βββ ...
β
βββ sample/ # Small sample subset (~500MB) for quick testing
β βββ data_part_000.tar.gz
β
βββ validation/ # Lightweight validation set (~15β18 MB shards)
β βββ data_part_000.tar.gz
β βββ ...
β
βββ .gitattributes
βββ .gitignore
Each .tar.gz archive contains thousands of individual JSON files, named by their S2ORC corpus_id, for example:
12345678.json
12345679.json
...
π Data Record Format
Each JSON file contains a single research article, structured according to the Lit2Vec v1.0 schema.
π Top-Level Fields
| Field | Type | Description |
|---|---|---|
schema_version |
string | Schema version ("1.0") |
corpus_id |
integer | S2ORC Corpus ID (used as filename) |
metadata |
object | Title, authors, year, venue, identifiers |
abstract |
string | Abstract text |
fulltext |
string | Full article text |
paragraphs |
array[string] | Paragraph-level text units |
embeddings |
array[array[float]] | 1024-D float32 paragraph vectors (aligned with paragraphs) |
abstract_embedding |
array[float] | 1024-D float32 vector for abstract |
predicted_subfield |
object | Map of subfield label β confidence score |
tldr |
string | Machine-generated two-sentence summary |
unpaywall_license |
object | null | License data from Unpaywall |
crossref_license |
object | null | License data from Crossref |
openalex_license |
object | null | License data from OpenAlex |
π¦ Minimal Example
{
"schema_version": "1.0",
"corpus_id": 37254803,
"metadata": {
"title": "Protective effect of EGCG...",
"year": 2016,
"externalids": { "DOI": "10.xxxx/xxxxx" },
"url": "https://..."
},
"abstract": "Epigallocatechin gallate ...",
"fulltext": "# Protective effect of ...",
"paragraphs": ["37254803P0: passage: ...", "..."],
"embeddings": [[0.0123, -0.0456, ...], ...],
"abstract_embedding": [0.0345, -0.0789, ...],
"predicted_subfield": {
"Biochemistry": 0.997,
"Medicinal Chemistry": 0.759
},
"tldr": "EGCG reduces lipid peroxidation ...",
"unpaywall_license": {
"best_oa_location": {
"license": "cc-by"
}
},
"crossref_license": {
"license": "http://creativecommons.org/licenses/by/4.0/"
},
"openalex_license": null
}
π§ Use Cases
Lit2Vec is optimized for:
- Semantic search β FAISS-style dense retrieval with paragraph embeddings
- Retrieval-Augmented Generation (RAG) β grounding LLMs on full-text chemistry papers
- Summarization β pre-generated TL;DRs for training and evaluation
- Multi-label classification β 18 chemistry subfields per article with confidence scores
- Citation & licensing analysis β metadata from Unpaywall, Crossref, OpenAlex
- Knowledge graph construction β integrate with PubChem, ChEMBL, patents, etc.
π Quickstart
Python (manual extraction)
from datasets import load_dataset
dataset = load_dataset(
"Bocklitz-Lab/Lit2Vec-dataset",
data_files={"train": "data/*.tar.gz"},
trust_remote_code=True,)
# Peek at one example
sample = dataset["train"][0]
print(sample["metadata"]) # Raw JSON string with title, authors, etc.
print(sample["predicted_subfield"]) # List of {label, score}
# Extract title from metadata
import json
metadata = json.loads(sample["metadata"])
print("Title:", metadata.get("title"))
# Display subfield predictions
print("Predicted subfields:")
for sub in sample["predicted_subfield"]:
print(f" {sub['label']}: {sub['score']:.3f}")
β Validation Subset
The /validation/ folder contains .tar.gz archives to:
- Test schema compliance
- Integrate with pipelines
- Validate embeddings and metadata formats
πͺͺ Licensing
Lit2Vec is fully open-access, curated under FAIR principles. All included articles passed license validation via:
- β Unpaywall
- β Crossref
- β OpenAlex
Permissible licenses include:
- CC-BY
- CC-BY-SA
- CC-BY-NC
- CC-BY-NC-SA
- Public Domain
π Citation
Please cite the following if you use this dataset:
@article{amiri2025lit2vec,
title={Lit2Vec: A Large-Scale, Derivative-Permissive Chemistry Corpus for Retrieval-Augmented Generation and Semantic Search},
author={Amiri, Mahmoud and Bocklitz, Thomas},
journal={Preprint},
year={2025},
note={\url{https://huggingface.co/datasets/Bocklitz-Lab/Lit2Vec-dataset}}
}
π€ Contributing
We welcome community contributions for:
- Dataset converters (e.g., Hugging Face
datasetsformat) - Example notebooks and pipelines
- Benchmarking scripts
Open a pull request or contact us!
Lit2Vec is developed at the Leibniz Institute of Photonic Technology and the Institute of Physical Chemistry, Friedrich Schiller University Jena to accelerate open science in chemistry and AI.
- Downloads last month
- 6