|
|
import os |
|
|
import re |
|
|
import glob |
|
|
import json |
|
|
import argparse |
|
|
import random |
|
|
import uuid |
|
|
from tqdm import tqdm |
|
|
from pathlib import Path |
|
|
from collections import defaultdict |
|
|
|
|
|
def parse_ground_truth(name): |
|
|
"""Extract ground truth rotation axis and angle from filename or folder name""" |
|
|
|
|
|
basename = name.split(".")[0] if "." in name else name |
|
|
|
|
|
parts = basename.split("_") |
|
|
if len(parts) >= 4: |
|
|
rotation_axis = parts[-2] |
|
|
rotation_angle = int(parts[-1]) |
|
|
|
|
|
|
|
|
if rotation_angle < 0: |
|
|
rotation_angle += 360 |
|
|
|
|
|
return rotation_axis, rotation_angle |
|
|
|
|
|
print(f"Warning: Could not parse name: {basename}") |
|
|
return None, None |
|
|
|
|
|
def load_examples(example_dir, generation_mode): |
|
|
"""Load example images from the example directory""" |
|
|
if generation_mode == "combined": |
|
|
|
|
|
files = glob.glob(os.path.join(example_dir, "*.png")) |
|
|
print(f"Found {len(files)} combined example images in {example_dir}") |
|
|
return files |
|
|
else: |
|
|
|
|
|
folders = [f for f in glob.glob(os.path.join(example_dir, "*")) if os.path.isdir(f)] |
|
|
|
|
|
valid_folders = [] |
|
|
for folder in folders: |
|
|
folder_name = os.path.basename(folder) |
|
|
ini_file = os.path.join(folder, f"{folder_name}_ini.png") |
|
|
rot_file = os.path.join(folder, f"{folder_name}_rot.png") |
|
|
if os.path.exists(ini_file) and os.path.exists(rot_file): |
|
|
valid_folders.append(folder) |
|
|
|
|
|
print(f"Found {len(valid_folders)} example folder pairs in {example_dir}") |
|
|
return valid_folders |
|
|
|
|
|
def organize_examples(examples, generation_mode): |
|
|
"""Organize examples by rotation axis and angle""" |
|
|
organized = defaultdict(list) |
|
|
for example in examples: |
|
|
basename = os.path.basename(example) |
|
|
if generation_mode == "combined": |
|
|
basename = basename.split(".")[0] |
|
|
|
|
|
axis, angle = parse_ground_truth(basename) |
|
|
if axis is None or angle is None: |
|
|
continue |
|
|
|
|
|
key = (axis, angle) |
|
|
organized[key].append(example) |
|
|
|
|
|
|
|
|
print("\nDistribution of examples by axis-angle:") |
|
|
for key, examples_list in organized.items(): |
|
|
print(f" {key[0]}-axis, {key[1]} degrees: {len(examples_list)} examples") |
|
|
|
|
|
return dict(organized) |
|
|
|
|
|
def select_examples(organized_examples, test_axis, possible_angles, max_examples=2): |
|
|
"""Select examples for the test case, with appropriate randomization""" |
|
|
examples = [] |
|
|
|
|
|
|
|
|
examples_by_angle = {} |
|
|
for (axis, angle), example_list in organized_examples.items(): |
|
|
if axis == test_axis and angle in possible_angles: |
|
|
if angle not in examples_by_angle: |
|
|
examples_by_angle[angle] = [] |
|
|
examples_by_angle[angle].extend([(example, angle) for example in example_list]) |
|
|
|
|
|
|
|
|
if not examples_by_angle: |
|
|
print(f"Warning: No examples found for rotation around {test_axis}-axis") |
|
|
return [] |
|
|
|
|
|
|
|
|
|
|
|
if max_examples < len(possible_angles): |
|
|
|
|
|
available_angles = [angle for angle in possible_angles if angle in examples_by_angle and examples_by_angle[angle]] |
|
|
|
|
|
|
|
|
if available_angles: |
|
|
selected_angles = random.sample(available_angles, min(max_examples, len(available_angles))) |
|
|
|
|
|
|
|
|
for angle in selected_angles: |
|
|
selected_example = random.choice(examples_by_angle[angle]) |
|
|
examples.append(selected_example) |
|
|
else: |
|
|
|
|
|
for angle in possible_angles: |
