Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
HeerK commited on
Commit
74ae9d8
·
verified ·
1 Parent(s): a1a6663

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +132 -24
README.md CHANGED
@@ -1,48 +1,97 @@
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
4
- # SentinelKiln Dataset
5
 
6
- ## About the Dataset
7
 
8
- ### Dataset Overview
9
- This dataset contains Sentinel-2 satellite imagery focused on identifying and classifying brick kilns across the Indo-Gangetic Plain and neighboring South Asian countries, including Afghanistan, Pakistan, and Bangladesh.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  ---
12
 
13
- ### Key Details
 
 
 
 
14
  - **Image Size:** 128 × 128 pixels
15
- - **Spatial Resolution:** 10 meters per pixel
16
  - **Timeframe:** November 2023 – February 2024
17
  - **Geographic Coverage:** Indo-Gangetic Plain, Afghanistan, Pakistan, Bangladesh
18
- - **Overlap:** Images have a 30-pixel overlap
 
19
 
20
  ---
21
 
22
- ### Classes
23
- - **CFCBK:** Continuous Fixed Chimney Bull’s Trench Kiln
24
- - **FCBK:** Fixed Chimney Bull’s Trench Kiln
25
- - **Zigzag:** Zigzag Kiln
 
26
 
27
  ---
28
 
29
- ### Annotation Formats
30
- - **YOLO OBB:** `class_name, x1, y1, x2, y2, x3, y3, x4, y4`
31
- - **YOLO AA:** `class_name, x_center, y_center, width, height`
32
- - **DOTA Format:** `x1, y1, x2, y2, x3, y3, x4, y4, class_name, difficult`
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ---
35
 
36
- ### Dataset Splits
37
- The dataset is split using a **class-wise stratified approach** to ensure balanced representation:
 
38
 
39
- | Split | Images (.png) | Label files (.txt) | No. of BBoxes | Folder |
40
- |-------|---------------|--------------------|--------------|---------|
41
- | Train | 71,856 | 47,214 |63,787 | `train/`|
42
- | Val | 23,952 | 15,738 |21,042 | `val/` |
43
- | Test | 18,492 | 10,278 |12,819 | `test/` |
 
44
 
45
- Each split contains separate folders for annotations and images: `train/`, `val/`, `test/`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  ## Extracting Images from Parquet Files
48
 
@@ -75,4 +124,63 @@ for idx, row in train_df.iterrows():
75
  ```
76
  ### Note:
77
  * This will create a folder ```train/images/``` and save all images as ```.png```.
78
- * You can modify the path if your Parquet file is in a different location or if you want to save images elsewhere.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
  ---
4
+ # SentinelKilnDB - A Large-Scale Dataset and Benchmark for OBB Brick Kiln Detection in South Asia Using Satellite Imagery
5
 
6
+ ## Abstract
7
 
8
+ Air pollution was responsible for 2.6 million deaths across South Asia in 2021 alone, with brick manufacturing contributing significantly to this burden. In particular, the Indo-Gangetic Plain; a densely populated and highly polluted region spanning northern India, Pakistan, Bangladesh, and parts of Afghanistan sees brick kilns contributing 8–14% of ambient air pollution. Traditional monitoring approaches, such as field surveys and manual annotation using tools like Google Earth Pro, are time and labor-intensive. Prior ML-based efforts for automated detection have relied on costly high-resolution commercial imagery and non-public datasets, limiting reproducibility and scalability. In this work, we introduce SENTINELKILNDB, a publicly available, hand-validated benchmark of 62,671 brick kilns spanning three kiln types Fixed Chimney Bull’s Trench Kiln (FCBK), Circular FCBK (CFCBK), and Zigzag kilns—annotated with oriented bounding boxes (OBBs) across 2.8 million km2 using free and globally accessible Sentinel-2 imagery. We benchmark state-of-the-art oriented object detection models and evaluate generalization across in-region, out-of-region, and super-resolution settings. SENTINELKILNDB enables rigorous evaluation of geospatial generalization and robustness for low-resolution object detection, and provides a new testbed for ML models addressing real-world environmental and remote sensing challenges at a continental scale. Datasets and code are available in SentinelKiln Dataset and SentinelKiln Benchmark, under the Creative Commons Attribution–NonCommercial 4.0 International License.
9
+
10
+ ![Statistics](https://storage.googleapis.com/kagglesdsdata/datasets/8335452/13156901/statistics.png?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=databundle-worker-v2%40kaggle-161607.iam.gserviceaccount.com%2F20250924%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20250924T095905Z&X-Goog-Expires=345600&X-Goog-SignedHeaders=host&X-Goog-Signature=2ab94a3b2537d38710a45a16a6c301ab26f816f6c82e9316f7cf0805abd78880873fb5faded0677c791a8b09c37ffc9929fe5de6f532174d5d751af4cd8ed1d819080059b49cb8c6f564a22a7b884b1012b63b0bab4970185fb3742a04639e677c5ae47639366f5854d26555415d292708e9cbefeea0167fcea16d12b73d53fa8f23b269d471e523c4dc70e38c40f897b2f2371b18e304fd2d80324dd6b74f84a5780e4150e1890d3898c2d79cd3313b98921f8d4050282412f9f2582b85a278c4ba6b17fead7facae295979e506a5a3650149cc7b922f0a81ee5c46aeb6e62e4b68493a62907ddb2f5dfcc3a9124f9e8cf9eb83de1c1491870a6f6295d0b908)
11
+ ---
12
+
13
+ ## Useful Links
14
+
15
+ **Project Page** - **https://lnkd.in/dn2SKwWv**
16
+ **Official Paper** - **https://neurips.cc/virtual/2025/poster/121530**
17
+ **Github** - **https://github.com/rishabh-mondal/NeurIPS_2025**
18
+ **Sustainability Lab** - **https://sustainability-lab.github.io**
19
+
20
+ For questions or collaborations, please contact:
21
+
22
+ **Rishabh Mondal** - [email protected]
23
+ **Nipun Batra** - [email protected]
24
 
25
  ---
26
 
27
+ ## Dataset Overview
28
+
29
+ This dataset contains Sentinel-2 satellite imagery focused on identifying and classifying brick kilns across the Indo-Gangetic Plain and neighboring South Asian countries, including Afghanistan, Pakistan, and Bangladesh.
30
+
31
+ - **Imagery Source:** Sentinel-2 (Surface Reflectance)
32
  - **Image Size:** 128 × 128 pixels
33
+ - **Spatial Resolution:** 10 m/pixel
34
  - **Timeframe:** November 2023 – February 2024
35
  - **Geographic Coverage:** Indo-Gangetic Plain, Afghanistan, Pakistan, Bangladesh
36
+ - **Overlap:** 30-pixel overlap between patches
37
+ - **File Naming Convention:** `lat,lon.png` and `lat,lon.txt`
38
 
39
  ---
40
 
41
+ ## Classes
42
+
43
+ - **CFCBK** – Continuous Fixed Chimney Bull’s Trench Kiln
44
+ - **FCBK** Fixed Chimney Bull’s Trench Kiln
45
