Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
91
344
annotation
stringclasses
7 values
transcription
stringlengths
0
107
video_segment
stringlengths
31
34
🎯 Включение в процесс
students. Good morning and how are you today?
segments/target_14.36_18.00.mp4
🎯 Включение в процесс
students. Good morning and how are you today?
segments/target_14.36_18.00.mp4
🎯 Включение в процесс
students. Good morning and how are you today?
segments/target_14.36_18.00.mp4
🗣️ Чёткое и структурированное изложение с акцентами
the place theme must be simple. And right now that we use it to talk about completed actions in the task.
segments/item_201.52_215.72.mp4
🗣️ Чёткое и структурированное изложение с акцентами
the place theme must be simple. And right now that we use it to talk about completed actions in the task.
segments/item_201.52_215.72.mp4
🗣️ Чёткое и структурированное изложение с акцентами
the place theme must be simple. And right now that we use it to talk about completed actions in the task.
segments/item_201.52_215.72.mp4
🎯 Включение в процесс
segments/target_250.52_252.72.mp4
🎯 Включение в процесс
segments/target_250.52_252.72.mp4
🎯 Включение в процесс
segments/target_250.52_252.72.mp4
🗣️ Чёткое и структурированное изложение с акцентами
Marking words, how can we know that it is possible that we should use here? It is, let's read down.
segments/item_373.40_382.20.mp4
🗣️ Чёткое и структурированное изложение с акцентами
Marking words, how can we know that it is possible that we should use here? It is, let's read down.
segments/item_373.40_382.20.mp4
🗣️ Чёткое и структурированное изложение с акцентами
Marking words, how can we know that it is possible that we should use here? It is, let's read down.
segments/item_373.40_382.20.mp4
💬 Качественная обратная связь
So why do we use a fast signal here? Because we...
segments/item_435.68_440.96.mp4
💬 Качественная обратная связь
So why do we use a fast signal here? Because we...
segments/item_435.68_440.96.mp4
💬 Качественная обратная связь
So why do we use a fast signal here? Because we...
segments/item_435.68_440.96.mp4
💖 Эмоциональная поддержка
Action action Basically
segments/heart_495.12_496.68.mp4
💖 Эмоциональная поддержка
Action action Basically
segments/heart_495.12_496.68.mp4
💖 Эмоциональная поддержка
Action action Basically
segments/heart_495.12_496.68.mp4
🔄 Разнообразие форм работы
Let's rock the snow. Uh, sorry, the other two.
segments/refresh_496.76_500.28.mp4
🔄 Разнообразие форм работы
Let's rock the snow. Uh, sorry, the other two.
segments/refresh_496.76_500.28.mp4
🔄 Разнообразие форм работы
Let's rock the snow. Uh, sorry, the other two.
segments/refresh_496.76_500.28.mp4
🎯 Включение в процесс
very good industries.
segments/target_662.48_665.20.mp4
🎯 Включение в процесс
very good industries.
segments/target_662.48_665.20.mp4
🎯 Включение в процесс
very good industries.
segments/target_662.48_665.20.mp4
💬 Качественная обратная связь
the pipe we have for constant length of saglassene. We need to change it to the pipe, like whatever for it.
segments/item_676.68_684.28.mp4
💬 Качественная обратная связь
the pipe we have for constant length of saglassene. We need to change it to the pipe, like whatever for it.
segments/item_676.68_684.28.mp4
💬 Качественная обратная связь
the pipe we have for constant length of saglassene. We need to change it to the pipe, like whatever for it.
segments/item_676.68_684.28.mp4
💖 Эмоциональная поддержка
Yeah, thank you.
segments/heart_813.64_815.20.mp4
💖 Эмоциональная поддержка
Yeah, thank you.
segments/heart_813.64_815.20.mp4
💖 Эмоциональная поддержка
Yeah, thank you.
segments/heart_813.64_815.20.mp4
🔄 Разнообразие форм работы
Let's move on please. We're going to stir it up.
segments/refresh_986.00_990.40.mp4
🔄 Разнообразие форм работы
Let's move on please. We're going to stir it up.
segments/refresh_986.00_990.40.mp4
🔄 Разнообразие форм работы
Let's move on please. We're going to stir it up.
segments/refresh_986.00_990.40.mp4
🌍 Связь с личным опытом
What time do you hear here?
segments/world_1054.72_1057.76.mp4
🌍 Связь с личным опытом
What time do you hear here?
segments/world_1054.72_1057.76.mp4
🌍 Связь с личным опытом
What time do you hear here?
segments/world_1054.72_1057.76.mp4
🌍 Связь с личным опытом
That's something. Okay.
segments/world_1087.28_1090.00.mp4
🌍 Связь с личным опытом
That's something. Okay.
segments/world_1087.28_1090.00.mp4
🌍 Связь с личным опытом
That's something. Okay.
segments/world_1087.28_1090.00.mp4
💻 Использование ИКТ в обучении
Here's the falses.
segments/item_630.40_632.16.mp4
💻 Использование ИКТ в обучении
Here's the falses.
segments/item_630.40_632.16.mp4
💻 Использование ИКТ в обучении
Here's the falses.
segments/item_630.40_632.16.mp4
YAML Metadata Warning: The task_ids "image-classification-other" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, text2text-generation, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation

Video Dataset - pre-test-colab

Dataset Description

This dataset contains video frames extracted from annotated video segments, along with annotations, transcriptions, and corresponding video clips.

Dataset Structure

  • frames/ — extracted frames grouped by role (start, middle, end)
  • segments/ — video clips for each annotation interval
  • annotations/ — original JSON annotation
  • transcriptions/ — transcription files (full_transcription.txt + per segment)
  • dataset.csv — mapping between frames, annotations, video clips, and segment transcription

Dataset Statistics

  • Frames: 42
  • Segments: 14
  • Unique Labels: 7

Dataset Features

  • image: Extracted video frame (JPEG)
  • annotation: Label/annotation for the frame segment
  • transcription: Text transcription of the audio segment
  • video_segment: Path to the corresponding video clip file

Usage

This dataset can be loaded using the Hugging Face datasets library:

from datasets import load_dataset

dataset = load_dataset("your-org/video-dataset-pre-test-colab")
Downloads last month
21