Dataset Viewer
Auto-converted to Parquet
id
stringlengths
3
38
prompt
stringlengths
4.64k
7.76k
ref_time
float64
0
5.24
min_gpt_new_gelu
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name min_gpt_new_gelu ```python import torch import torch.nn as nn import torch.nn.functional as F import math # From https://github.com/karpathy/minGPT/blob/master/mingpt/model.py class Model(nn.Module): """ Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415 """ def __init__(self): super(Model, self).__init__() def forward(self, x): return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.012471
hardsigmoid
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name hardsigmoid ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a HardSigmoid activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies HardSigmoid activation to the input tensor. Args: x (torch.Tensor): Input tensor of any shape. Returns: torch.Tensor: Output tensor with HardSigmoid applied, same shape as input. """ return torch.nn.functional.hardsigmoid(x) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.001713
sigmoid
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name sigmoid ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Sigmoid activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Sigmoid activation to the input tensor. Args: x (torch.Tensor): Input tensor of any shape. Returns: torch.Tensor: Output tensor with Sigmoid applied, same shape as input. """ return torch.sigmoid(x) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000255
leaky_relu
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name leaky_relu ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a LeakyReLU activation. """ def __init__(self, negative_slope: float = 0.01): """ Initializes the LeakyReLU module. Args: negative_slope (float, optional): The negative slope of the activation function. Defaults to 0.01. """ super(Model, self).__init__() self.negative_slope = negative_slope def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies LeakyReLU activation to the input tensor. Args: x (torch.Tensor): Input tensor of any shape. Returns: torch.Tensor: Output tensor with LeakyReLU applied, same shape as input. """ return torch.nn.functional.leaky_relu(x, negative_slope=self.negative_slope) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.00007
tanh
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name tanh ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Tanh activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Tanh activation to the input tensor. Args: x (torch.Tensor): Input tensor of any shape. Returns: torch.Tensor: Output tensor with Tanh applied, same shape as input. """ return torch.tanh(x) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000225
selu
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name selu ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a SELU activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies SELU activation to the input tensor. Args: x (torch.Tensor): Input tensor of any shape. Returns: torch.Tensor: Output tensor with SELU applied, same shape as input. """ return torch.selu(x) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.00038
hardtanh
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name hardtanh ```python import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ Simple model that performs a HardTanh activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies HardTanh activation to the input tensor. Args: x (torch.Tensor): Input tensor of any shape. Returns: torch.Tensor: Output tensor with HardTanh applied, same shape as input. """ return F.hardtanh(x, min_val=-1., max_val=1.) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000232
softsign
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name softsign ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softsign activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softsign activation to the input tensor. Args: x (torch.Tensor): Input tensor of any shape. Returns: torch.Tensor: Output tensor with Softsign applied, same shape as input. """ return x / (1 + torch.abs(x)) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000212
elu
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name elu ```python import torch import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): """ Simple model that performs an ELU activation. """ def __init__(self, alpha: float = 1.0): """ Initializes the ELU model. Args: alpha (float, optional): The alpha parameter for the ELU function. Defaults to 1.0. """ super(Model, self).__init__() self.alpha = alpha def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies ELU activation to the input tensor. Args: x (torch.Tensor): Input tensor of any shape. Returns: torch.Tensor: Output tensor with ELU applied, same shape as input. """ return F.elu(x, alpha=self.alpha) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000309
relu
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name relu ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a ReLU activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies ReLU activation to the input tensor. Args: x (torch.Tensor): Input tensor of any shape. Returns: torch.Tensor: Output tensor with ReLU applied, same shape as input. """ return torch.relu(x) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000157
swish
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name swish ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Swish activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Swish activation to the input tensor. Args: x (torch.Tensor): Input tensor of any shape. Returns: torch.Tensor: Output tensor with Swish applied, same shape as input. """ return x * torch.sigmoid(x) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000284
softmax
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name softmax ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000202
log_softmax
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name log_softmax ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a LogSoftmax activation. """ def __init__(self, dim: int = 1): super(Model, self).__init__() self.dim = dim def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies LogSoftmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, dim). Returns: torch.Tensor: Output tensor with LogSoftmax applied, same shape as input. """ return torch.log_softmax(x, dim=self.dim) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000217
index_select
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name index_select ```python import torch import torch.nn as nn class Model(nn.Module): def forward(self, x, indices): return torch.index_select(x, dim=1, index=indices) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.001389
scatter
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name scatter ```python import torch import torch.nn as nn class Model(nn.Module): def forward(self, x, idx, updates): return x.scatter(dim=1, index=idx, src=updates) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000196
index_copy
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name index_copy ```python import torch import torch.nn as nn class Model(nn.Module): def forward(self, x, indices, src): return x.index_copy(0, indices, src) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.009264
take_along_dim
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name take_along_dim ```python import torch import torch.nn as nn class Model(nn.Module): def forward(self, x, idx): return torch.take_along_dim(x, idx, dim=1) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.001166
argmax_over_a_dimension
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name argmax_over_a_dimension ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs Argmax over a specified dimension. """ def __init__(self, dim: int): """ Initializes the model with the dimension to perform argmax. Args: dim (int): The dimension to perform argmax over. """ super(Model, self).__init__() self.dim = dim def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies argmax over the specified dimension to the input tensor. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Output tensor with argmax applied, with the specified dimension removed. """ return torch.argmax(x, dim=self.dim) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.00056
argmin_over_a_dimension
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name argmin_over_a_dimension ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that finds the index of the minimum value along a specified dimension. """ def __init__(self, dim: int): """ Initializes the model with the dimension to perform argmin on. Args: dim (int): Dimension along which to find the minimum value. """ super(Model, self).__init__() self.dim = dim def forward(self, x: torch.Tensor) -> torch.Tensor: """ Finds the index of the minimum value along the specified dimension. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Tensor containing the indices of the minimum values along the specified dimension. """ return torch.argmin(x, dim=self.dim) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000525
masked_fill
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name masked_fill ```python import torch import torch.nn as nn class Model(nn.Module): def forward(self, x, mask): return x.masked_fill(mask, float('-inf')) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.021462
embedding
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name embedding ```python import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super().__init__() self.embedding = nn.Embedding(100000, 768) def forward(self, indices): return self.embedding(indices) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.055533
index_add
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name index_add ```python import torch import torch.nn as nn class Model(nn.Module): def forward(self, x, indices, values): return x.index_add(dim=0, index=indices, source=values) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.031631
scatter_add
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name scatter_add ```python import torch import torch.nn as nn class Model(nn.Module): def forward(self, x, idx, updates): return x.scatter_add(dim=1, index=idx, src=updates) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.001787
inplace_update
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name inplace_update ```python import torch import torch.nn as nn class Model(nn.Module): def forward(self, x, idx, value): x[idx] = value return x ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000243
triplet_margin_loss
