Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 47 new columns ({'feat_PrimalInitialGap', 'feat_Gap', 'feat_preinteger', 'feat_#MCP', 'feat_GlbRed', 'feat_RHS_dynamic', 'feat_pre_columns', 'feat_obj_dynamic', 'feat_LessThan', 'feat_pre_row', 'feat_GreaterThan', 'feat_DualInitialGap', 'feat_GlbFix', 'feat_PrimalDualGap', 'feat_has_varub', 'File Name', 'feat_Nodes', 'Log Name', 'feat_Columns', 'feat_IKN', 'feat_Nonzeros', 'feat_LPit/n', 'feat_#Cuts', 'feat_#Sepa', 'feat_PAC', 'feat_obj_density', 'feat_IntInf', 'feat_#Conf', 'feat_M01', 'feat_CON', 'feat_Equality', 'feat_GapClosed', 'feat_Active', 'feat_has_varlb', 'feat_COV', 'feat_CAR', 'feat_per_i', 'feat_per_b', 'feat_KNA', 'feat_Rows', 'feat_Coe_dynamic', 'feat_Time', 'feat_BIN', 'feat_MI', 'feat_PAR', 'feat_EQK', 'feat_Symmetries'}) and 1 missing columns ({'NAME COPTPROB'}).
This happened while the csv dataset builder was generating data using
hf://datasets/SEVANTORY/BenLOC/table_data/feat/feat_indset.csv (at revision c464d4d1f790101c4306163b2d7430cbd4ac1e1f)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
writer.write_table(table)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
pa_table = table_cast(pa_table, self._schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
return cast_table_to_schema(table, schema)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
Log Name: string
File Name: string
feat_Nodes: double
feat_Active: double
feat_LPit/n: double
feat_IntInf: double
feat_GlbFix: double
feat_GlbRed: double
feat_#Cuts: double
feat_#MCP: double
feat_#Sepa: double
feat_#Conf: double
feat_Gap: double
feat_Time: double
feat_obj_density: double
feat_pre_row: double
feat_pre_columns: double
feat_preinteger: double
feat_obj_dynamic: double
feat_RHS_dynamic: double
feat_Coe_dynamic: double
feat_DualInitialGap: double
feat_PrimalDualGap: double
feat_PrimalInitialGap: double
feat_GapClosed: double
feat_Rows: double
feat_Columns: double
feat_Nonzeros: double
feat_per_i: double
feat_per_b: double
feat_has_varlb: double
feat_has_varub: double
feat_Equality: double
feat_GreaterThan: double
feat_LessThan: double
feat_PAR: double
feat_PAC: double
feat_COV: double
feat_CAR: double
feat_EQK: double
feat_BIN: double
feat_KNA: double
feat_IKN: double
feat_M01: double
feat_MI: double
feat_CON: double
feat_Symmetries: int64
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 6089
to
{'NAME COPTPROB': Value(dtype='string', id=None)}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1433, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1050, in convert_to_parquet
builder.download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 925, in download_and_prepare
self._download_and_prepare(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1001, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
for job_id, done, content in self._prepare_split_single(
File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 47 new columns ({'feat_PrimalInitialGap', 'feat_Gap', 'feat_preinteger', 'feat_#MCP', 'feat_GlbRed', 'feat_RHS_dynamic', 'feat_pre_columns', 'feat_obj_dynamic', 'feat_LessThan', 'feat_pre_row', 'feat_GreaterThan', 'feat_DualInitialGap', 'feat_GlbFix', 'feat_PrimalDualGap', 'feat_has_varub', 'File Name', 'feat_Nodes', 'Log Name', 'feat_Columns', 'feat_IKN', 'feat_Nonzeros', 'feat_LPit/n', 'feat_#Cuts', 'feat_#Sepa', 'feat_PAC', 'feat_obj_density', 'feat_IntInf', 'feat_#Conf', 'feat_M01', 'feat_CON', 'feat_Equality', 'feat_GapClosed', 'feat_Active', 'feat_has_varlb', 'feat_COV', 'feat_CAR', 'feat_per_i', 'feat_per_b', 'feat_KNA', 'feat_Rows', 'feat_Coe_dynamic', 'feat_Time', 'feat_BIN', 'feat_MI', 'feat_PAR', 'feat_EQK', 'feat_Symmetries'}) and 1 missing columns ({'NAME COPTPROB'}).