|
|
if angle in examples_by_angle and examples_by_angle[angle]: |
|
|
selected_example = random.choice(examples_by_angle[angle]) |
|
|
examples.append(selected_example) |
|
|
|
|
|
|
|
|
if len(examples) >= max_examples: |
|
|
break |
|
|
|
|
|
|
|
|
if len(examples) < max_examples and examples_by_angle: |
|
|
all_examples = [] |
|
|
for angle_examples in examples_by_angle.values(): |
|
|
all_examples.extend(angle_examples) |
|
|
|
|
|
while len(examples) < max_examples and all_examples: |
|
|
selected_example = random.choice(all_examples) |
|
|
|
|
|
all_examples.remove(selected_example) |
|
|
if selected_example not in examples: |
|
|
examples.append(selected_example) |
|
|
|
|
|
return examples |
|
|
|
|
|
def construct_prompt_with_examples(axis, possible_angles, examples=None, difficulty="easy", generation_mode="combined"): |
|
|
"""Create prompt for the VLM with an in-context example""" |
|
|
|
|
|
'''possible_angles = [] |
|
|
current_angle = 0 + angle_increment |
|
|
while current_angle < 360: |
|
|
possible_angles.append(current_angle) |
|
|
current_angle += angle_increment''' |
|
|
|
|
|
|
|
|
coordinate_system_templates = [ |
|
|
|
|
|
( |
|
|
"The 3D Cartesian coordinate setup is:\n" |
|
|
"- x-axis: Runs horizontally, positive to the right.\n" |
|
|
"- y-axis: Runs vertically, positive going up.\n" |
|
|
"- z-axis: Runs perpendicular to the screen, positive towards the viewer.\n" |
|
|
"- The origin (0,0,0) is positioned at the geometric center of the 3D object mesh.\n\n" |
|
|
"To visualize rotations, imagine looking along the positive direction of the rotation axis." |
|
|
), |
|
|
|
|
|
|
|
|
( |
|
|
"We are using a 3D Cartesian system oriented as follows:\n" |
|
|
"- The positive x-direction points right.\n" |
|
|
"- The positive y-direction points up.\n" |
|
|
"- The positive z-direction points out of the screen towards you.\n" |
|
|
"- The coordinate system's origin (0,0,0) coincides with the geometric center of the 3D object.\n\n" |
|
|
"When discussing axis rotations, the viewpoint is assumed to be looking along the axis's positive direction." |
|
|
), |
|
|
|
|
|
|
|
|
( |
|
|
"This work employs a 3D Cartesian coordinate frame where:\n" |
|
|
"- The horizontal axis (X) increases positively to the right.\n" |
|
|
"- The vertical axis (Y) increases positively upwards.\n" |
|
|
"- The depth axis (Z) increases positively coming out towards the observer.\n" |
|
|
"- The reference point (0,0,0) is located at the object's geometric center.\n\n" |
|
|
"For rotations, the perspective is looking down the positive axis towards the origin." |
|
|
), |
|
|
|
|
|
|
|
|
( |
|
|
"The coordinate system for this task is defined as:\n" |
|
|
"- X-axis: Horizontal, with positive values increasing rightward\n" |
|
|
"- Y-axis: Vertical, with positive values increasing upward\n" |
|
|
"- Z-axis: Depth, with positive values increasing toward the viewer\n" |
|
|
"- The origin point (0,0,0) is established at the centroid of the 3D mesh geometry.\n\n" |
|
|
"When analyzing rotations, consider the viewpoint from the positive end of the rotation axis." |
|
|
), |
|
|
|
|
|
|
|
|
( |
|
|
"Let's define our 3D space like this:\n" |
|
|
"- The x-axis goes left to right (right is positive)\n" |
|
|
"- The y-axis goes bottom to top (up is positive)\n" |
|
|
"- The z-axis comes from the screen toward you (out is positive)\n" |
|
|
"- The zero point (0,0,0) sits exactly at the center of mass of the 3D object.\n\n" |
|
|
"When thinking about rotations, imagine you're looking along the axis from its positive end." |
