Datasets:
The dataset viewer is not available for this split.
Error code: FeaturesError
Exception: ArrowInvalid
Message: JSON parse error: The document is empty.
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables
df = pandas_read_json(f)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
return pd.read_json(path_or_buf, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 791, in read_json
json_reader = JsonReader(
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 905, in __init__
self.data = self._preprocess_data(data)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 917, in _preprocess_data
data = data.read()
^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/utils/file_utils.py", line 813, in read_with_retries
out = read(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "<frozen codecs>", line 322, in decode
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xe5 in position 35: invalid continuation byte
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
return next(iter(self.iter(batch_size=n)))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
for key, example in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 503, in _iter_arrow
for key, pa_table in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 350, in _iter_arrow
for key, pa_table in self.generate_tables_fn(**gen_kwags):
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables
raise e
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
pa_table = paj.read_json(
^^^^^^^^^^^^^^
File "pyarrow/_json.pyx", line 342, in pyarrow._json.read_json
File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: JSON parse error: The document is empty.Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models
XModBench is a comprehensive benchmark designed to evaluate the cross-modal capabilities and consistency of omni-language models. It systematically assesses model performance across multiple modalities (text, vision, audio) and various cognitive tasks, revealing critical gaps in current state-of-the-art models.
Key Features
- π― Multi-Modal Evaluation: Comprehensive testing across text, vision, and audio modalities
- π§© 5 Task Dimensions: Perception, Spatial, Temporal, Linguistic, and Knowledge tasks
- π 13 SOTA Models Evaluated: Including Gemini 2.5 Pro, Qwen2.5-Omni, EchoInk-R1, and more
- π Consistency Analysis: Measures performance stability across different modal configurations
- π₯ Human Performance Baseline: Establishes human-level benchmarks for comparison
π Quick Start
Installation
# Clone the repository
git clone https://github.com/XingruiWang/XModBench.git
cd XModBench
# Install dependencies
pip install -r requirements.txt
π Dataset Structure
Download and Setup
After cloning from HuggingFace, you'll need to extract the data:
# Download the dataset from HuggingFace
git clone https://huggingface.co/datasets/RyanWW/XModBench
cd XModBench
# Extract the Data.zip file
unzip Data.zip
# Now you have the following structure:
Directory Structure
XModBench/
βββ Data/ # Unzipped from Data.zip
β βββ landscape_audiobench/ # Nature sound scenes
β βββ emotions/ # Emotion classification data
β βββ solos_processed/ # Musical instrument solos
β βββ gtzan-dataset-music-genre-classification/ # Music genre data
β βββ singers_data_processed/ # Singer identification
β βββ temporal_audiobench/ # Temporal reasoning tasks
β βββ urbansas_samples_videos_filtered/ # Urban 3D movements
β βββ STARSS23_processed_augmented/ # Spatial audio panorama
β βββ vggss_audio_bench/ # Fine-grained audio-visual
β βββ URMP_processed/ # Musical instrument arrangements
β βββ ExtremCountAV/ # Counting tasks
β βββ posters/ # Movie posters
β βββ trailer_clips/ # Movie trailers
β
βββ tasks/ # Task configurations (ready to use)
βββ 01_perception/ # Perception tasks
β βββ finegrained/ # Fine-grained recognition
β βββ natures/ # Nature scenes
β βββ instruments/ # Musical instruments
β βββ instruments_comp/ # Instrument compositions
β βββ general_activities/ # General activities
βββ 02_spatial/ # Spatial reasoning tasks
β βββ 3D_movements/ # 3D movement tracking
β βββ panaroma/ # Panoramic spatial audio
β βββ arrangements/ # Spatial arrangements
βββ 03_speech/ # Speech and language tasks
β βββ recognition/ # Speech recognition
β βββ translation/ # Translation
βββ 04_temporal/ # Temporal reasoning tasks
β βββ count/ # Temporal counting
β βββ order/ # Temporal ordering
β βββ calculation/ # Temporal calculations
βββ 05_Exteral/ # Additional classification tasks
βββ emotion_classification/ # Emotion recognition
βββ music_genre_classification/ # Music genre
βββ singer_identification/ # Singer identification
βββ movie_matching/ # Movie matching
Note: All file paths in the task JSON files use relative paths (./benchmark/Data/...), so ensure your working directory is set correctly when running evaluations.
Basic Usage
#!/bin/bash
#SBATCH --job-name=VLM_eval
#SBATCH --output=log/job_%j.out
#SBATCH --error=log/job_%j.log
#SBATCH --ntasks-per-node=1
#SBATCH --gpus-per-node=4
echo "Running on host: $(hostname)"
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
module load conda
# conda activate vlm
conda activate omni
export audioBench='/home/xwang378/scratch/2025/AudioBench'
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_audio_vision \
# --sample 1000
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_vision_audio \
# --sample 1000
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_vision_text \
# --sample 1000
# python $audioBench/scripts/run.py \
# --model gemini \
# --task_name perception/vggss_audio_text \
# --sample 1000
# Qwen2.5-Omni
# python $audioBench/scripts/run.py \
# --model qwen2.5_omni \
# --task_name perception/vggss_audio_text \
# --sample 1000
python $audioBench/scripts/run.py \
--model qwen2.5_omni \
--task_name perception/vggss_vision_text \
--sample 1000
π Benchmark Results
Overall Performance Comparison
| Model | Perception | Spatial | Temporal | Linguistic | Knowledge | Average |
|---|---|---|---|---|---|---|
| Gemini 2.5 Pro | 75.9% | 50.1% | 60.8% | 76.8% | 89.3% | 70.6% |
| Human Performance | 91.0% | 89.7% | 88.9% | 93.9% | 93.9% | 91.5% |
Key Findings
1οΈβ£ Task Competence Gaps
- Strong Performance: Perception and linguistic tasks (~75% for best models)
- Weak Performance: Spatial (50.1%) and temporal reasoning (60.8%)
- Performance Drop: 15-25 points decrease in spatial/temporal vs. perception tasks
2οΈβ£ Modality Disparity
- Audio vs. Text: 20-49 point performance drop
- Audio vs. Vision: 33-point average gap
- Vision vs. Text: ~15-point disparity
- Consistency: Best models show 10-12 point standard deviation
3οΈβ£ Directional Imbalance
- VisionβText: 9-17 point gaps between directions
- AudioβText: 6-8 point asymmetries
- Root Cause: Training data imbalance favoring image-to-text over inverse directions
π Citation
If you use XModBench in your research, please cite our paper:
@article{wang2024xmodbench,
title={XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models},
author={Wang, Xingrui, etc.},
journal={arXiv preprint arXiv:2510.15148},
year={2024}
}
π License
This project is licensed under the MIT License - see the LICENSE file for details.
π Acknowledgments
We thank all contributors and the research community for their valuable feedback and suggestions.
π§ Contact
- Project Lead: Xingrui Wang
- Email: [[email protected]]
- Website: https://xingruiwang.github.io/projects/XModBench/
π Links
Todo
- Release Huggingface data
- Release data processing code
- Release data evaluation code
Note: XModBench is actively maintained and regularly updated with new models and evaluation metrics. For the latest updates, please check our releases page.
- Downloads last month
- 482