|
|
--- |
|
|
license: mit |
|
|
task_categories: |
|
|
- image-classification |
|
|
language: |
|
|
- en |
|
|
tags: |
|
|
- imagenet |
|
|
- corruption |
|
|
- robustness |
|
|
- computer-vision |
|
|
- image-classification |
|
|
size_categories: |
|
|
- 1M<n<10M |
|
|
--- |
|
|
|
|
|
# Corruption Dataset: Shot_Noise |
|
|
|
|
|
## Dataset Description |
|
|
|
|
|
This dataset contains corrupted versions of ImageNet-1K images using **shot_noise** corruption. It is part of the ImageNet-C benchmark for evaluating model robustness to common image corruptions. |
|
|
|
|
|
### Dataset Structure |
|
|
|
|
|
- **Train**: 1,281,167 corrupted images |
|
|
- **Validation**: 50,000 corrupted images |
|
|
- **Classes**: 1000 ImageNet-1K classes |
|
|
- **Format**: Arrow (Hugging Face Datasets) |
|
|
|
|
|
### Corruption Type: Shot_Noise |
|
|
|
|
|
Adds shot noise (Poisson noise), common in low-light photography. |
|
|
|
|
|
## Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
# Load the dataset |
|
|
dataset = load_dataset("MarMaster/corruption-shot_noise") |
|
|
|
|
|
# Access train and validation splits |
|
|
train_dataset = dataset["train"] |
|
|
val_dataset = dataset["validation"] |
|
|
|
|
|
# Example usage |
|
|
for example in train_dataset: |
|
|
image = example["image"] |
|
|
class_id = example["class_id"] |
|
|
filename = example["filename"] |
|
|
``` |
|
|
|
|
|
## Dataset Statistics |
|
|
|
|
|
- **Total Images**: 1,331,167 |
|
|
- **Train Images**: 1,281,167 |
|
|
- **Validation Images**: 50,000 |
|
|
- **Classes**: 1000 |
|
|
- **Image Format**: RGB |
|
|
- **Average Image Size**: Variable (ImageNet-1K standard) |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this dataset, please cite the original ImageNet-C paper: |
|
|
|
|
|
```bibtex |
|
|
@article{hendrycks2019benchmarking, |
|
|
title={Benchmarking Neural Network Robustness to Common Corruptions and Perturbations}, |
|
|
author={Hendrycks, Dan and Dietterich, Tom}, |
|
|
journal={Proceedings of the International Conference on Learning Representations}, |
|
|
year={2019} |
|
|
} |
|
|
``` |
|
|
|
|
|
## License |
|
|
|
|
|
This dataset is released under the MIT License. The original ImageNet dataset follows its own licensing terms. |
|
|
|
|
|
## Contact |
|
|
|
|
|
For questions or issues, please contact: marcin.osial@[your-institution].edu |
|
|
|