|
|
), |
|
|
|
|
|
|
|
|
( |
|
|
"The spatial reference frame utilized herein consists of:\n" |
|
|
"- An x-axis oriented horizontally (positive rightward)\n" |
|
|
"- A y-axis oriented vertically (positive upward)\n" |
|
|
"- A z-axis oriented perpendicular to the viewing plane (positive outward)\n" |
|
|
"- An origin (0,0,0) that is coincident with the geometric centroid of the object mesh.\n\n" |
|
|
"Rotational transformations are visualized from the perspective of an observer positioned along the positive direction of the axis in question." |
|
|
) |
|
|
] |
|
|
coordinate_system = random.choice(coordinate_system_templates) |
|
|
angle_constraints_templates = [ |
|
|
|
|
|
( |
|
|
f"The angle of rotation must be one of these specific values: {possible_angles} degrees. " |
|
|
f"Positive angles denote clockwise rotation when viewed along the axis's positive direction." |
|
|
), |
|
|
|
|
|
|
|
|
( |
|
|
f"Permitted rotation angles are limited to these values: {possible_angles}. " |
|
|
f"The convention used is: a positive angle signifies rotation in the clockwise direction, assuming a viewpoint looking along the positive axis." |
|
|
), |
|
|
|
|
|
|
|
|
( |
|
|
f"Rotation is constrained to these angles: {possible_angles} degrees. " |
|
|
f"A positive angle value corresponds to a clockwise turn relative to an observer looking along the positive direction of the rotation axis." |
|
|
), |
|
|
] |
|
|
angle_constraints = random.choice(angle_constraints_templates) |
|
|
|
|
|
|
|
|
example_text = "" |
|
|
if examples and len(examples) > 0: |
|
|
example_text = "\n### EXAMPLES OF ROTATION ###\n" |
|
|
for idx, (_, example_angle) in enumerate(examples): |
|
|
if generation_mode == "combined": |
|
|
img_num = idx + 1 |
|
|
example_text += f"\nExample {idx+1}: Image {img_num} shows a 3D object with its left half showing the initial view and right half showing a {example_angle} degree rotation around the {axis}-axis.\n" |
|
|
else: |
|
|
img_start = idx * 2 + 1 |
|
|
img_end = idx * 2 + 2 |
|
|
example_text += f"\nExample {idx+1}: Image {img_start} shows the initial view and Image {img_end} shows the object after a {example_angle} degree rotation around the {axis}-axis.\n" |
|
|
|
|
|
|
|
|
if difficulty == "easy": |
|
|
|
|
|
thinking_instructions_templates = [ |
|
|
|
|
|
( |
|
|
f"CRITICAL STEPS for finding the rotation angle:" |
|
|
f"\n\n1. Analyze Object Structure: Examine both views thoroughly to understand the object's form." |
|
|
f"\n\n2. Evaluate ALL {axis}-Axis Options: You must consider every angle in this list: {possible_angles}." |
|
|
f"\n - Visualize Rotation: For each angle, mentally rotate the object around the {axis}-axis." |
|
|
f"\n - Compare to Target View: Check how each visualized rotation matches the second view." |
|
|
f"\n - Complete Evaluation First: Do not choose an angle until all in {possible_angles} are tested." |
|
|
f"\n\n3. Select Best Match: After reviewing all possibilities, pick the angle that correctly transforms the first view to the second." |
|
|
f"\n\n4. Final Verification: Mentally apply your chosen rotation one last time to confirm it perfectly matches the second view." |
|
|
), |
|
|
|
|
|
|
|
|
( |
|
|
f"Follow this methodical process to identify the correct rotation:" |
|
|
f"\n\n1. Understand the Object: Start by carefully studying the object's features in both views to grasp its 3D shape." |
|
|
f"\n\n2. Systematic Angle Check ({axis}-axis): It's essential to evaluate the full set of potential rotation angles: {possible_angles}." |
|
|
