Datasets:
Add project page and visual-document-retrieval task category
#2
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,18 +1,19 @@
|
|
| 1 |
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
task_categories:
|
| 4 |
-
- multiple-choice
|
| 5 |
-
- visual-question-answering
|
| 6 |
language:
|
| 7 |
- en
|
|
|
|
| 8 |
size_categories:
|
| 9 |
- n<1K
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
configs:
|
| 11 |
- config_name: benchmark
|
| 12 |
data_files:
|
| 13 |
- split: test
|
| 14 |
path: dataset.json
|
| 15 |
-
paperswithcode_id: mapeval-visual
|
| 16 |
tags:
|
| 17 |
- geospatial
|
| 18 |
---
|
|
@@ -21,6 +22,8 @@ tags:
|
|
| 21 |
|
| 22 |
This dataset was introduced in [MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models](https://arxiv.org/abs/2501.00316)
|
| 23 |
|
|
|
|
|
|
|
| 24 |
# Example
|
| 25 |
|
| 26 |

|
|
@@ -53,17 +56,25 @@ for item in ds["test"]:
|
|
| 53 |
# Start with a clear task description
|
| 54 |
prompt = (
|
| 55 |
"You are a highly intelligent assistant. "
|
| 56 |
-
"Based on the given image, answer the multiple-choice question by selecting the correct option
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
)
|
| 60 |
|
| 61 |
# List the options more clearly
|
| 62 |
for i, option in enumerate(item["options"], start=1):
|
| 63 |
-
prompt += f"{i}. {option}
|
|
|
|
| 64 |
|
| 65 |
# Add a concluding sentence to encourage selection of the answer
|
| 66 |
-
prompt += "
|
|
|
|
| 67 |
|
| 68 |
# Load image from Vdata/ directory
|
| 69 |
img = PIL.Image.open(item["context"])
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
size_categories:
|
| 6 |
- n<1K
|
| 7 |
+
task_categories:
|
| 8 |
+
- multiple-choice
|
| 9 |
+
- visual-question-answering
|
| 10 |
+
- visual-document-retrieval
|
| 11 |
+
paperswithcode_id: mapeval-visual
|
| 12 |
configs:
|
| 13 |
- config_name: benchmark
|
| 14 |
data_files:
|
| 15 |
- split: test
|
| 16 |
path: dataset.json
|
|
|
|
| 17 |
tags:
|
| 18 |
- geospatial
|
| 19 |
---
|
|
|
|
| 22 |
|
| 23 |
This dataset was introduced in [MapEval: A Map-Based Evaluation of Geo-Spatial Reasoning in Foundation Models](https://arxiv.org/abs/2501.00316)
|
| 24 |
|
| 25 |
+
[Project page](https://mapeval.github.io/)
|
| 26 |
+
|
| 27 |
# Example
|
| 28 |
|
| 29 |

|
|
|
|
| 56 |
# Start with a clear task description
|
| 57 |
prompt = (
|
| 58 |
"You are a highly intelligent assistant. "
|
| 59 |
+
"Based on the given image, answer the multiple-choice question by selecting the correct option.
|
| 60 |
+
|
| 61 |
+
"
|
| 62 |
+
"Question:
|
| 63 |
+
" + item["question"] + "
|
| 64 |
+
|
| 65 |
+
"
|
| 66 |
+
"Options:
|
| 67 |
+
"
|
| 68 |
)
|
| 69 |
|
| 70 |
# List the options more clearly
|
| 71 |
for i, option in enumerate(item["options"], start=1):
|
| 72 |
+
prompt += f"{i}. {option}
|
| 73 |
+
"
|
| 74 |
|
| 75 |
# Add a concluding sentence to encourage selection of the answer
|
| 76 |
+
prompt += "
|
| 77 |
+
Select the best option by choosing its number."
|
| 78 |
|
| 79 |
# Load image from Vdata/ directory
|
| 80 |
img = PIL.Image.open(item["context"])
|