Table30 / README.md
RoboChallengeAI's picture
Upload folder using huggingface_hub
3bad7cd verified
# RoboChallenge Dataset
## Tasks and Embodiments
The dataset includes 30 diverse manipulation tasks (Table30) across 4 embodiments:
### Available Tasks
- `arrange_flowers`
- `arrange_fruits_in_basket`
- `arrange_paper_cups`
- `clean_dining_table`
- `fold_dishcloth`
- `hang_toothbrush_cup`
- `make_vegetarian_sandwich`
- `move_objects_into_box`
- `open_the_drawer`
- `place_shoes_on_rack`
- `plug_in_network_cable`
- `pour_fries_into_plate`
- `press_three_buttons`
- `put_cup_on_coaster`
- `put_opener_in_drawer`
- `put_pen_into_pencil_case`
- `scan_QR_code`
- `search_green_boxes`
- `set_the_plates`
- `shred_scrap_paper`
- `sort_books`
- `sort_electronic_products`
- `stack_bowls`
- `stack_color_blocks`
- `stick_tape_to_box`
- `sweep_the_rubbish`
- `turn_on_faucet`
- `turn_on_light_switch`
- `water_potted_plant`
- `wipe_the_table`
### Embodiments
- **ARX5** - Single-arm with triple camera setup (wrist + global + right-side views)
- **UR5** - Single-arm with dual camera setup (wrist + global views)
- **FRANKA** - Single-arm with triple perspective setup (wrist + main + side views)
- **ALOHA** - Dual-arm with triple wrist camera setup (left wrist + right wrist + global views)
## Dataset Structure
### Hierarchy
The dataset is organized by tasks, with each task containing multiple demonstration episodes:
```
.
β”œβ”€β”€ <task_name>/ # e.g., arrange_flowers, fold_dishcloth
β”‚ β”œβ”€β”€ task_desc.json # Task description
β”‚ β”œβ”€β”€ meta/ # Task-level metadata
β”‚ β”‚ β”œβ”€β”€ task_info.json
β”‚ └── data/ # Episode data
β”‚ β”œβ”€β”€ episode_000000/ # Individual episode
β”‚ β”‚ β”œβ”€β”€ meta/
β”‚ β”‚ β”‚ └── episode_meta.json # Episode metadata
β”‚ β”‚ β”œβ”€β”€ states/
β”‚ β”‚ β”‚ # for single-arm (ARX5, UR5, Franka)
β”‚ β”‚ β”‚ β”œβ”€β”€ states.jsonl # Single-arm robot states
β”‚ β”‚ β”‚ # for dual-arm (ALOHA)
β”‚ β”‚ β”‚ β”œβ”€β”€ left_states.jsonl # Left arm states
β”‚ β”‚ β”‚ └── right_states.jsonl # Right arm states
β”‚ β”‚ └── videos/
β”‚ β”‚ # Video configurations vary by robot model:
β”‚ β”‚ # ARX5
β”‚ β”‚ β”œβ”€β”€ arm_realsense_rgb.mp4 # Wrist view
β”‚ β”‚ β”œβ”€β”€ global_realsense_rgb.mp4 # Global view
β”‚ β”‚ └── right_realsense_rgb.mp4 # Side view
β”‚ β”‚ # UR5
β”‚ β”‚ β”œβ”€β”€ global_realsense_rgb.mp4 # Global view
β”‚ β”‚ └── handeye_realsense_rgb.mp4 # Wrist view
β”‚ β”‚ # Franka
β”‚ β”‚ β”œβ”€β”€ handeye_realsense_rgb.mp4 # Wrist view
β”‚ β”‚ β”œβ”€β”€ main_realsense_rgb.mp4 # Global view
β”‚ β”‚ └── side_realsense_rgb.mp4 # Side view
β”‚ β”‚ # ALOHA
β”‚ β”‚ β”œβ”€β”€ cam_high_rgb.mp4 # Global view
β”‚ β”‚ β”œβ”€β”€ cam_wrist_left_rgb.mp4 # Left wrist view
β”‚ β”‚ └── cam_wrist_right_rgb.mp4 # Right wrist view
β”‚ β”œβ”€β”€ episode_000001/
β”‚ └── ...
β”œβ”€β”€ convert_to_lerobot.py # Conversion script
└── README.md
```
### Metadata Schema
`task_info.json`
```json
{
"robot_id": "arx5_1", // Robot model identifier
"task_desc": {
"task_name": "arrange_flowers", // Task identifier
"prompt": "insert the three flowers on the table into the vase one by one",
"scoring": "...", // Scoring criteria
"task_tag": [ // Task characteristics
"repeated",
"single-arm",
"ARX5",
"precise3d"
]
},
"video_info": {
"fps": 30, // Video frame rate
"ext": "mp4", // Video format
"encoding": {
"vcodec": "libx264", // Video codec
"pix_fmt": "yuv420p" // Pixel format
}
}
}
```
`episode_meta.json`
```json
{
"episode_index": 0, // Episode number
"start_time": 1750405586.3430033, // Unix timestamp (start)
"end_time": 1750405642.5247612, // Unix timestamp (end)
"frames": 1672 // Total video frames
}
```
### Robot States Schema
Each episode contains states data stored in JSONL format. Depending on the embodiment, the structure differs slightly:
- **Single-arm robots (ARX5, UR5, Franka)** β†’ `states.jsonl`
- **Dual-arm robots (ALOHA)** β†’ `left_states.jsonl` and `right_states.jsonl`
Each file records the robot’s proprioceptive signals per frame, including joint angles,
end-effector poses, gripper states, and timestamps. The exact field definitions and coordinate conventions vary by platform,
as summarized below.