f"\n - For every angle listed: Imagine rotating the object around the {axis}-axis by that specific amount." |
|
|
f"\n - Match Visualization to Reality: Compare your mental image after rotation with the provided second view." |
|
|
f"\n - Avoid Premature Decisions: Ensure you have mentally tested *all* angles before making a selection." |
|
|
f"\n\n3. Determine the Correct Angle: Once all angles ({possible_angles}) have been considered, choose the one rotation that best explains the change between views." |
|
|
f"\n\n4. Confirm Your Answer: As a final check, mentally perform the chosen rotation again to ensure it accurately produces the second view." |
|
|
), |
|
|
|
|
|
|
|
|
( |
|
|
f"Use this procedure to pinpoint the rotation angle accurately:" |
|
|
f"\n\n1. Initial Analysis: Compare the first and second views to understand the object's spatial configuration." |
|
|
f"\n\n2. Exhaustive {axis}-Axis Evaluation: You are required to assess each of these candidate rotation angles: {possible_angles}." |
|
|
f"\n - Test Each Angle: Mentally simulate rotating the object around the {axis}-axis by each angle in the list." |
|
|
f"\n - Cross-Reference Views: Evaluate how closely each simulated rotation aligns with the actual second view." |
|
|
f"\n - Full Assessment Required: Withhold judgment until every single angle from {possible_angles} has been assessed." |
|
|
f"\n\n3. Identify the Matching Rotation: After assessing all options, select the angle that precisely transforms the first view into the second." |
|
|
f"\n\n4. Validate Your Choice: Double-check by mentally applying the selected rotation to confirm it yields the exact second view." |
|
|
) |
|
|
] |
|
|
thinking_instructions = random.choice(thinking_instructions_templates) |
|
|
|
|
|
|
|
|
response_format = ( |
|
|
f"IMPORTANT: You must ONLY output the rotation angle as a number from this list: {possible_angles}. " |
|
|
f"Your output should contain ONLY the number. " |
|
|
f"Do NOT include any reasoning, explanation, or additional text - ONLY the number." |
|
|
f"\n\nExample of correct output format: 30" |
|
|
f"\n\nIncorrect output formats:" |
|
|
f"\n\"I think it's 30 degrees\"" |
|
|
f"\n\"The rotation angle is 30\"" |
|
|
f"\n\"30 degrees\"" |
|
|
) |
|
|
|
|
|
task_description = ( |
|
|
f"Your task is to determine the angle of rotation around the {axis}-axis in degrees." |
|
|
) |
|
|
|
|
|
else: |
|
|
thinking_instructions = ( |
|
|
f"IMPORTANT: Please follow this systematic approach to determine the rotation:" |
|
|
f"\n\n1. First, analyze the object's features in both views to understand its structure." |
|
|
f"\n\n2. Consider what would happen if rotation occurred around each of the three axes (x, y, and z):" |
|
|
f"\n - For x-axis rotation: What specific features would change and how?" |
|
|
f"\n - For y-axis rotation: What specific features would change and how?" |
|
|
f"\n - For z-axis rotation: What specific features would change and how?" |
|
|
f"\n - Based on the observed changes, explain which axis makes the most sense and why." |
|
|
f"\n\n3. Once you've determined the most likely axis, evaluate ALL of these possible rotation angles: {possible_angles}" |
|
|
f"\n - For each angle in the list, describe what the object would look like after rotating around your chosen axis by that amount" |
|
|
f"\n - Compare these descriptions with the actual second view" |
|
|
f"\n - DO NOT make a decision until you have evaluated all angles in the list" |
|
|
f"\n\n4. After evaluating all angles, choose the one that best matches the observed changes" |