+ - **Zigzag** – Zigzag Kiln
46
 
47
  ---
48
 
49
+ ## Annotation Formats
50
+
51
+ - **YOLO OBB:**
52
+ ```
53
+ class_name, x1, y1, x2, y2, x3, y3, x4, y4
54
+ ```
55
+
56
+ - **YOLO AA:**
57
+ ```
58
+ class_name, x_center, y_center, width, height
59
+ ```
60
+
61
+ - **DOTA Format:**
62
+ ```
63
+ x1, y1, x2, y2, x3, y3, x4, y4, class_name, difficult
64
+ ```
65
 
66
  ---
67
 
68
+ ## Dataset Splits
69
+
70
+ The dataset is split using a **class-wise stratified approach** for balanced representation.
71
 
72
+ | Split | Images (.png) | Label Files (.txt) | No. of BBoxes |
73
+ |-------|---------------|--------------------|---------------|
74
+ | Train | 71,856 | 47,214 | 63,787 |
75
+ | Val | 23,952 | 15,738 | 21,042 |
76
+ | Test | 18,492 | 10,278 | 12,819 |
77
+ | **Total** | **114,300** | **73,239** | **97,648** |
78
 
79
+ Each split contains separate folders for images and annotations:
80
+
81
+ ```
82
+ dataset/
83
+ ├── train/
84
+ │ ├── images/
85
+ │ └── labels/
86
+ ├── val/
87
+ │ ├── images/
88
+ │ └── labels/
89
+ └── test/
90
+ ├── images/
91
+ └── labels/
92
+ ```
93
+
94
+ ---
95
 
96
  ## Extracting Images from Parquet Files
97
 
 
124
  ```
125
  ### Note:
126
  * This will create a folder ```train/images/``` and save all images as ```.png```.
127
+ * You can modify the path if your Parquet file is in a different location or if you want to save images elsewhere.
128
+
129
+ ---
130
+
131
+ ## Usage
132
+
133
+ Example: loading labels in Python
134
+
135
+ ```python
136
+ import pandas as pd
137
+
138
+ # Example for YOLO AA format
139
+ labels = pd.read_csv("dataset/train/yolo_aa_labels/28.64,77.21.txt/28.64,77.21.txt", sep=" ", header=None)
140
+ labels.columns = ["class", "x_center", "y_center", "width", "height"]
141
+ print(labels.head())
142
+
143
+ # Example for YOLO OBB format
144
+ labels = pd.read_csv("dataset/train/yolo_obb_labels/28.64,77.21.txt", sep=" ", header=None)
145
+ labels.columns = ["class", "x1", "y1", "x2", "y2", "x3", "y3", "x4", "y4"]
146
+ print(labels.head())
147
+
148
+ # Example for DOTA format
149
+ labels = pd.read_csv("dataset/train/dota_labels/28.64,77.21.txt/28.64,77.21.txt", sep=" ", header=None)
150
+ labels.columns = ["x1","y1","x2","y2","x3","y3","x4","y4","class","difficult"]
151
+ print(labels.head())
152
+ ```
153
+
154
+ ---
155
+
156
+ ## Statistics
157
+
158
+ - **Total Kilns:** 62,671
159
+ - CFCBK: 1,944
160
+ - FCBK: 33,963
161
+ - Zigzag: 26,764
162
+ - **Negative Samples:** 41,068 (tiles with no kilns)
163
+
164
+ ---
165
+
166
+ ## License
167
+
168
+ This dataset is released under the **Creative Commons Attribution–NonCommercial 4.0 International License (CC BY-NC 4.0)**.
169
+ See: [https://creativecommons.org/licenses/by-nc/4.0/](https://creativecommons.org/licenses/by-nc/4.0/)
170
+
171
+ ---
172
+
173
+ ## Citation
174
+
175
+ If you use **SentinelKilnDB** in your research, please cite:
176
+
177
+ @inproceedings{mondal2025sentinelkilndb,
178
+ title={SentinelKilnDB: A Large-Scale Dataset and Benchmark for OBB Brick Kiln Detection in South Asia Using Satellite Imagery},
179
+ author={Rishabh Mondal and Jeet Parab and Heer Kubadia and Shataxi Dubey and Shardul Junagade and Zeel B. Patel and Nipun Batra},
180
+ booktitle={The Thirty-Ninth Annual Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
181
+ year={2025},
182
+ url={https://openreview.net/forum?id=efGzsxVSEC}
183
+ }
184
+ ---
185
+ ![logo](https://storage.googleapis.com/kagglesdsdata/datasets/8335452/13157427/logo.png?X-Goog-Algorithm=GOOG4-RSA-SHA256&X-Goog-Credential=databundle-worker-v2%40kaggle-161607.iam.gserviceaccount.com%2F20250924%2Fauto%2Fstorage%2Fgoog4_request&X-Goog-Date=20250924T103943Z&X-Goog-Expires=345600&X-Goog-SignedHeaders=host&X-Goog-Signature=7033a8d276875a2be53fcfa8ff255210959d4559860ce3957e43491cb50ad825eeb9c491f391bf6c38efe5ca970e8c24f4182a3f221e0634559de170e1795229384fd0ed98b2dbef1782db12ed0bbb8909b972ffa365379dcd75ee8297f7399e008987dbafedc91caf82f0b1945a809f758cdffa467ae0cd8ea4cc70ff93da37d9b583677a870c0c9e4b3b42c69c70e6275448b798113d4c1559bcb9001fce71e6cd17f71bf4bf5a3f452d44e166ecd14d83df231dd5708e7fdacd99e8d606878504d1f163f2090e8b52abcff6f93b54b2ca74f3d6d5e33e5a70b7a369f80acb7c13b09c1d69e4a177506dcb28ccd204ea01165a95c02384c5e74549252295f8)
186
+