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name triplet_margin_loss ```python import torch import torch.nn as nn class Model(nn.Module): """ A model that computes Triplet Margin Loss for metric learning tasks. Parameters: margin (float): The margin between the positive and negative samples. """ def __init__(self, margin=1.0): super(Model, self).__init__() self.loss_fn = torch.nn.TripletMarginLoss(margin=margin) def forward(self, anchor, positive, negative): return self.loss_fn(anchor, positive, negative) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.002249
huber_loss
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name huber_loss ```python import torch import torch.nn as nn class Model(nn.Module): """ A model that computes Smooth L1 (Huber) Loss for regression tasks. Parameters: None """ def __init__(self): super(Model, self).__init__() def forward(self, predictions, targets): return torch.nn.functional.smooth_l1_loss(predictions, targets) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.00026
kl_div_loss
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name kl_div_loss ```python import torch import torch.nn as nn class Model(nn.Module): """ A model that computes Kullback-Leibler Divergence for comparing two distributions. Parameters: None """ def __init__(self): super(Model, self).__init__() def forward(self, predictions, targets): return torch.nn.functional.kl_div(torch.log(predictions), targets, reduction='batchmean') ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.001168
cosine_similarity_loss
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name cosine_similarity_loss ```python import torch import torch.nn as nn class Model(nn.Module): """ A model that computes Cosine Similarity Loss for comparing vectors. Parameters: None """ def __init__(self): super(Model, self).__init__() def forward(self, predictions, targets): cosine_sim = torch.nn.functional.cosine_similarity(predictions, targets, dim=1) return torch.mean(1 - cosine_sim) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000554
mse_loss
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name mse_loss ```python import torch import torch.nn as nn class Model(nn.Module): """ A model that computes the Mean Squared Error loss for regression tasks. Parameters: None """ def __init__(self): super(Model, self).__init__() def forward(self, predictions, targets): return torch.mean((predictions - targets) ** 2) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000209
cross_entropy_loss
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name softmax**: ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.softmax(x, dim=1) batch_size = 16 dim = 16384 def get_inputs(): x = torch.randn(batch_size, dim) return [x] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name softmax**: The transformtion includes three parts: `softmax_kernel` function, `softmax` afunction, and `ModelNew` class. ```python import torch import torch.nn as nn import torch_npu import triton import triton.language as tl @triton.jit def softmax_kernel(output_ptr, input_ptr, input_row_stride, output_row_stride, n_rows, n_cols, BLOCK_SIZE: tl.constexpr): # Starting row for this program row_start = tl.program_id(0) row_step = tl.num_programs(0) for row_idx in tl.range(row_start, n_rows, row_step): # Row stride indicates how much to advance the pointer per row row_start_ptr = input_ptr + row_idx * input_row_stride # Block size is the next power of 2 greater than n_cols # to fit a single row within a block col_offsets = tl.arange(0, BLOCK_SIZE) input_ptrs = row_start_ptr + col_offsets # Load the row into SRAM, use mask since BLOCK_SIZE may exceed n_cols mask = col_offsets < n_cols row = tl.load(input_ptrs, mask=mask, other=-float('inf')) # Subtract max value for numerical stability row_minus_max = row - tl.max(row, axis=0) # Note: exponential in Triton is fast but approximate numerator = tl.exp(row_minus_max) denominator = tl.sum(numerator, axis=0) softmax_output = numerator / denominator # Write output back to DRAM output_row_start_ptr = output_ptr + row_idx * output_row_stride output_ptrs = output_row_start_ptr + col_offsets tl.store(output_ptrs, softmax_output, mask=mask) kernels = {} @torch.inference_mode() def softmax(x): n_rows, n_cols = x.shape # Block size for each iteration is the smallest power of 2 greater than the number of columns in x BLOCK_SIZE = triton.next_power_of_2(n_cols) # Allocate output tensor y = torch.empty_like(x) # Precompile kernel to get register usage and calculate thread occupancy kernel, num_programs = kernels.get(BLOCK_SIZE, (None, 0)) if kernel is None: num_programs = 32 kernel = softmax_kernel kernels[BLOCK_SIZE] = (kernel, num_programs) num_programs = min(num_programs, n_rows) kernel[(num_programs, 1, 1)]( y, x, x.stride(0), y.stride(0), n_rows, n_cols, BLOCK_SIZE ) return y class ModelNew(nn.Module): """ Simple model that performs a Softmax activation. """ def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor) -> torch.Tensor: """ Applies Softmax activation to the input tensor. Args: x (torch.Tensor): Input tensor of shape (batch_size, num_features). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return softmax(x) ``` Now, you are given the following PyTorch architecture with name cross_entropy_loss ```python import torch import torch.nn as nn class Model(nn.Module): """ A model that computes Cross Entropy Loss for multi-class classification tasks. Parameters: None """ def __init__(self): super(Model, self).__init__() def forward(self, predictions, targets): return torch.nn.functional.cross_entropy(predictions, targets) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000187
cumsum_exclusive