|
|
) |
|
|
|
|
|
response_format = ( |
|
|
f"Place your detailed reasoning process in <thinking></thinking> tags. Your reasoning should include:" |
|
|
f"\n- Analysis of how rotation around each axis would affect the object" |
|
|
f"\n- Systematic evaluation of possible rotation angles from the provided list" |
|
|
f"\n- Specific visual features you used to determine your answer" |
|
|
f"\n\nThen provide your final answer in <rotation_axis></rotation_axis> and <rotation_angle></rotation_angle> tags respectively (use only x, y, or z for axis and only a number from the list for angle)." |
|
|
f"\ni.e., <thinking> your reasoning process here </thinking><rotation_axis> your predicted axis here </rotation_axis><rotation_angle> your predicted degrees here </rotation_angle>" |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
task_description_templates = [ |
|
|
"Identify the object's axis of rotation and the corresponding angle.", |
|
|
"You need to figure out around which axis the object turned, and by how much.", |
|
|
"Ascertain the rotational axis and the magnitude of the angle applied to the object.", |
|
|
"Find out both the specific axis used for the object's rotation and the degree of that rotation.", |
|
|
"The objective is to specify the rotation parameters for the object: its axis and angle." |
|
|
] |
|
|
task_description = random.choice(task_description_templates) |
|
|
|
|
|
if generation_mode == "combined": |
|
|
test_img_num = len(examples) + 1 if examples else 1 |
|
|
prompt = ( |
|
|
f"IMPORTANT: I'm showing you {len(examples) + 1 if examples else 1} image{'s' if examples else ''} of 3D objects. " |
|
|
f"{'Each' if examples else 'The'} image contains TWO separate 3D renderings side-by-side. " |
|
|
f"\n\nThe LEFT HALF shows a 3D object in its initial orientation. " |
|
|
f"The RIGHT HALF shows the SAME 3D object after being rotated." |
|
|
f"\n\n{task_description}" |
|
|
f"\n\n{coordinate_system}" |
|
|
f"\n\n{angle_constraints}" |
|
|
f"\n\n{example_text}" |
|
|
f"\n\n### YOUR TASK ###" |
|
|
f"\nNow, for Image {test_img_num}, determine the angle of rotation around the {axis}-axis." |
|
|
f"\n{'' if not examples else 'Based on the example provided, '}analyze Image {test_img_num} carefully." |
|
|
f"\n\n{thinking_instructions}" |
|
|
f"\n\n{response_format}" |
|
|
) |
|
|
elif generation_mode == "separate_shuffle": |
|
|
test_img_start = len(examples) * 2 + 1 if examples else 1 |
|
|
test_img_end = len(examples) * 2 + 2 if examples else 2 |
|
|
begin_description = ( |
|
|
f"I'm showing you {len(examples) * 2 + 2 if examples else 2} images of 3D objects. " |
|
|
f"{'For each example or test case, ' if examples else ''}two images represent the same object before and after rotation." |
|
|
) |
|
|
end_description = ( |
|
|
f"\n\n### YOUR TASK ###" |
|
|
f"\nNow, determine the angle of rotation around the {axis}-axis from Image {test_img_start} to Image {test_img_end}." |
|
|
f"\n{'' if not examples else 'Based on the example provided, '}analyze the rotation carefully." |
|
|
f"\n\n{thinking_instructions}" |
|
|
f"\n\n{response_format}" |
|
|
) |
|
|
|
|
|
prompt_list = [task_description, coordinate_system, angle_constraints, example_text] |
|
|
random.shuffle(prompt_list) |
|
|
prompt = begin_description + "\n\n".join(prompt_list) + end_description |
|
|
elif generation_mode == "separate": |
|
|
|
|
|
test_img_start = len(examples) * 2 + 1 if examples else 1 |
|
|
test_img_end = len(examples) * 2 + 2 if examples else 2 |
|
|
prompt = ( |
|
|
f"I'm showing you {len(examples) * 2 + 2 if examples else 2} images of 3D objects. " |
|
|
f"{'For each example or test case, ' if examples else ''}two images represent the same object before and after rotation." |
|
|
f"\n\n{task_description}" |
|
|
f"\n\n{coordinate_system}" |
|
|
f"\n\n{angle_constraints}" |
|
|
f"\n\n{example_text}" |
|
|
f"\n\n### YOUR TASK ###" |
|
|
f"\nNow, determine the angle of rotation around the {axis}-axis from Image {test_img_start} to Image {test_img_end}." |
|
|
f"\n{'' if not examples else 'Based on the example provided, '}analyze the rotation carefully." |
|
|
f"\n\n{thinking_instructions}" |
|
|
f"\n\n{response_format}" |
|
|
) |
|
|
else: |
|
|
raise ValueError(f"Invalid generation mode: {generation_mode}") |
|
|
return prompt |
|
|
|
|
|
def create_metadata_jsonl_separate(input_dir, output_file, example_dir=None, possible_angles=[45, 315], difficulty="easy", max_examples=2): |
|
|
"""Create metadata JSONL file for all images in input_dir (combined mode)""" |
|
|
|
|
|
png_files = glob.glob(os.path.join(input_dir, "*.png")) |
|
|
|
|
|
|
|
|
png_files = sorted(png_files) |
|
|
|
|
|
if not png_files: |
|
|
print(f"No PNG files found in {input_dir}") |
|
|
return |
|
|
|
|
|
print(f"Found {len(png_files)} PNG files in {input_dir}") |
|
|
|
|
|
|
|
|
organized_examples = None |
|
|
if example_dir: |
|
|
examples = load_examples(example_dir, "combined") |
|
|
organized_examples = organize_examples(examples, "combined") |
|
|
|
|
|
|
|
|
output_dir = os.path.dirname(output_file) |
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
entries = [] |
|
|
|
|
|
for png_file in tqdm(png_files, desc="Creating metadata for combined mode"): |
|
|
|
|
|
axis, angle = parse_ground_truth(os.path.basename(png_file)) |
|
|
|
|
|
if axis is None or angle is None: |
|
|
print(f"Skipping {png_file} - could not parse ground truth") |
|
|
continue |
|
|
|
|
|
|
|
|
rel_path = os.path.relpath(png_file, os.path.dirname(output_file)) |
|
|
|
|
|
|
|
|
image_base_id = os.path.splitext(os.path.basename(png_file))[0] |
|
|
|
|
|
|
|
|
examples = None |
|
|
if organized_examples: |
|
|
examples = select_examples(organized_examples, axis, possible_angles, max_examples) |
|
|
|
|
|
|
|
|
prompt = construct_prompt_with_examples(axis, possible_angles, examples, difficulty, generation_mode="combined") |
|
|
|
|
|
|
|
|
if difficulty == "easy": |
|
|
|
|
|
assistant_content = f"{angle}" |
|
|
else: |
|
|
|
|
|
assistant_content = f"<thinking>Detailed reasoning about rotation axis and angle...</thinking><rotation_axis>{axis}</rotation_axis><rotation_angle>{angle}</rotation_angle>" |
|
|
|
|
|
|
|
|
conversations = [] |
|
|
|
|
|
|
|
|
human_value = "" |
|
|
|
|
|
|
|
|
if examples: |
|
|
for example_path, _ in examples: |
|
|
example_rel_path = os.path.relpath(example_path, os.path.dirname(output_file)) |
|
|
human_value += f"<image>{example_rel_path}</image>\n" |
|
|
|
|
|
|
|
|
human_value += f"<image>{rel_path}</image>\n{prompt}" |
|
|
|
|
|
conversations.append({ |
|
|
"from": "human", |
|
|
"value": human_value |
|
|
}) |
|
|
|
|
|
|
|
|
conversations.append({ |
|
|
"from": "gpt", |
|
|
"value": assistant_content |
|
|
}) |
|
|
|
|
|
|
|
|
entry = { |
|
|
"id": image_base_id, |
|
|
"image": rel_path, |
|
|
"conversations": conversations |
|
|
} |
|
|
|
|
|
entries.append(entry) |
|
|
|
|
|
|
|
|
with open(output_file, 'w') as f: |
|
|
for entry in entries: |
|
|
f.write(json.dumps(entry) + '\n') |
|
|
|
|
|
print(f"\nSummary for combined mode:") |
|
|
print(f" Found {len(png_files)} PNG files") |
|
|
