|
|
"""MMSearch-Plus dataset with transparent decryption.""" |
|
|
|
|
|
import base64 |
|
|
import hashlib |
|
|
import io |
|
|
import os |
|
|
from typing import Dict, Any, List |
|
|
import datasets |
|
|
from PIL import Image |
|
|
|
|
|
_CITATION = """\ |
|
|
@article{tao2025mmsearch, |
|
|
title={MMSearch-Plus: A Simple Yet Challenging Benchmark for Multimodal Browsing Agents}, |
|
|
author={Tao, Xijia and Teng, Yihua and Su, Xinxing and Fu, Xinyu and Wu, Jihao and Tao, Chaofan and Liu, Ziru and Bai, Haoli and Liu, Rui and Kong, Lingpeng}, |
|
|
journal={arXiv preprint arXiv:2508.21475}, |
|
|
year={2025} |
|
|
} |
|
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
|
MMSearch-Plus is a challenging benchmark designed to test multimodal browsing agents' ability to perform genuine visual reasoning. |
|
|
Unlike existing benchmarks where many tasks can be solved with text-only approaches, MMSearch-Plus requires models to extract |
|
|
and use fine-grained visual cues through iterative image-text retrieval. |
|
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://mmsearch-plus.github.io/" |
|
|
|
|
|
_LICENSE = "CC BY-NC 4.0" |
|
|
|
|
|
_URLS = { |
|
|
"train": [ |
|
|
"data-00000-of-00002.arrow", |
|
|
"data-00001-of-00002.arrow" |
|
|
] |
|
|
} |
|
|
|
|
|
def derive_key(password: str, length: int) -> bytes: |
|
|
"""Derive encryption key from password using SHA-256.""" |
|
|
hasher = hashlib.sha256() |
|
|
hasher.update(password.encode()) |
|
|
key = hasher.digest() |
|
|
return key * (length // len(key)) + key[: length % len(key)] |
|
|
|
|
|
def decrypt_image(ciphertext_b64: str, password: str) -> Image.Image: |
|
|
"""Decrypt base64-encoded encrypted image bytes back to PIL Image.""" |
|
|
if not ciphertext_b64: |
|
|
return None |
|
|
|
|
|
try: |
|
|
encrypted = base64.b64decode(ciphertext_b64) |
|
|
key = derive_key(password, len(encrypted)) |
|
|
decrypted = bytes([a ^ b for a, b in zip(encrypted, key)]) |
|
|
|
|
|
|
|
|
img_buffer = io.BytesIO(decrypted) |
|
|
image = Image.open(img_buffer) |
|
|
return image |
|
|
except Exception: |
|
|
return None |
|
|
|
|
|
def decrypt_text(ciphertext_b64: str, password: str) -> str: |
|
|
"""Decrypt base64-encoded ciphertext using XOR cipher with derived key.""" |
|
|
if not ciphertext_b64: |
|
|
return ciphertext_b64 |
|
|
|
|
|
try: |
|
|
encrypted = base64.b64decode(ciphertext_b64) |
|
|
key = derive_key(password, len(encrypted)) |
|
|
decrypted = bytes([a ^ b for a, b in zip(encrypted, key)]) |
|
|
return decrypted.decode('utf-8') |
|
|
except Exception: |
|
|
return ciphertext_b64 |
|
|
|
|
|
class MmsearchPlus(datasets.GeneratorBasedBuilder): |
|
|
"""MMSearch-Plus dataset with transparent decryption.""" |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
def _info(self): |
|
|
|
|
|
features = datasets.Features({ |
|
|
"question": datasets.Value("string"), |
|
|
"answer": datasets.Sequence(datasets.Value("string")), |
|
|
"num_images": datasets.Value("int64"), |
|
|
"arxiv_id": datasets.Value("string"), |
|
|
"video_url": datasets.Value("string"), |
|
|
"category": datasets.Value("string"), |
|
|
"difficulty": datasets.Value("string"), |
