Latest Updates
- [2025-10-23] v0.3 Dataset Released. 304 episodes across five tasks. This dataset was collected using two separate evaluation robot arms (one in Beijing and one in Shanghai). This can be understood as data from systems that have slight differences in their kinematic or sensor calibration parameters.
- [2025-10-21] We have released the real-bot mcap data packaging tool (supporting both Arrow and LMDB formats). This tool can package mcap files recorded by the Data Recorder Toolkit. Packer Source Code ref to Code, Usage Instructions ref to Docs
- [2025-10-14] v0.2 & v0.1 Dataset Updated: fixed the depth decode issue of the v0.2 dataset and added visualization for the v0.2 dataset.
- [2025-09-24] v0.2 Dataset Released: 1015 episodes across five tasks. Available in both Arrow and LMDB formats. The v0.2 dataset was created after we re-calibrated the zero point of our robotic arm.
- [2025-09-04] v0.1 Dataset Released: 1086 episodes across five tasks. Available in Arrow and LMDB formats. (See note on zero-point drift).
1. Data Introduction
Data Format
This project provides robotic manipulation datasets in two formats: Arrow and LMDB:
- Arrow Dataset: Built on the Apache Arrow format. Its column-oriented structure offers flexibility and will be the primary format for development in robo_orchard_lab. It features standardized message types and supports exporting to Mcap files for visualization.
- LMDB Dataset: Built on the LMDB (Lightning Memory-Mapped Database) format, which is optimized for extremely fast read speeds.
⚠ Important Note on Dataset Versions
The v0.1 dataset was affected by a robotic arm zero-point drift issue during data acquisition. We have since re-calibrated the arm and collected the v0.2 dataset.
- v0.2: Please use this version for all fine-tuning and evaluation to ensure model accuracy.
- v0.1: This version should only be used for pre-training experiments or deprecated entirely.
Verifying Hardware Consistency
If you are using your own Piper robot arm, you can check for the same zero-point drift issue:
- Check Hardware Zero Alignment: Home the robot arm and visually inspect if each joint aligns correctly with the physical zero-point markers.
- Replay v0.2 Dataset: Replay the joint states from the v0.2 dataset. If the arm successfully completes the tasks, your hardware setup is consistent with ours.
1.1 Version 0.3
| Task | Episode Num | LMDB Dataset | Arrow Dataset |
|---|---|---|---|
| place_shoe | 30 | lmdb_dataset_place_shoe_2025_10_21_bj | arrow_dataset_place_shoe_2025_10_21_bj |
| 31 | lmdb_dataset_place_shoe_2025_10_21_sh | arrow_dataset_place_shoe_2025_10_21_sh | |
| empty_cup_place | 30 | lmdb_dataset_empty_cup_place_2025_10_21_bj | arrow_dataset_empty_cup_place_2025_10_21_bj |
| 31 | lmdb_dataset_empty_cup_place_2025_10_21_sh | arrow_dataset_empty_cup_place_2025_10_21_sh | |
| put_bottles_dustbin | 30 | lmdb_dataset_put_bottles_dustbin_2025_10_21_bj | arrow_dataset_put_bottles_dustbin_2025_10_21_bj |
| 31 | lmdb_dataset_put_bottles_dustbin_2025_10_22_sh | arrow_dataset_put_bottles_dustbin_2025_10_22_sh | |
| stack_bowls_three | 30 | lmdb_dataset_stack_bowls_three_2025_10_21_bj | arrow_dataset_stack_bowls_three_2025_10_21_bj |
| 30 | lmdb_dataset_stack_bowls_three_2025_10_21_sh | arrow_dataset_stack_bowls_three_2025_10_21_sh | |
| stack_blocks_three | 30 | lmdb_dataset_stack_blocks_three_2025_10_21_bj | arrow_dataset_stack_blocks_three_2025_10_21_bj |
| 31 | lmdb_dataset_stack_blocks_three_2025_10_21_sh | arrow_dataset_stack_blocks_three_2025_10_21_sh |
1.2 Version 0.2
1.3 Version 0.1
| Task | Episode Num | LMDB Dataset | Arrow Dataset |
|---|---|---|---|
| place_shoe | 200 | lmdb_dataset_place_shoe_2025_08_21 lmdb_dataset_place_shoe_2025_08_27 |
arrow_dataset_place_shoe_2025_08_21 arrow_dataset_place_shoe_2025_08_27 |
| empty_cup_place | 200 | lmdb_dataset_empty_cup_place_2025_08_19 | arrow_dataset_empty_cup_place_2025_08_19 |
| put_bottles_dustbin | 200 | lmdb_dataset_put_bottles_dustbin_2025_08_20 lmdb_dataset_put_bottles_dustbin_2025_08_21 |
arrow_dataset_put_bottles_dustbin_2025_08_20 arrow_dataset_put_bottles_dustbin_2025_08_21 |
| stack_bowls_three | 219 | lmdb_dataset_stack_bowls_three_2025_08_19 lmdb_dataset_stack_bowls_three_2025_08_20 |
arrow_dataset_stack_bowls_three_2025_08_19 arrow_dataset_stack_bowls_three_2025_08_20 |
| stack_blocks_three | 267 | lmdb_dataset_stack_blocks_three_2025_08_26 lmdb_dataset_stack_blocks_three_2025_08_27 |
arrow_dataset_stack_blocks_three_2025_08_26 arrow_dataset_stack_blocks_three_2025_08_27 |
2. Usage Example
2.1 LMDB Dataset Usage Example
Ref to RoboTwinLmdbDataset class from robo_orchard_lab. See SEM config for a usage example.
2.2 Arrow Dataset Usage Example
Ref to ROMultiRowDataset class from robo_orchard_lab. Here is some usage example:
2.2.1 Data Parse Example
def build_dataset(config):
from robo_orchard_lab.dataset.robot.dataset import (
ROMultiRowDataset,
ConcatRODataset,
)
from robo_orchard_lab.dataset.robotwin.transforms import ArrowDataParse
from robo_orchard_lab.dataset.robotwin.transforms import EpisodeSamplerConfig
dataset_list = []
data_parser = ArrowDataParse(
cam_names=config["cam_names"],
load_image=True,
load_depth=True,
load_extrinsic=True,
depth_scale=1000,
)
joint_sampler = EpisodeSamplerConfig(target_columns=["joints", "actions"])
for path in config["data_path"]:
dataset = ROMultiRowDataset(
dataset_path=path, row_sampler=joint_sampler
)
dataset.set_transform(data_parser)
dataset_list.append(dataset)
dataset = ConcatRODataset(dataset_list)
return dataset
config = dict(
data_path=[
"data/arrow_dataset_place_shoe_2025_08_21",
"data/arrow_dataset_place_shoe_2025_08_27",
],
cam_names=["left", "middle", "right"],
)
dataset = build_dataset(config)
# Show all key
frame_index = 0
print(len(dataset))
print(dataset[frame_index].keys())
# Show important key
for key in ['joint_state', 'master_joint_state', 'imgs', 'depths', 'intrinsic', 'T_world2cam']:
print(f"{key}, shape is {dataset[frame_index][key].shape}")
print(f"Instuction: {dataset[frame_index]['text']}")
print(f"Dataset index: {dataset[frame_index]['dataset_index']}")
# ----Output Demo----
# joint_state, shape is (322, 14)
# master_joint_state, shape is (322, 14)
# imgs, shape is (3, 360, 640, 3)
# depths, shape is (3, 360, 640)
# intrinsic, shape is (3, 4, 4)
# T_world2cam, shape is (3, 4, 4)
# Instuction: Use one arm to grab the shoe from the table and place it on the mat.
# Dataset index: 1
2.2.2 For Training
To integrate this dataset into the training pipeline, you will need to incorporate data transformations. Please follow the approach used in the lmdb_dataset to add the transforms.
from robo_orchard_lab.dataset.robotwin.transforms import ArrowDataParse
from robo_orchard_lab.utils.build import build
from robo_orchard_lab.utils.misc import as_sequence
from torchvision.transforms import Compose
train_transforms, val_transforms = build_transforms(config)
train_transforms = [build(x) for x in as_sequence(train_transforms)]
composed_train_transforms = Compose([data_parser] + train_transforms)
train_dataset.set_transform(composed_train_transforms)
2.2.3 Export mcap file and use foxglove to viz
def export_mcap(dataset, episode_index, target_path):
"""Export the specified episode to an MCAP file."""
from robo_orchard_lab.dataset.experimental.mcap.batch_encoder.camera import ( # noqa: E501
McapBatchFromBatchCameraDataEncodedConfig,
)
from robo_orchard_lab.dataset.experimental.mcap.batch_encoder.joint_state import ( # noqa: E501
McapBatchFromBatchJointStateConfig,
)
from robo_orchard_lab.dataset.experimental.mcap.writer import (
Dataset2Mcap,
McapBatchEncoderConfig,
)
dataset2mcap_cfg: dict[str, McapBatchEncoderConfig] = {
"joints": McapBatchFromBatchJointStateConfig(
target_topic="/observation/robot_state/joints"
),
}
dataset2mcap_cfg["actions"] = McapBatchFromBatchJointStateConfig(
target_topic="/action/robot_state/joints"
)
for camera_name in config["cam_names"]:
dataset2mcap_cfg[camera_name] = (
McapBatchFromBatchCameraDataEncodedConfig(
calib_topic=f"/observation/cameras/{camera_name}/calib",
image_topic=f"/observation/cameras/{camera_name}/image",
tf_topic=f"/observation/cameras/{camera_name}/tf",
)
)
dataset2mcap_cfg[f"{camera_name}_depth"] = (
McapBatchFromBatchCameraDataEncodedConfig(
image_topic=f"/observation/cameras/{camera_name}/depth",
)
)
to_mcap = Dataset2Mcap(dataset=dataset)
to_mcap.save_episode(
target_path=target_path,
episode_index=episode_index,
encoder_cfg=dataset2mcap_cfg,
)
print(f"Export episode {episode_index} to {target_path}")
# Export mcap file and use foxglove to viz
dataset_index = dataset[frame_index]["dataset_index"]
episode_index = dataset[frame_index]["episode"].index
export_mcap(
dataset=dataset.datasets[dataset_index],
episode_index=episode_index,
target_path=f"./viz_dataidx_{dataset_index}_episodeidx_{episode_index}.mcap",
)
Then you can use Foxglove and Example Layout to visualize the mcap file. Refer to here to get more visualization example.
3. Data Packer
Data Packaging is the process of parsing the recorded data, performing operations like timestamp alignment, and converting it into a usable format for training.
For mcap data recorded from real-bot, please refer to the released packaging script to perform the conversion.
- Source Code: Packer
- Usage: Instructions
- Downloads last month
- 4,726




