Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Vietnamese
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Job manager crashed while running this job (missing heartbeats).
Error code:   JobManagerCrashedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

query-id
string
corpus-id
string
score
float64
f85f46f1-120f-457b-97d9-74ed97a3c9ca
a116c4f0-f5a0-413f-b64f-a224a2c11048
1
7e6cfecd-ff8b-4009-9cdf-da1d644b9115
19eba6c3-b358-42f4-95c0-a148b79f0e41
1
e8df68e5-55e1-45f3-b92a-32cddb4cfe93
6cdd2064-610b-4a31-80fd-e695715e1bcc
1
6a8232d7-e3e8-444c-b3a1-b9bb9b6fc276
8635770b-1807-4758-984b-c364472418b0
1
20224fb8-9ede-4827-a98b-f09eb9ec710e
57f751b8-5d2d-4754-ad4c-88576ae170d7
1
d82e2c3f-c8c1-4a4b-b25d-40008aea0ad4
4e3fd2f9-f0d9-45c7-9dbf-44e78c9a378a
1
381ec267-9ecc-4ec7-b881-74922ffd51aa
48f4c640-e350-457f-ae60-743b0f8c8488
1
4bbe00fe-2282-4e3d-8ad2-498f4539e5b2
5afd91bb-298f-45e6-abab-86c9e7ee2276
1
206b8de5-0e8b-469d-a8c9-8f961a49d795
b8c79136-90c2-40c1-8746-43254aa439e5
1
984f64a0-e4d1-40b0-9978-643d9714ff3e
b1c23d08-a889-449e-a51f-c9010faee83f
1
e01d9cfc-718f-42bf-84a8-2b545651dc16
24fa3a72-0ee3-429c-84b2-c31a03a7ead7
1
ccc04732-f13d-4e07-9c81-0c91e680c8ec
f58976f2-fdab-4ee9-b658-ce947f65b30a
1
93859a64-1f87-471b-910d-0aa1d6f3ccf4
ba1e3567-de89-45e1-a9ae-4c7fb2484033
1
0610fb60-d1eb-48f3-b1c4-b287c4902ae5
ab2689e8-34e5-4fed-a32d-0388a135d5ea
1
37083efb-bc3b-4e4a-a0ae-018719964bbc
35eb8c35-e9c5-4962-8924-49b5e0f87ff3
1
4935a1fb-788b-4650-a637-2e630b626669
85b638c2-cd3d-4398-9722-33225d18dd66
1
79c97d20-a63b-467d-8a60-3b6fdb952eea
2c2fa0e1-6d28-43d4-879c-2854aa036ee3
1
90477692-e7d0-4b88-98b7-c2d453c370b8
daf2cd8f-26f9-481d-b15b-d0fe32520c43
1
49424922-1d18-4d85-bf37-3e42ab1b53d6
b9747755-4bff-40f0-96f2-9afe16bd7b4f
1
dbd5f7a6-09b6-41ad-bc4f-903ecc52478f
796deb04-a7e7-419a-8af6-65b558d3753a
1
98468ec6-0cac-46d8-8806-662841a8a7c2
296fb90b-06ef-4900-837c-a640a75d1e9d
1
87ffa366-f6b5-4751-9c49-ce43519a43a1
8ffb077d-21ae-43a9-9339-65f3d8e83aa8
1
2bb53a28-4252-4f95-8a53-be7e7a0ca9a7
9994e39d-703d-430d-8a03-8c79675b0c35
1
88703f50-7139-4416-8d07-4df7d5c54775
ca501bd6-fd76-4f9b-bda6-ec3ce017a289
1
c157e43a-d3f3-4278-a933-b35b2618edd8
a6b5822a-66cc-41cc-8490-28b52c434552
1
7ea6724f-c759-4cb9-8203-c5c9f7ad3784
97558740-859f-4cc1-b36e-8245f0fae007
1
403b78c6-3d64-4848-bd2d-d0b51e85bc47
eab67f39-29bd-48c3-8aa8-d307620f9ee8
1
291c59a3-287e-4ee4-b796-6bfd869a160f
c7897d4e-14d3-47f6-9ed4-5dc25802f946
1
88e13efa-682d-43c3-8d8e-f5dddd1be5b9
e88c339e-fd87-4c25-817e-c05aabc22bdf
1
bab87fe4-7f9d-41c1-99b4-cfb8ef0097ee
4c1f2ea8-d117-4589-80c5-294b3f32a050
1
402cbeb0-095e-47ff-837e-c1c626a429d9
5ea5738f-38d0-40d3-894c-14370eab809b
1
402cbeb0-095e-47ff-837e-c1c626a429d9
6f0205a7-df2e-48ac-a04e-04ac19c32fb4
1
2c913cfc-4b32-418d-9bf2-300de19993e4
f24f127c-1a4e-49f5-b4df-3a8c9080d2b3
1
753f084f-6372-4883-bc0a-4399c545d1c7
35e14246-7982-4398-8759-946fbb06fa13
1
753f084f-6372-4883-bc0a-4399c545d1c7
b5517103-ec98-4f2e-9a7b-92837b2fbc46
1
6898a8a0-718c-40d3-bca0-f46e35deb0e1
90a4ac85-09b8-4397-a555-0858848aa5f3
1
9a812a45-a31f-4638-b1e4-81b055f99ef8
70d07b39-44fd-4e30-9fbb-377a5b7f8a97
1
8cc43013-0175-437e-8a9a-15e90b66827c
fa519689-485d-4b35-9bb5-984064a93f3a
1
eee686fe-e9e1-4131-960b-91c50abd5b08
a9f26797-23ff-4654-b9fa-c39816e96692
1
eee686fe-e9e1-4131-960b-91c50abd5b08
c902ccdf-c825-4494-9951-b0308ed1d589
1
4c5e8012-2255-4d55-9744-c5f6ec2446ae
82283b2d-aa7a-469d-a3fb-6b632821169e
1
5f180b7e-6403-43d5-beb9-fc9288bc6ead
b44f827b-5b9f-4a5c-935f-6be7239bdb29
1
eeec0d5d-f3ad-4007-95f5-d72ccdc1be6b
2e7d5265-8d13-48af-b7ae-4902f941c3f4
1
00ef66cc-0c06-486b-a65b-e637d6794ed4
9720511c-3fbd-4789-97e1-0126d994003d
1
b27f660a-c7e3-47b0-b2a6-09937da829ff
cb149abb-276c-4a7c-9bd7-19ae264e319a
1
9970ff1f-27d6-4ae7-b1ea-b2bbc5bef39b
dbb8607c-448e-436f-ab76-8ba2d8edd1c8
1
3a49ea2e-a91f-467e-8b62-d10dda1d16bb
2e6d1540-2fd5-4b0d-8a62-aad61aa00b89
1
50df8781-65b5-438e-808c-1f1058edd719
3f36c2a9-66f9-4758-9a2b-ef7b2569291c
1
fa5816a1-2b19-4c6d-a3de-6509adbf2f96
51968965-1690-4f11-be5d-23cd1e1a9472
1
ace2d359-cf68-4504-b6aa-eee876ee6c84
bc01aa19-851b-4c01-9224-16b9741ec970
1
ec867d5f-937d-4411-b1ed-30ecd293188c
bd230f22-b71e-4f8f-88b7-cce7ee8654c5
1
d3a5b6a3-685a-4c05-8e93-551162aafa87
99876c45-c216-4ee7-aaf3-198572726a2a
1
d3a5b6a3-685a-4c05-8e93-551162aafa87
ae991dfd-1444-4990-9bfa-caeccc6f6c20
1
a4beaa01-3343-4e6b-a0b6-796a2aed92aa
c3bd35b4-0f4a-442e-b4be-9e720286937e
1
6191dc94-e943-4ad3-a558-898e38cb2bfb
c498b18e-28b1-45bf-b913-af6a5185e92c
1
4948aee0-38c8-4588-ac24-ff664eda5b88
559b7a5b-142d-4454-b270-7b25efb7dc30
1
4948aee0-38c8-4588-ac24-ff664eda5b88
499660ed-5e2b-4cf9-9ee9-444f97825766
1
9581b38e-cab5-4060-8928-a251b03dfa3b
516837d7-1f17-4a87-a214-42f53a542a3e
1
ef795bc4-fca1-4681-8730-00124c7acd6b
1533eb5b-ac38-4142-872a-0be4dc2c48c0
1
28b024d4-b82a-409b-b252-32965b9af7a7
f5dc62c2-21fc-4651-b452-0bedec57808d
1
a5b608fc-b504-4ba7-872d-bb767372c25d
70bedee3-1beb-41fb-a659-dcee23d08da4
1
58a9e754-392d-4a24-9909-2c8e6c552bd0
c1b05a3a-2d46-449e-972e-7799594166a8
1
8b97c5cd-feda-4e3d-ab21-4814bf77d4a5
fcc95f35-1c91-40f2-baf3-e869a81e22f2
1
8b97c5cd-feda-4e3d-ab21-4814bf77d4a5
4fa9d86d-4de4-4a12-8017-5673f2bcd41e
1
07322391-8c54-441a-b3ff-7ca1b6cd0434
54c73f12-166c-469c-97c1-5b06687a4fed
1
74e85bf3-fffd-4190-8001-da9d3e8e968d
6219ef45-3158-4ee2-a8fe-e65eddaa37af
1
5740bbd0-6055-4843-80d3-ad194ca886f6
c8836778-6f1b-4f68-bec8-fb661f2e4f55
1
94e49f40-0a8a-4258-8f38-b8047908f60d
0a6f231b-3f91-45fa-a0c5-3d509e9e7596
1
94e49f40-0a8a-4258-8f38-b8047908f60d
7d05f6ad-148e-44c9-a070-631de33b40ba
1
4001f334-71e0-48b4-8c80-7cd94698c6cf
03d28e32-bc21-425b-b7d5-c8f9d6ffa16a
1
807c9223-bbe0-4ad2-9f91-b81105c267b6
301145d9-d01d-4e6e-ab39-849e43e07cae
1
0c5fad1b-2426-4fa1-9328-2ecf83d646c1
a8d22ebf-777e-406d-97d5-3e2d29897881
1
90047a3c-5f2e-43b2-9f32-9d73f86ec3b3
f5d1957c-b251-4ab1-afbf-f6939a942feb
1
4dc20f56-9f2e-4f9d-9e19-f7ba7ae6fdc4
17bde929-ce1b-41d4-b51a-512f11a388ac
1
4855885d-9b19-4992-b000-e9dee40a195b
e4aed163-5b0d-49cc-abdc-123645e17720
1
d63bf8ef-4f39-420f-88b7-1e8072046595
788ef150-0fe2-4b31-8738-72f1ff709d09
1
2095968a-9bad-4e98-8b0a-df5b1a8fbe9e
ec06dfd1-8260-4be1-99dc-41a098748cd4
1
465902c8-d504-49e6-8d61-238fefb5ed40
174c9630-ff0a-4a3b-b441-5bcfac4ab94c
1
12cacde1-a2c9-40fe-91d1-d07525142bf1
0c3d7dfd-579b-4768-912e-4a3558e548a0
1
f6b06b32-69f7-4320-9661-c955b1dd9b4c
d445c080-ab2e-4f8e-a54e-42e7cb8c6765
1
2282639e-a5a9-45e5-9efd-8c34aab4ec8a
1da792f6-d6c6-4a19-b071-38de8597f989
1
71c87fec-e712-4569-bc68-73a8a4818db8
9ff000f3-891a-4cb7-9ea3-9cbb4ef1765a
1
15496402-7d48-4b11-8b0f-f25fff3656f1
1d695385-4862-4e62-b48e-d66a5c618ea3
1
63287fbb-b2bf-46f1-a106-5b003801ff02
e5cdee38-e1c0-4b05-b351-136f98fcf9c1
1
f0724ab5-bdcb-4a89-8382-a4c3e62996b6
ea6eba64-04c6-4d66-bca5-b771817b7c24
1
7f1bb5eb-ca28-4a4c-90f8-76bf28ae4be0
7be25bc4-05f1-48a2-833b-734bb806c23c
1
2f02e09f-4690-4ece-b18e-dd7d38658a25
630e933e-a737-45ca-8bc8-9a2086382e30
1
a5154017-c564-40e0-b73e-e9e582a1cc55
07401e2c-19fa-425f-bb6d-581c0b70e6b4
1
57a95ecf-406f-401d-80ae-1c2ca03ce533
c5667645-070d-4b95-b8f1-5270ed355fb0
1
2aadd47a-f64a-4843-8e9a-294d19161443
4aecd75a-36aa-4706-9c19-a7be79fe9707
1
2aff8c71-4f16-4b19-843b-ade83e274160
1bd946b6-8481-4030-8628-508026042139
1
2aff8c71-4f16-4b19-843b-ade83e274160
5556e830-f354-4ac0-8025-8c876a3b4005
1
dbe4f478-cf6a-4e99-935e-8d82e51a2cfb
84482ca5-621b-43c9-aafc-ebe0415b5b87
1
dbe4f478-cf6a-4e99-935e-8d82e51a2cfb
6714224e-145d-4697-9443-0a6f201e71b4
1
92a63ba7-5276-4b44-be9a-1e3efe00e97a
f3549f25-e3e1-47a7-81b4-16fd85a02320
1
5cbc0008-2d0c-4fd1-a054-831e0840bf37
87939fab-a17c-460a-b4f7-15970d49a6d5
1
d858c43a-0804-41dd-900a-aa7cfafcdced
ee4eb4a5-b55f-4f94-b9df-878a7d4c155c
1
4558fd9c-fbc9-45d1-93bd-fedd733e5bdd
2769cad4-bc04-402b-98d1-3919ec72142c
1
2e9a1d2a-f744-428d-b8a9-9216f4844b60
4b30be89-b214-4bd0-b978-43862ca0f3ad
1
daecdfd6-5d0e-4a26-9f45-7fc8059799ee
55f5b08e-d62d-44a2-84ae-f538512952ea
1
End of preview.

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["TVPL-Retrieval-VN"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{pham2025vnmtebvietnamesemassivetext,
    title={VN-MTEB: Vietnamese Massive Text Embedding Benchmark},
    author={Loc Pham and Tung Luu and Thu Vo and Minh Nguyen and Viet Hoang},
    year={2025},
    eprint={2507.21500},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
    url={https://arxiv.org/abs/2507.21500}
}

@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}
Downloads last month
12