#### ARX5
| Data Name | Data Key |Shape | Semantics |
|:---------:|:-----:|:----:|:----:|
| Joint control |joint_positions | (6,) | Joint angle (in radians) from the base to the end effector. |
| Pose control | ee_positions | (6,) | End effector pose (tx, ty, tz, roll, pitch, yaw), where (roll, pitch, yaw) is relative euler angles from the arm base coordinate. X : back to front; Y: right to left; Z: down to up. |
| Gripper control |gripper | (1,) | Actual gripper width measurement in meter. |
| Time stamp |timestamp | (1,) | Floating point timestamp (in milliseconds) of each frame. |
#### UR5
| Data Name | Data Key |Shape | Semantics |
|:---------:|:-----:|:----:|:----:|
| Joint control |joint_positions | (6,) | Joint angle (in radians) from the base to the end effector. |
| Pose control | ee_positions | (7,) | End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : front to back; Y: left to right; Z: down to up. |
| Gripper control |gripper | (1,) | Gripper closing angle, 0 for fully open, 255 for fully closed. |
| Time stamp |timestamp | (1,) | Floating point timestamp (in milliseconds) of each frame. |
#### Franka
| Data Name | Data Key |Shape | Semantics |
|:---------:|:-----:|:----:|:----:|
| Joint control |joint_positions | (7,) | Joint angle (in radians) from the base to the end effector. |
| Pose control | ee_positions | (7,) | End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : back to front; Y: right to left; Z: down to up. |
| Gripper control |gripper | (2,) | Gripper trigger signals in the (close_button, open_button) order. |
| Gripper width |gripper_width | (1,) | Actual gripper width measurement |
| Time stamp |timestamp | (1,) | Floating point timestamp (in milliseconds) of each frame. |
#### ALOHA
| Data Name | Data Key |Shape | Semantics |
|:---------:|:-----:|:----:|:----:|
| Master joint control |joint_positions | (6,) | Maste joint angle (in radians) from the base to the end effector. |
|Joint velocity| joint_vel | (7,) | Speed of 6 joint and gripper |
| Puppet joint control |qpos | (6,) | Puppet joint angle (in radians) from the base to the end effector. |
| Puppet pose control | ee_pose_quaternion | (7,) | End effector pose (tx, ty, tz, rx, ry, rz, rw), where (tx, ty, tz) is relative position from the arm base coordinate , (rx, ry, rz, rw) is quaternion rotation. X : back to front; Y: right to left ; Z: down to up. |
| Puppet pose control | ee_pose_rpy | (6,) | End effector pose (tx, ty, tz, rr, rp, ry), where (tx, ty, tz) is relative position from the arm base coordinate , (rr, rp, ry) is euler (in radians). X : back to front; Y: right to left ; Z: down to up. |
| Gripper control |gripper | (1,) | Actual gripper width measurement in meter.|
| Time stamp |timestamp | (1,) | Floating point timestamp (in mileseconds) of each frame. |
## Convert to LeRobot
While you can implement a custom Dataset class to read RoboChallenge data directly, **we strongly recommend converting to LeRobot format** to take advantage of [LeRobot](https://github.com/huggingface/lerobot)'s comprehensive data processing and loading utilities.
The example script **`convert_to_lerobot.py`** converts **ARX5** data to the LeRobot dataset as a example. For other robot embodiments (UR5, Franka, ALOHA), you can adapt the script accordingly.
### Prerequisites
- Python 3.9+ with the following packages:
- `lerobot==0.1.0`
- `opencv-python`
- `numpy`
- Configure `$LEROBOT_HOME` (defaults to `~/.lerobot` if unset).
```bash
pip install lerobot==0.1.0 opencv-python numpy
export LEROBOT_HOME="/path/to/lerobot_home"
```
### Usage
Run the converter from the repository root (or provide an absolute path):
```bash
python convert_to_lerobot.py \
--repo-name example_repo \
--raw-dataset /path/to/example_dataset \
--frame-interval 1
```
### Output
- Frames and metadata are saved to `$LEROBOT_HOME/<repo-name>`.
- At the end, the script calls `dataset.consolidate(run_compute_stats=False)`. If you require aggregated statistics, run it with `run_compute_stats=True` or execute a separate stats job.