This happened while the csv dataset builder was generating data using
hf://datasets/SEVANTORY/BenLOC/table_data/feat/feat_indset.csv (at revision c464d4d1f790101c4306163b2d7430cbd4ac1e1f)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
NAME COPTPROB
string |
|---|
OBJSENSE
|
MIN
|
ROWS
|
N __OBJ___
|
L C1
|
L C3
|
L C4
|
L C5
|
L C9
|
L C11
|
L C12
|
L C13
|
L C14
|
L C15
|
L C16
|
L C17
|
L C18
|
L C19
|
L C20
|
L C21
|
L C22
|
L C24
|
L C26
|
L C27
|
L C28
|
L C30
|
L C31
|
L C33
|
L C34
|
L C36
|
L C39
|
L C41
|
L C44
|
L C46
|
L C47
|
L C48
|
L C49
|
L C50
|
L C52
|
L C54
|
L C55
|
L C56
|
L C57
|
L C59
|
L C60
|
L C62
|
L C63
|
L C64
|
L C68
|
L C72
|
L C75
|
L C77
|
L C78
|
L C79
|
L C81
|
L C82
|
L C83
|
L C84
|
L C86
|
L C87
|
L C89
|
L C90
|
L C93
|
L C94
|
L C96
|
L C97
|
L C99
|
L C102
|
L C103
|
L C104
|
L C105
|
L C106
|
L C108
|
L C109
|
L C111
|
L C112
|
L C114
|
L C115
|
L C118
|
L C119
|
L C120
|
L C122
|
L C123
|
L C124
|
L C125
|
L C126
|
L C127
|
L C129
|
L C130
|
L C131
|
L C132
|
L C134
|
L C135
|
L C136
|
L C138
|
L C140
|
L C141
|
L C142
|
L C143
|
L C145
|
Datasets of ML4MOC
Presolved Data is stored in .\instance. The folder structure after the datasets are set up looks as follows
instances/
MIPLIB/ -> 1065 instances
set_cover/ -> 3994 instances
independent_set/ -> 1604 instances
nn_verification/ -> 3104 instances
load_balancing/ -> 2286 instances
Dataset Description
MIPLIB
Heterogeneous dataset from MIPLIB 2017, a well-established benchmark for evaluating MILP solvers. The dataset includes a diverse set of particularly challenging mixed-integer programming (MIP) instances, each known for its computational difficulty.
Set Covering
This dataset consists of instances of the classic Set Covering Problem, which can be found here. Each instance requires finding the minimum number of sets that cover all elements in a universe. The problem is formulated as a MIP problem.
Maximum Independent Set
This dataset addresses the Maximum Independent Set Problem, which can be found here. Each instance is modeled as a MIP, with the objective of maximizing the size of the independent set.
NN Verification
This “Neural Network Verification” dataset is to verify whether a neural network is robust to input perturbations can be posed as a MIP. The MIP formulation is described in the paper On the Effectiveness of Interval Bound Propagation for Training Verifiably Robust Models (Gowal et al., 2018). Each input on which to verify the network gives rise to a different MIP.
Load Balancing
This dataset is from NeurIPS 2021 Competition. This problem deals with apportioning workloads. The apportionment is required to be robust to any worker’s failure. Each instance problem is modeled as a MILP, using a bin-packing with an apportionment formulation.
Dataset Spliting
Each dataset was split into a training set $D_{\text{train}}$ and a testing set $D_{\text{test}}$, following an approximate 80-20 split. Moreover, we split the dataset by time and "optimality", which means according to the proportion of optimality for each parameter is similar in training and testing sets. This ensures a balanced representation of both temporal variations and the highest levels of parameter efficiency in our data partitions.
- Downloads last month
- 125