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name matmul**: ```python import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Applies Matrix Multiplication to the input tensor. Args: x (torch.Tensor): Input tensor of shape (M, K). x (torch.Tensor): Input tensor of shape (K, N). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.matmul(x, y) M, K, N = 64, 32, 128 def get_inputs(): x = torch.randn(M, K) y = torch.randn(K, N) return [x, y] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name matmul**: The transformtion includes three parts: `matmul_kernel` function, `matmul` afunction, and `ModelNew` class. ```python import torch import torch_npu import torch.nn as nn import triton import triton.language as tl import time @triton.jit def matmul_kernel( a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr ): """Simplified matmul kernel without GROUP_SIZE_M optimization.""" # Each program computes one block in (M, N) grid pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_m = pid // num_pid_n pid_n = pid % num_pid_n # Compute offsets offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # Initialize accumulator accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) accumulator = tl.dot(a, b, accumulator) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk c = accumulator.to(tl.float32) # Write back with mask offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) def matmul(x, y): M, K = x.shape K, N = y.shape output = torch.empty((M, N), device=x.device, dtype=torch.float32) grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( x, y, output, # M, N, K, # x.stride(0), x.stride(1), # y.stride(0), y.stride(1), # output.stride(0), output.stride(1), # BLOCK_SIZE_M=16, BLOCK_SIZE_N=16, BLOCK_SIZE_K=8 ) return output class ModelNew(nn.Module): def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return matmul(x, y) ``` Now, you are given the following PyTorch architecture with name cumsum_exclusive ```python import torch import torch.nn as nn class Model(nn.Module): """ A model that performs an exclusive cumulative sum (does not include the current element). Parameters: dim (int): The dimension along which to perform the exclusive cumulative sum. """ def __init__(self, dim): super(Model, self).__init__() self.dim = dim def forward(self, x): exclusive_cumsum = torch.cat((torch.zeros_like(x.select(self.dim, 0).unsqueeze(self.dim)), x), dim=self.dim)[:-1] return torch.cumsum(exclusive_cumsum, dim=self.dim) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000426
masked_cumsum
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name matmul**: ```python import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Applies Matrix Multiplication to the input tensor. Args: x (torch.Tensor): Input tensor of shape (M, K). x (torch.Tensor): Input tensor of shape (K, N). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.matmul(x, y) M, K, N = 64, 32, 128 def get_inputs(): x = torch.randn(M, K) y = torch.randn(K, N) return [x, y] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name matmul**: The transformtion includes three parts: `matmul_kernel` function, `matmul` afunction, and `ModelNew` class. ```python import torch import torch_npu import torch.nn as nn import triton import triton.language as tl import time @triton.jit def matmul_kernel( a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr ): """Simplified matmul kernel without GROUP_SIZE_M optimization.""" # Each program computes one block in (M, N) grid pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_m = pid // num_pid_n pid_n = pid % num_pid_n # Compute offsets offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # Initialize accumulator accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) accumulator = tl.dot(a, b, accumulator) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk c = accumulator.to(tl.float32) # Write back with mask offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) def matmul(x, y): M, K = x.shape K, N = y.shape output = torch.empty((M, N), device=x.device, dtype=torch.float32) grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( x, y, output, # M, N, K, # x.stride(0), x.stride(1), # y.stride(0), y.stride(1), # output.stride(0), output.stride(1), # BLOCK_SIZE_M=16, BLOCK_SIZE_N=16, BLOCK_SIZE_K=8 ) return output class ModelNew(nn.Module): def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return matmul(x, y) ``` Now, you are given the following PyTorch architecture with name masked_cumsum ```python import torch import torch.nn as nn class Model(nn.Module): """ A model that performs a masked cumulative sum, only summing elements that satisfy a condition. Parameters: dim (int): The dimension along which to perform the masked cumulative sum. """ def __init__(self, dim): super(Model, self).__init__() self.dim = dim def forward(self, x, mask): """ Args: x (torch.Tensor): Input tensor of shape (batch_size, *input_shape). mask (torch.Tensor): Boolean mask of the same shape as x. Returns: torch.Tensor: Cumulative sum of elements where mask is True. """ return torch.cumsum(x * mask, dim=self.dim) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000278
matrix_scalar_multiplication