print(f" Created metadata for {len(entries)} entries") |
|
|
print(f" Output file: {output_file}") |
|
|
|
|
|
def create_metadata_jsonl_separate(input_dir, output_file, example_dir=None, possible_angles=[45, 315], difficulty="easy", max_examples=2, generation_mode="separate"): |
|
|
"""Create metadata JSONL file for folders in input_dir (separate mode)""" |
|
|
|
|
|
folders = [f for f in glob.glob(os.path.join(input_dir, "*")) |
|
|
if os.path.isdir(f) and os.path.basename(f) != "examples"] |
|
|
|
|
|
|
|
|
folders = sorted(folders) |
|
|
|
|
|
if not folders: |
|
|
print(f"No folders found in {input_dir}") |
|
|
return |
|
|
|
|
|
print(f"Found {len(folders)} folders in {input_dir}") |
|
|
|
|
|
|
|
|
organized_examples = None |
|
|
if example_dir: |
|
|
examples = load_examples(example_dir, "separate") |
|
|
organized_examples = organize_examples(examples, "separate") |
|
|
|
|
|
|
|
|
output_dir = os.path.dirname(output_file) |
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
entries = [] |
|
|
valid_folders = 0 |
|
|
|
|
|
for folder in tqdm(folders, desc="Creating metadata for separate mode"): |
|
|
folder_name = os.path.basename(folder) |
|
|
|
|
|
|
|
|
axis, angle = parse_ground_truth(folder_name) |
|
|
|
|
|
if axis is None or angle is None: |
|
|
print(f"Skipping {folder} - could not parse ground truth") |
|
|
continue |
|
|
|
|
|
|
|
|
ini_path = os.path.join(folder, f"{folder_name}_ini.png") |
|
|
rot_path = os.path.join(folder, f"{folder_name}_rot.png") |
|
|
|
|
|
if not os.path.exists(ini_path): |
|
|
print(f"Skipping {folder} - missing initial view image") |
|
|
continue |
|
|
|
|
|
if not os.path.exists(rot_path): |
|
|
print(f"Skipping {folder} - missing rotated view image") |
|
|
continue |
|
|
|
|
|
|
|
|
rel_ini_path = os.path.relpath(ini_path, os.path.dirname(output_file)) |
|
|
rel_rot_path = os.path.relpath(rot_path, os.path.dirname(output_file)) |
|
|
|
|
|
|
|
|
examples = None |
|
|
if organized_examples: |
|
|
examples = select_examples(organized_examples, axis, possible_angles, max_examples) |
|
|
|
|
|
|
|
|
prompt = construct_prompt_with_examples(axis, possible_angles, examples, difficulty, generation_mode=generation_mode) |
|
|
|
|
|
|
|
|
if difficulty == "easy": |
|
|
|
|
|
assistant_content = f"{angle}" |
|
|
else: |
|
|
|
|
|
assistant_content = f"<thinking>Detailed reasoning about rotation axis and angle...</thinking><rotation_axis>{axis}</rotation_axis><rotation_angle>{angle}</rotation_angle>" |
|
|
|
|
|
|
|
|
conversations = [] |
|
|
|
|
|
|
|
|
all_image_paths = [] |
|
|
|
|
|
|
|
|
if examples: |
|
|
for example_folder, _ in examples: |
|
|
example_folder_name = os.path.basename(example_folder) |
|
|
example_ini_path = os.path.join(example_folder, f"{example_folder_name}_ini.png") |
|
|
example_rot_path = os.path.join(example_folder, f"{example_folder_name}_rot.png") |
|
|
|
|
|
example_rel_ini_path = os.path.relpath(example_ini_path, os.path.dirname(output_file)) |
|
|
example_rel_rot_path = os.path.relpath(example_rot_path, os.path.dirname(output_file)) |
|
|
|
|
|
all_image_paths.append(example_rel_ini_path) |
|
|
all_image_paths.append(example_rel_rot_path) |
|
|
|
|
|
|
|
|
all_image_paths.append(rel_ini_path) |
|
|
all_image_paths.append(rel_rot_path) |
|
|
|
|
|
|
|
|
|
|
|
image_tags = "<image>\n" * len(all_image_paths) |
|
|
human_value = image_tags + prompt |
|
|
|
|
|
conversations.append({ |
|
|
"from": "human", |
|
|
"value": human_value |
|
|
}) |
|
|
|
|
|
|
|
|
conversations.append({ |
|
|
"from": "gpt", |
|
|
"value": assistant_content |
|
|
}) |