|
|
"subtask": datasets.Value("string"), |
|
|
|
|
|
"img_1": datasets.Image(), |
|
|
"img_2": datasets.Image(), |
|
|
"img_3": datasets.Image(), |
|
|
"img_4": datasets.Image(), |
|
|
"img_5": datasets.Image(), |
|
|
|
|
|
"choices": datasets.Sequence(datasets.Value("string")), |
|
|
"question_zh": datasets.Value("string"), |
|
|
"answer_zh": datasets.Sequence(datasets.Value("string")), |
|
|
"regex": datasets.Value("string"), |
|
|
"text_criteria": datasets.Value("string"), |
|
|
"original_filename": datasets.Value("string"), |
|
|
"screenshots_dir": datasets.Value("string"), |
|
|
"time_points": datasets.Sequence(datasets.Value("string")), |
|
|
"search_query": datasets.Value("string"), |
|
|
"question_type": datasets.Value("string"), |
|
|
"requires_image_understanding": datasets.Value("bool"), |
|
|
"source": datasets.Value("string"), |
|
|
"content_keywords": datasets.Value("string"), |
|
|
"reasoning": datasets.Value("string"), |
|
|
"processed_at": datasets.Value("string"), |
|
|
"model_used": datasets.Value("string"), |
|
|
"entry_index": datasets.Value("int64"), |
|
|
"original_image_paths": datasets.Sequence(datasets.Value("string")), |
|
|
"masked_image_paths": datasets.Sequence(datasets.Value("string")), |
|
|
"is_valid": datasets.Value("bool"), |
|
|
}) |
|
|
|
|
|
return datasets.DatasetInfo( |
|
|
description=_DESCRIPTION, |
|
|
features=features, |
|
|
homepage=_HOMEPAGE, |
|
|
license=_LICENSE, |
|
|
citation=_CITATION, |
|
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
canary = os.environ.get("MMSEARCH_PLUS") |
|
|
|
|
|
|
|
|
if hasattr(self, 'canary'): |
|
|
canary = self.canary |
|
|
|
|
|
if not canary: |
|
|
raise ValueError( |
|
|
"Canary string is required for decryption. Either set the MMSEARCH_PLUS " |
|
|
"environment variable or pass it via the dataset loading kwargs. " |
|
|
"Example: load_dataset('path/to/dataset', trust_remote_code=True) after setting " |
|
|
"os.environ['MMSEARCH_PLUS'] = 'your_canary_string'" |
|
|
) |
|
|
|
|
|
|
|
|
urls = _URLS["train"] |
|
|
downloaded_files = dl_manager.download(urls) |
|
|
|
|
|
return [ |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.TRAIN, |
|
|
gen_kwargs={ |
|
|
"filepaths": downloaded_files, |
|
|
"canary": canary, |
|
|
}, |
|
|
), |
|
|
] |
|
|
|
|
|
def _generate_examples(self, filepaths, canary): |
|
|
"""Generate examples with transparent decryption.""" |
|
|
key = 0 |
|
|
|
|
|
for filepath in filepaths: |
|
|
|
|
|
arrow_dataset = datasets.Dataset.from_file(filepath) |
|
|
|
|
|
for idx in range(len(arrow_dataset)): |
|
|
example = arrow_dataset[idx] |
|
|
|
|
|
|
|
|
text_fields = ['question', 'video_url', 'arxiv_id'] |
|
|
|
|
|
for field in text_fields: |
|
|
if example.get(field): |
|
|
example[field] = decrypt_text(example[field], canary) |
|
|
|
|
|
|
|
|
if example.get("answer"): |
|
|
decrypted_answers = [] |
|
|
for answer in example["answer"]: |
|
|
if answer: |
|
|
decrypted_answers.append(decrypt_text(answer, canary)) |
|
|
else: |
|
|
decrypted_answers.append(answer) |
|
|
example["answer"] = decrypted_answers |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yield key, example |
|
|
key += 1 |