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name matmul**: ```python import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Applies Matrix Multiplication to the input tensor. Args: x (torch.Tensor): Input tensor of shape (M, K). x (torch.Tensor): Input tensor of shape (K, N). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.matmul(x, y) M, K, N = 64, 32, 128 def get_inputs(): x = torch.randn(M, K) y = torch.randn(K, N) return [x, y] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name matmul**: The transformtion includes three parts: `matmul_kernel` function, `matmul` afunction, and `ModelNew` class. ```python import torch import torch_npu import torch.nn as nn import triton import triton.language as tl import time @triton.jit def matmul_kernel( a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr ): """Simplified matmul kernel without GROUP_SIZE_M optimization.""" # Each program computes one block in (M, N) grid pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_m = pid // num_pid_n pid_n = pid % num_pid_n # Compute offsets offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # Initialize accumulator accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) accumulator = tl.dot(a, b, accumulator) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk c = accumulator.to(tl.float32) # Write back with mask offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) def matmul(x, y): M, K = x.shape K, N = y.shape output = torch.empty((M, N), device=x.device, dtype=torch.float32) grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( x, y, output, # M, N, K, # x.stride(0), x.stride(1), # y.stride(0), y.stride(1), # output.stride(0), output.stride(1), # BLOCK_SIZE_M=16, BLOCK_SIZE_N=16, BLOCK_SIZE_K=8 ) return output class ModelNew(nn.Module): def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return matmul(x, y) ``` Now, you are given the following PyTorch architecture with name matrix_scalar_multiplication ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a matrix-scalar multiplication (C = A * s) """ def __init__(self): super(Model, self).__init__() def forward(self, A: torch.Tensor, s: float) -> torch.Tensor: """ Performs matrix-scalar multiplication. Args: A: Input matrix of shape (M, N) s: Scalar value Returns: C: Resulting matrix of shape (M, N) """ return A * s ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.071325
cumprod
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name matmul**: ```python import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Applies Matrix Multiplication to the input tensor. Args: x (torch.Tensor): Input tensor of shape (M, K). x (torch.Tensor): Input tensor of shape (K, N). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.matmul(x, y) M, K, N = 64, 32, 128 def get_inputs(): x = torch.randn(M, K) y = torch.randn(K, N) return [x, y] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name matmul**: The transformtion includes three parts: `matmul_kernel` function, `matmul` afunction, and `ModelNew` class. ```python import torch import torch_npu import torch.nn as nn import triton import triton.language as tl import time @triton.jit def matmul_kernel( a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr ): """Simplified matmul kernel without GROUP_SIZE_M optimization.""" # Each program computes one block in (M, N) grid pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_m = pid // num_pid_n pid_n = pid % num_pid_n # Compute offsets offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # Initialize accumulator accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) accumulator = tl.dot(a, b, accumulator) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk c = accumulator.to(tl.float32) # Write back with mask offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) def matmul(x, y): M, K = x.shape K, N = y.shape output = torch.empty((M, N), device=x.device, dtype=torch.float32) grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( x, y, output, # M, N, K, # x.stride(0), x.stride(1), # y.stride(0), y.stride(1), # output.stride(0), output.stride(1), # BLOCK_SIZE_M=16, BLOCK_SIZE_N=16, BLOCK_SIZE_K=8 ) return output class ModelNew(nn.Module): def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return matmul(x, y) ``` Now, you are given the following PyTorch architecture with name cumprod ```python import torch import torch.nn as nn class Model(nn.Module): """ A model that performs a cumulative product operation along a specified dimension. Parameters: dim (int): The dimension along which to perform the cumulative product operation. """ def __init__(self, dim): """ Initialize the CumulativeProductModel. Args: dim (int): The dimension along which to perform the cumulative product. """ super(Model, self).__init__() self.dim = dim def forward(self, x): """ Forward pass, computing the cumulative product along the specified dimension. Args: x (torch.Tensor): Input tensor of shape (batch_size, *input_shape). Returns: torch.Tensor: Tensor of the same shape as `x` after applying cumulative product along `dim`. """ return torch.cumprod(x, dim=self.dim) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.007875
cumsum_reverse
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name matmul**: ```python import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Applies Matrix Multiplication to the input tensor. Args: x (torch.Tensor): Input tensor of shape (M, K). x (torch.Tensor): Input tensor of shape (K, N). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.matmul(x, y) M, K, N = 64, 32, 128 def get_inputs(): x = torch.randn(M, K) y = torch.randn(K, N) return [x, y] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name matmul**: The transformtion includes three parts: `matmul_kernel` function, `matmul` afunction, and `ModelNew` class. ```python import torch import torch_npu import torch.nn as nn import triton import triton.language as tl import time @triton.jit def matmul_kernel( a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr ): """Simplified matmul kernel without GROUP_SIZE_M optimization.""" # Each program computes one block in (M, N) grid pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_m = pid // num_pid_n pid_n = pid % num_pid_n # Compute offsets offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # Initialize accumulator accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) accumulator = tl.dot(a, b, accumulator) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk c = accumulator.to(tl.float32) # Write back with mask offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) def matmul(x, y): M, K = x.shape K, N = y.shape output = torch.empty((M, N), device=x.device, dtype=torch.float32) grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( x, y, output, # M, N, K, # x.stride(0), x.stride(1), # y.stride(0), y.stride(1), # output.stride(0), output.stride(1), # BLOCK_SIZE_M=16, BLOCK_SIZE_N=16, BLOCK_SIZE_K=8 ) return output class ModelNew(nn.Module): def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return matmul(x, y) ``` Now, you are given the following PyTorch architecture with name cumsum_reverse ```python import torch import torch.nn as nn class Model(nn.Module): """ A model that performs a reverse cumulative sum operation along a specified dimension. Parameters: dim (int): The dimension along which to perform the reverse cumulative sum. """ def __init__(self, dim): super(Model, self).__init__() self.dim = dim def forward(self, x): return torch.cumsum(x.flip(self.dim), dim=self.dim).flip(self.dim) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.000323
matmul_with_small_k_dimension
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name matmul**: ```python import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Applies Matrix Multiplication to the input tensor. Args: x (torch.Tensor): Input tensor of shape (M, K). x (torch.Tensor): Input tensor of shape (K, N). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.matmul(x, y) M, K, N = 64, 32, 128 def get_inputs(): x = torch.randn(M, K) y = torch.randn(K, N) return [x, y] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name matmul**: The transformtion includes three parts: `matmul_kernel` function, `matmul` afunction, and `ModelNew` class. ```python import torch import torch_npu import torch.nn as nn import triton import triton.language as tl import time @triton.jit def matmul_kernel( a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr ): """Simplified matmul kernel without GROUP_SIZE_M optimization.""" # Each program computes one block in (M, N) grid pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_m = pid // num_pid_n pid_n = pid % num_pid_n # Compute offsets offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # Initialize accumulator accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) accumulator = tl.dot(a, b, accumulator) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk c = accumulator.to(tl.float32) # Write back with mask offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) def matmul(x, y): M, K = x.shape K, N = y.shape output = torch.empty((M, N), device=x.device, dtype=torch.float32) grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( x, y, output, # M, N, K, # x.stride(0), x.stride(1), # y.stride(0), y.stride(1), # output.stride(0), output.stride(1), # BLOCK_SIZE_M=16, BLOCK_SIZE_N=16, BLOCK_SIZE_K=8 ) return output class ModelNew(nn.Module): def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return matmul(x, y) ``` Now, you are given the following PyTorch architecture with name matmul_with_small_k_dimension ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a single matrix multiplication (C = A * B) with a small K dimension """ def __init__(self): super(Model, self).__init__() def forward(self, A: torch.Tensor, B: torch.Tensor) -> torch.Tensor: """ Performs matrix multiplication. Args: A: Input tensor of shape (M, K). B: Input tensor of shape (K, N). Returns: Output tensor of shape (M, N). """ return torch.matmul(A, B) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.362994
matmul_with_transposed_both
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name matmul**: ```python import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Applies Matrix Multiplication to the input tensor. Args: x (torch.Tensor): Input tensor of shape (M, K). x (torch.Tensor): Input tensor of shape (K, N). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.matmul(x, y) M, K, N = 64, 32, 128 def get_inputs(): x = torch.randn(M, K) y = torch.randn(K, N) return [x, y] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name matmul**: The transformtion includes three parts: `matmul_kernel` function, `matmul` afunction, and `ModelNew` class. ```python import torch import torch_npu import torch.nn as nn import triton import triton.language as tl import time @triton.jit def matmul_kernel( a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr ): """Simplified matmul kernel without GROUP_SIZE_M optimization.""" # Each program computes one block in (M, N) grid pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_m = pid // num_pid_n pid_n = pid % num_pid_n # Compute offsets offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # Initialize accumulator accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) accumulator = tl.dot(a, b, accumulator) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk c = accumulator.to(tl.float32) # Write back with mask offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) def matmul(x, y): M, K = x.shape K, N = y.shape output = torch.empty((M, N), device=x.device, dtype=torch.float32) grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( x, y, output, # M, N, K, # x.stride(0), x.stride(1), # y.stride(0), y.stride(1), # output.stride(0), output.stride(1), # BLOCK_SIZE_M=16, BLOCK_SIZE_N=16, BLOCK_SIZE_K=8 ) return output class ModelNew(nn.Module): def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return matmul(x, y) ``` Now, you are given the following PyTorch architecture with name matmul_with_transposed_both ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs a single matrix multiplication (C = A * B) """ def __init__(self): super(Model, self).__init__() def forward(self, A: torch.Tensor, B: torch.Tensor) -> torch.Tensor: """ Performs matrix multiplication. Args: A: Input tensor of shape (M, K). B: Input tensor of shape (K, N). Returns: Output tensor of shape (M, N). """ return torch.matmul(A.T, B.T) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.11127
matrix_vector_multiplication
You are an expert in writing custom AscendC Triton Kernels to optimize PyTorch architectures by replacing specific operators for performance gains. Here is an example to illustrate the expected transformation using custom AscendC Triton kernels. **Original PyTorch Architecture with name matmul**: ```python import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super(Model, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: """ Applies Matrix Multiplication to the input tensor. Args: x (torch.Tensor): Input tensor of shape (M, K). x (torch.Tensor): Input tensor of shape (K, N). Returns: torch.Tensor: Output tensor with Softmax applied, same shape as input. """ return torch.matmul(x, y) M, K, N = 64, 32, 128 def get_inputs(): x = torch.randn(M, K) y = torch.randn(K, N) return [x, y] def get_init_inputs(): return [] # No special initialization inputs needed ``` **Transformed Triton Architecture with name matmul**: The transformtion includes three parts: `matmul_kernel` function, `matmul` afunction, and `ModelNew` class. ```python import torch import torch_npu import torch.nn as nn import triton import triton.language as tl import time @triton.jit def matmul_kernel( a_ptr, b_ptr, c_ptr, M, N, K, stride_am, stride_ak, stride_bk, stride_bn, stride_cm, stride_cn, BLOCK_SIZE_M: tl.constexpr, BLOCK_SIZE_N: tl.constexpr, BLOCK_SIZE_K: tl.constexpr ): """Simplified matmul kernel without GROUP_SIZE_M optimization.""" # Each program computes one block in (M, N) grid pid = tl.program_id(axis=0) num_pid_m = tl.cdiv(M, BLOCK_SIZE_M) num_pid_n = tl.cdiv(N, BLOCK_SIZE_N) pid_m = pid // num_pid_n pid_n = pid % num_pid_n # Compute offsets offs_am = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_bn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) offs_k = tl.arange(0, BLOCK_SIZE_K) a_ptrs = a_ptr + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak) b_ptrs = b_ptr + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn) # Initialize accumulator accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32) for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)): a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0) b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0) accumulator = tl.dot(a, b, accumulator) a_ptrs += BLOCK_SIZE_K * stride_ak b_ptrs += BLOCK_SIZE_K * stride_bk c = accumulator.to(tl.float32) # Write back with mask offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M) offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N) c_ptrs = c_ptr + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :] c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N) tl.store(c_ptrs, c, mask=c_mask) def matmul(x, y): M, K = x.shape K, N = y.shape output = torch.empty((M, N), device=x.device, dtype=torch.float32) grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']) * triton.cdiv(N, META['BLOCK_SIZE_N']), ) matmul_kernel[grid]( x, y, output, # M, N, K, # x.stride(0), x.stride(1), # y.stride(0), y.stride(1), # output.stride(0), output.stride(1), # BLOCK_SIZE_M=16, BLOCK_SIZE_N=16, BLOCK_SIZE_K=8 ) return output class ModelNew(nn.Module): def __init__(self): super(ModelNew, self).__init__() def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return matmul(x, y) ``` Now, you are given the following PyTorch architecture with name matrix_vector_multiplication ```python import torch import torch.nn as nn class Model(nn.Module): """ Simple model that performs matrix-vector multiplication (C = A * B). """ def __init__(self): super(Model, self).__init__() def forward(self, A: torch.Tensor, B: torch.Tensor) -> torch.Tensor: """ Performs matrix-vector multiplication. Args: A: Input matrix of shape (M, K). B: Input vector of shape (K, 1). Returns: Output vector of shape (M, 1). """ return torch.matmul(A, B) ``` Your task: Replace relevant PyTorch operators in the architecture named Model with custom AscendC Triton kernels. Generate an optimized version named ModelNew, including the two functions and ModelNew class listed above. Just output the code, no other text, and NO testing code! The output code must be enclosed within ``` delimiters.
0.002103
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
6