|
|
|
|
|
|
|
|
entry = { |
|
|
"id": folder_name, |
|
|
"image": all_image_paths, |
|
|
"conversations": conversations |
|
|
} |
|
|
|
|
|
entries.append(entry) |
|
|
valid_folders += 1 |
|
|
|
|
|
|
|
|
with open(output_file, 'w') as f: |
|
|
for entry in entries: |
|
|
f.write(json.dumps(entry) + '\n') |
|
|
|
|
|
print(f"\nSummary for separate mode:") |
|
|
print(f" Found {len(folders)} folders") |
|
|
print(f" Created metadata for {valid_folders} valid folders") |
|
|
print(f" Output file: {output_file}") |
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser(description="Create metadata JSONL for rotation dataset") |
|
|
parser.add_argument('--input-dir', type=str, required=True, |
|
|
help="Directory containing rotation dataset images or folders") |
|
|
parser.add_argument('--output-file', type=str, default="metadata.jsonl", |
|
|
help="Output JSONL file path") |
|
|
parser.add_argument('--example-dir', type=str, default=None, |
|
|
help="Directory containing example images for in-context learning") |
|
|
parser.add_argument('--possible-angles', type=int, nargs='+', default=[45, 315], |
|
|
help="List of possible rotation angles in degrees (e.g., 45 315)") |
|
|
parser.add_argument('--difficulty', type=str, choices=["easy", "hard"], default="easy", |
|
|
help="Difficulty mode: easy (axis provided) or hard (axis not provided)") |
|
|
parser.add_argument('--generation-mode', type=str, choices=["combined", "separate", "separate_shuffle"], default="combined", |
|
|
help="Mode for dataset generation (combined = one image with both views, separate = folder with two images, separate_shuffle = separate with shuffled prompt sections)") |
|
|
parser.add_argument('--random-seed', type=int, default=None, |
|
|
help="Random seed for example selection (None for true randomness)") |
|
|
parser.add_argument('--max-examples', type=int, default=1, |
|
|
help="Maximum number of examples to include for each test case (default: 1)") |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
if args.random_seed is not None: |
|
|
print(f"Using fixed random seed: {args.random_seed}") |
|
|
random.seed(args.random_seed) |
|
|
else: |
|
|
print("Using true randomness (different examples each run)") |
|
|
|
|
|
print(f"Creating metadata JSONL for rotation dataset:") |
|
|
print(f"Input directory: {args.input_dir}") |
|
|
print(f"Output file: {args.output_file}") |
|
|
|
|
|
if args.example_dir: |
|
|
print(f"Example directory: {args.example_dir}") |
|
|
|
|
|
print(f"Possible angles: {args.possible_angles}") |
|
|
print(f"Difficulty mode: {args.difficulty}") |
|
|
print(f"Generation mode: {args.generation_mode}") |
|
|
|
|
|
|
|
|
if args.example_dir is None and os.path.exists(os.path.join(args.input_dir, "examples")): |
|
|
args.example_dir = os.path.join(args.input_dir, "examples") |
|
|
print(f"Using examples directory: {args.example_dir}") |
|
|
|
|
|
if args.generation_mode == "combined": |
|
|
create_metadata_jsonl_combined( |
|
|
input_dir=args.input_dir, |
|
|
output_file=args.output_file, |
|
|
example_dir=args.example_dir, |
|
|
possible_angles=args.possible_angles, |
|
|
difficulty=args.difficulty, |
|
|
max_examples=args.max_examples |
|
|
) |
|
|
else: |
|
|
create_metadata_jsonl_separate( |
|
|
input_dir=args.input_dir, |
|
|
output_file=args.output_file, |
|
|
example_dir=args.example_dir, |
|
|
possible_angles=args.possible_angles, |
|
|
difficulty=args.difficulty, |
|
|
max_examples=args.max_examples, |
|
|
generation_mode=args.generation_mode |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |