license: cc-by-nc-4.0
SentinelKilnDB - A Large-Scale Dataset and Benchmark for OBB Brick Kiln Detection in South Asia Using Satellite Imagery
NeurIPS 2025 Datasets & Benchmarks Track
Abstract
Air pollution was responsible for 2.6 million deaths across South Asia in 2021 alone, with brick manufacturing contributing significantly to this burden. In particular, the Indo-Gangetic Plain; a densely populated and highly polluted region spanning northern India, Pakistan, Bangladesh, and parts of Afghanistan sees brick kilns contributing 8–14% of ambient air pollution. Traditional monitoring approaches, such as field surveys and manual annotation using tools like Google Earth Pro, are time and labor-intensive. Prior ML-based efforts for automated detection have relied on costly high-resolution commercial imagery and non-public datasets, limiting reproducibility and scalability. In this work, we introduce SENTINELKILNDB, a publicly available, hand-validated benchmark of 62,671 brick kilns spanning three kiln types Fixed Chimney Bull’s Trench Kiln (FCBK), Circular FCBK (CFCBK), and Zigzag kilns—annotated with oriented bounding boxes (OBBs) across 2.8 million km2 using free and globally accessible Sentinel-2 imagery. We benchmark state-of-the-art oriented object detection models and evaluate generalization across in-region, out-of-region, and super-resolution settings. SENTINELKILNDB enables rigorous evaluation of geospatial generalization and robustness for low-resolution object detection, and provides a new testbed for ML models addressing real-world environmental and remote sensing challenges at a continental scale. Datasets and code are available in SentinelKiln Dataset and SentinelKiln Benchmark, under the Creative Commons Attribution–NonCommercial 4.0 International License.
Useful Links
Project Page - https://lnkd.in/dn2SKwWv
Official Paper - https://neurips.cc/virtual/2025/poster/121530
Github - https://github.com/rishabh-mondal/NeurIPS_2025
Sustainability Lab - https://sustainability-lab.github.io
For questions or collaborations, please contact:
Rishabh Mondal - [email protected]
Nipun Batra - [email protected]
Dataset Overview
This dataset contains Sentinel-2 satellite imagery focused on identifying and classifying brick kilns across the Indo-Gangetic Plain and neighboring South Asian countries, including Afghanistan, Pakistan, and Bangladesh.
- Imagery Source: Sentinel-2 (Surface Reflectance)
- Image Size: 128 × 128 pixels
- Spatial Resolution: 10 m/pixel
- Timeframe: November 2023 – February 2024
- Geographic Coverage: Indo-Gangetic Plain, Afghanistan, Pakistan, Bangladesh
- Overlap: 30-pixel overlap between patches
- File Naming Convention:
lat,lon.pngandlat,lon.txt
Classes
- CFCBK – Continuous Fixed Chimney Bull’s Trench Kiln
- FCBK – Fixed Chimney Bull’s Trench Kiln
- Zigzag – Zigzag Kiln
Annotation Formats
YOLO OBB:
class_name, x1, y1, x2, y2, x3, y3, x4, y4YOLO AA:
class_name, x_center, y_center, width, heightDOTA Format:
x1, y1, x2, y2, x3, y3, x4, y4, class_name, difficult
Dataset Splits
The dataset is split using a class-wise stratified approach for balanced representation.
| Split | Images (.png) | Label Files (.txt) | No. of BBoxes |
|---|---|---|---|
| Train | 71,856 | 47,214 | 63,787 |
| Val | 23,952 | 15,738 | 21,042 |
| Test | 18,492 | 10,278 | 12,819 |
| Total | 114,300 | 73,239 | 97,648 |
Each split contains separate folders for images and annotations:
dataset/
├── train/
│ ├── images/
│ └── labels/
├── val/
│ ├── images/
│ └── labels/
└── test/
├── images/
└── labels/
Extracting Images from Parquet Files
The dataset stores all images in Parquet format as raw bytes. To convert these bytes back into .png images, you can use the following Python code:
import pandas as pd
from PIL import Image
import io
import os
# Load Parquet
train_df = pd.read_parquet("train/train.parquet")
# Directory to save images
output_dir = "train/images"
os.makedirs(output_dir, exist_ok=True)
# Loop over all rows
for idx, row in train_df.iterrows():
imagename = row['image_name']
image_bytes = row['image']
# Convert bytes to PIL Image
img = Image.open(io.BytesIO(image_bytes))
# Save image as PNG
save_path = os.path.join(output_dir, f"{imagename}")
img.save(save_path)
Note:
- This will create a folder
train/images/and save all images as.png. - You can modify the path if your Parquet file is in a different location or if you want to save images elsewhere.
Usage
Example: loading labels in Python
import pandas as pd
# Example for YOLO AA format
labels = pd.read_csv("dataset/train/yolo_aa_labels/28.64,77.21.txt/28.64,77.21.txt", sep=" ", header=None)
labels.columns = ["class", "x_center", "y_center", "width", "height"]
print(labels.head())
# Example for YOLO OBB format
labels = pd.read_csv("dataset/train/yolo_obb_labels/28.64,77.21.txt", sep=" ", header=None)
labels.columns = ["class", "x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"]
print(labels.head())
# Example for DOTA format
labels = pd.read_csv("dataset/train/dota_labels/28.64,77.21.txt/28.64,77.21.txt", sep=" ", header=None)
labels.columns = ["x1","y1","x2","y2","x3","y3","x4","y4","class","difficult"]
print(labels.head())
Statistics
- Total Kilns: 62,671
- CFCBK: 1,944
- FCBK: 33,963
- Zigzag: 26,764
- Negative Samples: 41,068 (tiles with no kilns)
License
This dataset is released under the Creative Commons Attribution–NonCommercial 4.0 International License (CC BY-NC 4.0).
See: https://creativecommons.org/licenses/by-nc/4.0/
Citation
If you use SentinelKilnDB in your research, please cite:

