entry_point
stringlengths 1
65
| original_triton_python_code
stringlengths 208
619k
| optimised_triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
listlengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
|---|---|---|---|---|---|---|---|---|---|---|
LBM
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/sp/cspxk6oul7asggexfh7asqmhytodxgob2ixo676bwdg4ecazywmj.py
# Topologically Sorted Source Nodes: [exp], Original ATen: [aten.exp]
# Source node to ATen node mapping:
# exp => exp
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%view_2,), kwargs = {})
triton_poi_fused_exp_0 = async_compile.triton('triton_poi_fused_exp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_exp_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_exp_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl_math.exp(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten._trilinear]
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_1
buf1 = buf0
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [exp], Original ATen: [aten.exp]
stream0 = get_raw_stream(0)
triton_poi_fused_exp_0.run(buf2, 64, grid=grid(64), stream=stream0)
return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_exp_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl_math.exp(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(
primals_3, (64, 4), (4, 1), 0), primals_1, reinterpret_tensor(
primals_2, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_1
buf1 = buf0
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
get_raw_stream(0)
triton_poi_fused_exp_0[grid(64)](buf2, 64, XBLOCK=64, num_warps=1,
num_stages=1)
return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), buf2
class LBMNew(nn.Module):
def __init__(self, l_dim, r_dim):
super(LBMNew, self).__init__()
self.W = nn.Bilinear(l_dim, r_dim, 1, bias=False)
def forward(self, input_0, input_1):
primals_1 = self.W.weight
primals_2 = input_0
primals_3 = input_1
output = call([primals_1, primals_2, primals_3])
return output[0]
|
aryaman4/TaxoExpan
|
LBM
| false
| 9,785
|
[
"Apache-2.0"
] | 0
|
3d9b9a21ba7cdd872dc62181dd14ff271e20b245
|
https://github.com/aryaman4/TaxoExpan/tree/3d9b9a21ba7cdd872dc62181dd14ff271e20b245
|
SpatialGC
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/kn/cknjlh5mzsg6tap75kwweiwuidyxeolmhbgzpsrthbqvrieuksvv.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# x_2 => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x4 = (xindex // 256)
x5 = (xindex // 16) % 16
x3 = (xindex // 64) % 4
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x5) + (64*x1) + (256*x4)), xmask)
tmp1 = tl.load(in_ptr1 + (x3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x6), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (16, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (16, ), (1, ))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_4, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4, 4, 1), (256, 64, 16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_3, buf1, 1024, grid=grid(1024), stream=stream0)
del buf0
del primals_3
buf2 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf1, (1, 64, 16), (0, 16, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4), (64, 4, 1), 0), out=buf2)
del buf1
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_2, primals_4, reinterpret_tensor(primals_1, (1, 4, 16), (64, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((16, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x4 = xindex // 256
x5 = xindex // 16 % 16
x3 = xindex // 64 % 4
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x5 + 64 * x1 + 256 * x4), xmask)
tmp1 = tl.load(in_ptr1 + (x3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x6, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (16, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_4, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1))
buf1 = empty_strided_cuda((4, 4, 4, 4, 4, 1), (256, 64, 16, 4, 1, 1
), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(1024)](buf0, primals_3, buf1, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_3
buf2 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf1, (1, 64, 16), (0, 16, 1),
0), reinterpret_tensor(primals_1, (1, 16, 4), (64, 4, 1), 0),
out=buf2)
del buf1
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_2, primals_4, reinterpret_tensor(primals_1, (1, 4, 16),
(64, 1, 4), 0)
class SpatialGCNew(nn.Module):
"""Sapatial Graph Convolution used in DR-GCB and RAM_r's
encoder and decoder
Args:
in_channels (int): Number of channels in the input sequence data
out_channels (int): Number of channels produced by the convolution
kernel_size (int): Size of the graph convolving kernel
bias (bool, optional): If ``True``, adds a learnable bias to the output.
Default: ``True``
Shape:
- Input[0]: Input graph sequence
in :math:`(N, M, in_channels, T_{in}, V)` format
- Input[1]: Input physical graph adjacency matrix
in :math:`(K, V, V)` format
- Output[0]: Output physical graph sequence
in :math:`(N, M, out_channels, T_{out}, V)` format
- Output[1]: Physical graph adjacency matrix for output data
in :math:`(K, V, V)` format
where
:math:`N` is a batch size,
:math:`M` is the number of instance in a frame.
:math:`K` is the spatial kernel size, as :math:`K == kernel_size[1]`,
:math:`T_{in}/T_{out}` is a length of input/output sequence,
:math:`V` is the number of graph nodes.
"""
def __init__(self, in_channels, out_channels, kernel_size, bias=True):
super().__init__()
self.kernel_size = kernel_size
self.conv = nn.Conv2d(in_channels, out_channels * kernel_size,
kernel_size=(1, 1), bias=bias)
def forward(self, input_0, input_1):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_4 = input_0
primals_1 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0], output[1]
|
GlenGGG/DR-GCN
|
SpatialGC
| false
| 5,230
|
[
"Apache-2.0"
] | 1
|
540e2ede803f78b87b862aa26d099fbc02173143
|
https://github.com/GlenGGG/DR-GCN/tree/540e2ede803f78b87b862aa26d099fbc02173143
|
My_loss2
|
import torch
import torch.nn as nn
class My_loss2(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x, y, batch_size, mask):
return torch.sum(torch.pow(x - y, 2) * mask) / batch_size / 2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_div_mul_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, out_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp4 = tl.load(in_ptr2 + r0, None)
tmp9 = tl.load(in_ptr3 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp5 = tmp3 * tmp4
tmp6 = tl.broadcast_to(tmp5, [RBLOCK])
tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0))
tmp10 = tmp8 / tmp9
tmp11 = 0.5
tmp12 = tmp10 * tmp11
tl.store(out_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp12, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_div_mul_pow_sub_sum_0[grid(1)](arg0_1, arg1_1,
arg2_1, arg3_1, buf1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
del arg3_1
return buf1,
class My_loss2New(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0]
|
H-Liu1997/Pytorch_Pose_Estimation_Framework
|
My_loss2
| false
| 5,241
|
[
"MIT"
] | 1
|
06616b3459ff639f8486e6ea4f93922597788b2a
|
https://github.com/H-Liu1997/Pytorch_Pose_Estimation_Framework/tree/06616b3459ff639f8486e6ea4f93922597788b2a
|
Mish
|
import torch
from torch import nn
from torch.nn import functional as F
class Mish(nn.Module):
def forward(self, x):
return x.mul_(F.softplus(x).tanh())
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_mul_softplus_tanh_0(in_ptr0, out_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = libdevice.tanh(tmp5)
tmp7 = tmp0 * tmp6
tl.store(out_ptr1 + x0, tmp7, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
get_raw_stream(0)
triton_poi_fused_mul_softplus_tanh_0[grid(256)](arg0_1, arg0_1, 256,
XBLOCK=256, num_warps=4, num_stages=1)
return arg0_1,
class MishNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
khayliang/single_person_tracking
|
Mish
| false
| 3,824
|
[
"MIT"
] | 0
|
d93aae3742ba3c77f00b3917b182784f03b5d597
|
https://github.com/khayliang/single_person_tracking/tree/d93aae3742ba3c77f00b3917b182784f03b5d597
|
Mish
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/cw/ccwyu7ntk57rkkdptbadtv27ku7lnl5vvxmgpgfsv3e6t5pbraah.py
# Topologically Sorted Source Nodes: [softplus, tanh, mul], Original ATen: [aten.softplus, aten.tanh, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# softplus => exp, gt, log1p, where
# tanh => tanh
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %log1p), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%where,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %tanh), kwargs = {})
triton_poi_fused_mul_softplus_tanh_0 = async_compile.triton('triton_poi_fused_mul_softplus_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_softplus_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_softplus_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = libdevice.tanh(tmp5)
tmp7 = tmp0 * tmp6
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softplus, tanh, mul], Original ATen: [aten.softplus, aten.tanh, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_softplus_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_softplus_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = libdevice.tanh(tmp5)
tmp7 = tmp0 * tmp6
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_softplus_tanh_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MishNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Archaic-Atom/JackFramework
|
Mish
| false
| 7,709
|
[
"MIT"
] | 13
|
e847d0bafe335ee33caf174676d12ad3c28011a6
|
https://github.com/Archaic-Atom/JackFramework/tree/e847d0bafe335ee33caf174676d12ad3c28011a6
|
UnbalancedWeight
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/p5/cp5nniafphmka55wdf6sqr36wz64ig7abziaceojnulf5slf6cu2.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 6.0), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 6.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 6.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class UnbalancedWeightNew(torch.nn.Module):
def __init__(self, ε, ρ):
super(UnbalancedWeightNew, self).__init__()
self.ε, self.ρ = ε, ρ
def backward(self, g):
return (self.ρ + self.ε) * g
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
AdrienCorenflos/PFlow
|
UnbalancedWeight
| false
| 4,764
|
[
"MIT"
] | 1
|
ec5f43a5e20d1280260e482ee0f9139fb9d1ca2b
|
https://github.com/AdrienCorenflos/PFlow/tree/ec5f43a5e20d1280260e482ee0f9139fb9d1ca2b
|
GeLU
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/cq/ccqrv5daquzjwissidd23uotfpy5s5jx7uitdgmgmdd6b44oid4b.py
# Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# tanh => tanh
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.7978845608), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.044715), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %arg0_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, 1.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %add), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%mul_4,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1.0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %add_1), kwargs = {})
triton_poi_fused_add_mul_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7978845608
tmp4 = tmp0 * tmp3
tmp5 = 0.044715
tmp6 = tmp0 * tmp5
tmp7 = tmp6 * tmp0
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = tmp4 * tmp9
tmp11 = libdevice.tanh(tmp10)
tmp12 = tmp11 + tmp8
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, mul_1, mul_2, mul_3, add, mul_4, tanh, add_1, mul_5], Original ATen: [aten.mul, aten.add, aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7978845608
tmp4 = tmp0 * tmp3
tmp5 = 0.044715
tmp6 = tmp0 * tmp5
tmp7 = tmp6 * tmp0
tmp8 = 1.0
tmp9 = tmp7 + tmp8
tmp10 = tmp4 * tmp9
tmp11 = libdevice.tanh(tmp10)
tmp12 = tmp11 + tmp8
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + x0, tmp13, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_tanh_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class GeLUNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
YJiangcm/Chinese-sentence-pair-modeling
|
GeLU
| false
| 14,609
|
[
"Apache-2.0"
] | 49
|
90adbc5c121832ce3e4a4057e30417a6ec5e7ebc
|
https://github.com/YJiangcm/Chinese-sentence-pair-modeling/tree/90adbc5c121832ce3e4a4057e30417a6ec5e7ebc
|
SelfAttention
|
import torch
import torch.nn as nn
class SelfAttention(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert self.head_dim * heads == embed_size, 'Embedding size needs to be divisible by heads'
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads * self.head_dim, embed_size)
def forward(self, values, keys, query, mask):
N = query.shape[0]
value_len, key_len, query_len = values.shape[1], keys.shape[1
], query.shape[1]
values = values.reshape(N, value_len, self.heads, self.head_dim)
keys = keys.reshape(N, key_len, self.heads, self.head_dim)
query = query.reshape(N, query_len, self.heads, self.head_dim)
values = self.values(values)
keys = self.keys(keys)
queries = self.queries(query)
energy = torch.einsum('nqhd,nkhd->nhqk', [queries, keys])
if mask is not None:
energy = energy.masked_fill(mask == 0, float('-1e20'))
attention = torch.softmax(energy / self.embed_size ** (1 / 2), dim=3)
out = torch.einsum('nhql,nlhd->nqhd', [attention, values]).reshape(N,
query_len, self.heads * self.head_dim)
out = self.fc_out(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 1]), torch.rand([4, 4, 4, 1]), torch.rand(
[4, 4, 4, 1]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'embed_size': 4, 'heads': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_eq_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.
constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (4 * x2 + 16 * y3), xmask & ymask,
eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (y0 + 16 * y1), ymask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr0 + (1 + 4 * x2 + 16 * y3), xmask & ymask,
eviction_policy='evict_last').to(tl.int1)
tmp9 = tl.load(in_ptr2 + (4 + y0 + 16 * y1), ymask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr0 + (2 + 4 * x2 + 16 * y3), xmask & ymask,
eviction_policy='evict_last').to(tl.int1)
tmp15 = tl.load(in_ptr2 + (8 + y0 + 16 * y1), ymask, eviction_policy=
'evict_last')
tmp20 = tl.load(in_ptr0 + (3 + 4 * x2 + 16 * y3), xmask & ymask,
eviction_policy='evict_last').to(tl.int1)
tmp21 = tl.load(in_ptr2 + (12 + y0 + 16 * y1), ymask, eviction_policy=
'evict_last')
tmp3 = tmp1 * tmp2
tmp4 = -1.0000000200408773e+20
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp10 = tmp1 * tmp9
tmp11 = tl.where(tmp8, tmp4, tmp10)
tmp12 = tmp11 * tmp6
tmp13 = triton_helpers.maximum(tmp7, tmp12)
tmp16 = tmp1 * tmp15
tmp17 = tl.where(tmp14, tmp4, tmp16)
tmp18 = tmp17 * tmp6
tmp19 = triton_helpers.maximum(tmp13, tmp18)
tmp22 = tmp1 * tmp21
tmp23 = tl.where(tmp20, tmp4, tmp22)
tmp24 = tmp23 * tmp6
tmp25 = triton_helpers.maximum(tmp19, tmp24)
tmp26 = tmp7 - tmp25
tmp27 = 0.5
tmp28 = tmp26 * tmp27
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp12 - tmp25
tmp31 = tmp30 * tmp27
tmp32 = tl_math.exp(tmp31)
tmp33 = tmp29 + tmp32
tmp34 = tmp18 - tmp25
tmp35 = tmp34 * tmp27
tmp36 = tl_math.exp(tmp35)
tmp37 = tmp33 + tmp36
tmp38 = tmp24 - tmp25
tmp39 = tmp38 * tmp27
tmp40 = tl_math.exp(tmp39)
tmp41 = tmp37 + tmp40
tl.store(out_ptr0 + (x2 + 4 * y3), tmp25, xmask & ymask)
tl.store(out_ptr1 + (x2 + 4 * y3), tmp41, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x0 = xindex % 4
x5 = xindex // 4
tmp0 = tl.load(in_ptr0 + x4, xmask).to(tl.int1)
tmp1 = tl.load(in_ptr1 + (x2 + 4 * x1 + 16 * x3), xmask,
eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x2 + 4 * x0 + 16 * x3), xmask,
eviction_policy='evict_last')
tmp8 = tl.load(in_ptr3 + x5, xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr4 + x5, xmask, eviction_policy='evict_last')
tmp3 = tmp1 * tmp2
tmp4 = -1.0000000200408773e+20
tmp5 = tl.where(tmp0, tmp4, tmp3)
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp9 = tmp7 - tmp8
tmp10 = 0.5
tmp11 = tmp9 * tmp10
tmp12 = tl_math.exp(tmp11)
tmp14 = tmp12 / tmp13
tl.store(out_ptr0 + x4, tmp14, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_3, (4, 4, 4, 1), (16, 4, 1, 1))
assert_size_stride(primals_4, (1, 1), (1, 1))
assert_size_stride(primals_5, (1, 1), (1, 1))
assert_size_stride(primals_6, (1, 1), (1, 1))
assert_size_stride(primals_7, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 1), (1, 1), 0),
primals_4, out=buf0)
del primals_4
buf1 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 1), (1, 1), 0),
primals_5, out=buf1)
del primals_5
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 1), (1, 1), 0),
primals_6, out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_eq_0[grid(256)](primals_7, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_7
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_masked_fill_1[grid(16, 4)](buf3, buf2,
buf1, buf4, buf5, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1,
num_stages=1)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_masked_fill_2[grid(256)](buf3, buf2, buf1,
buf4, buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 1, 1), (16, 4, 1, 1, 1), 0)
del buf5
triton_poi_fused_clone_3[grid(16, 4)](buf0, buf7, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0)
del buf0
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 0), 0), out=buf8)
buf9 = reinterpret_tensor(buf4, (4, 4, 4), (16, 4, 1), 0)
del buf4
triton_poi_fused_clone_3[grid(16, 4)](buf8, buf9, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0)
del buf8
extern_kernels.mm(reinterpret_tensor(buf9, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf10)
buf11 = reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0)
del buf10
triton_poi_fused_add_4[grid(64)](buf11, primals_9, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_9
return buf11, reinterpret_tensor(primals_2, (64, 1), (1, 1), 0
), reinterpret_tensor(primals_3, (64, 1), (1, 1), 0
), buf1, reinterpret_tensor(primals_1, (64, 1), (1, 1), 0
), buf2, buf3, buf6, reinterpret_tensor(buf9, (16, 4), (4, 1), 0
), primals_8, reinterpret_tensor(buf7, (16, 1, 4), (4, 1, 1), 0)
class SelfAttentionNew(nn.Module):
def __init__(self, embed_size, heads):
super(SelfAttentionNew, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.head_dim = embed_size // heads
assert self.head_dim * heads == embed_size, 'Embedding size needs to be divisible by heads'
self.values = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.keys = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.queries = nn.Linear(self.head_dim, self.head_dim, bias=False)
self.fc_out = nn.Linear(heads * self.head_dim, embed_size)
def forward(self, input_0, input_1, input_2, input_3):
primals_4 = self.values.weight
primals_5 = self.keys.weight
primals_6 = self.queries.weight
primals_8 = self.fc_out.weight
primals_9 = self.fc_out.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
primals_7 = input_3
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
Thibaud-Ardoin/Dial-a-Ride
|
SelfAttention
| false
| 5,896
|
[
"MIT"
] | 1
|
7d9b3cd904d3194dccad31fec2533e2cf58cad0c
|
https://github.com/Thibaud-Ardoin/Dial-a-Ride/tree/7d9b3cd904d3194dccad31fec2533e2cf58cad0c
|
BCE
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim
class BCE(nn.Module):
def __init__(self):
super().__init__()
def forward(self, logit, target, epoch=0):
target = target.float()
pred_prob = F.sigmoid(logit)
return F.binary_cross_entropy(pred_prob, target)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_sigmoid_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp0 - tmp1
tmp4 = tl.sigmoid(tmp3)
tmp5 = -tmp4
tmp6 = libdevice.log1p(tmp5)
tmp7 = -100.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp2 * tmp8
tmp10 = tl_math.log(tmp4)
tmp11 = triton_helpers.maximum(tmp10, tmp7)
tmp12 = tmp0 * tmp11
tmp13 = tmp9 - tmp12
tmp14 = tl.broadcast_to(tmp13, [RBLOCK])
tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0))
tmp17 = 256.0
tmp18 = tmp16 / tmp17
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_sigmoid_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class BCENew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
LiubovSobolevskaya/hpa-single-cell
|
BCE
| false
| 17,603
|
[
"MIT"
] | 6
|
ebe6d046b651a1c45095f26e99cfb13adefb63d9
|
https://github.com/LiubovSobolevskaya/hpa-single-cell/tree/ebe6d046b651a1c45095f26e99cfb13adefb63d9
|
decoder5
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/5d/c5dw65h6nafj4s44sgiahjrq6lb3zgwonovnkpx75jkkuxpl34xg.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d]
# Source node to ATen node mapping:
# out => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %sub_1, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {})
triton_poi_fused_reflection_pad2d_0 = async_compile.triton('triton_poi_fused_reflection_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 73728
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 6
x1 = (xindex // 6) % 6
x2 = (xindex // 36)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-3) + (tl_math.abs((-1) + x0))))) + ((-4)*(tl_math.abs((-3) + (tl_math.abs((-1) + x1))))) + (16*x2)), None, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/kk/ckkeehad7xvjmxduxmwzjdm4zu3f5inttmd6kj4pju55xhwrnoea.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# out_3 => add, add_1, convert_element_type, convert_element_type_1, iota_2, mul, mul_1
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_2, 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, 0.5), kwargs = {})
# %convert_element_type_1 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_1, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_1 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/js/cjsibzhf6ubyye7gfes254fjkkbrqi7tzoox57ltdxf6tnfl6hr4.py
# Topologically Sorted Source Nodes: [out_1, out_2, out_3, out_4], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_1 => convolution
# out_2 => relu
# out_3 => _unsafe_index_2
# out_4 => _unsafe_index_3, _unsafe_index_4
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, %sub_5, None]), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_3, [None, None, None, %sub_5]), kwargs = {})
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 204800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 10) % 10
x0 = xindex % 10
x4 = (xindex // 100)
x2 = (xindex // 100) % 512
x7 = xindex
tmp0 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (7 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (4*tmp4) + (16*x4)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x7), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/e2/ce2k4lym2nqhf3w5dsvz6zgxc3jsam7d572srar4v3rqbuyr34g6.py
# Topologically Sorted Source Nodes: [out_5, out_6, out_7], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_5 => convolution_1
# out_6 => relu_1
# out_7 => _unsafe_index_5, _unsafe_index_6
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_4, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_1, [None, None, %sub_5, None]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_5, [None, None, None, %sub_5]), kwargs = {})
triton_poi_fused_convolution_reflection_pad2d_relu_3 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 204800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 10
x1 = (xindex // 10) % 10
x4 = (xindex // 100)
x2 = (xindex // 100) % 512
x5 = xindex
tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-7) + (tl_math.abs((-1) + x0))))) + ((-8)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (64*x4)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x5), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/7n/c7nyyvchtptp5rbqvks7cavg63gajcswx5tpkvypdmc7ocd2zaaz.py
# Topologically Sorted Source Nodes: [out_16], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# out_16 => add_4, add_5, convert_element_type_4, convert_element_type_5, iota_12, mul_4, mul_5
# Graph fragment:
# %iota_12 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_12, 1), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, 0), kwargs = {})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_4, torch.float32), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_4, 0.0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.5), kwargs = {})
# %convert_element_type_5 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_5, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_4 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_4(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/bs/cbspecvkmrhwtp6geje57vqvyhtdbzqxeh4bkirrauq3bdgepjtc.py
# Topologically Sorted Source Nodes: [out_14, out_15, out_16, out_17], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_14 => convolution_4
# out_15 => relu_4
# out_16 => _unsafe_index_11
# out_17 => _unsafe_index_12, _unsafe_index_13
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_10, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
# %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_4, [None, None, %unsqueeze_1, %convert_element_type_5]), kwargs = {})
# %_unsafe_index_12 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_11, [None, None, %sub_21, None]), kwargs = {})
# %_unsafe_index_13 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_12, [None, None, None, %sub_21]), kwargs = {})
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 331776
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 18) % 18
x0 = xindex % 18
x4 = (xindex // 324)
x2 = (xindex // 324) % 256
x7 = xindex
tmp0 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (15 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 8, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (8*tmp4) + (64*x4)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x7), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/6j/c6jeyn2lxggjjpib4soswcyajwy6iz7gvwfskycudxoh6ks5elxb.py
# Topologically Sorted Source Nodes: [out_18, out_19, out_20], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_18 => convolution_5
# out_19 => relu_5
# out_20 => _unsafe_index_14, _unsafe_index_15
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_13, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {})
# %_unsafe_index_14 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_5, [None, None, %sub_21, None]), kwargs = {})
# %_unsafe_index_15 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_14, [None, None, None, %sub_21]), kwargs = {})
triton_poi_fused_convolution_reflection_pad2d_relu_6 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 331776
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 18
x1 = (xindex // 18) % 18
x4 = (xindex // 324)
x2 = (xindex // 324) % 256
x5 = xindex
tmp0 = tl.load(in_ptr0 + (255 + ((-1)*(tl_math.abs((-15) + (tl_math.abs((-1) + x0))))) + ((-16)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (256*x4)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x5), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/uw/cuwhadke7ul24n6hzb5sal45fu4ro7spo5s7tl5x4bo5jl7gz66f.py
# Topologically Sorted Source Nodes: [out_29], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# out_29 => add_8, add_9, convert_element_type_8, convert_element_type_9, iota_22, mul_8, mul_9
# Graph fragment:
# %iota_22 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (32,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_22, 1), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_8, 0), kwargs = {})
# %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_8, torch.float32), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_8, 0.0), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_9, 0.5), kwargs = {})
# %convert_element_type_9 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_9, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_7 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_7(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/h3/ch3jm3bt3vnato3q323q7wlnky2jb7vevymckrrxpv7cesdxjfra.py
# Topologically Sorted Source Nodes: [out_27, out_28, out_29, out_30], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_27 => convolution_8
# out_28 => relu_8
# out_29 => _unsafe_index_20
# out_30 => _unsafe_index_21, _unsafe_index_22
# Graph fragment:
# %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_19, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {})
# %_unsafe_index_20 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_8, [None, None, %unsqueeze_2, %convert_element_type_9]), kwargs = {})
# %_unsafe_index_21 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_20, [None, None, %sub_37, None]), kwargs = {})
# %_unsafe_index_22 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_21, [None, None, None, %sub_37]), kwargs = {})
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 591872
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 34) % 34
x0 = xindex % 34
x4 = (xindex // 1156)
x2 = (xindex // 1156) % 128
x7 = xindex
tmp0 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1)))))), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (31 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0)))))), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (16*tmp4) + (256*x4)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x7), tmp13, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rh/crhey53viabe4hsp6ad6i2nee7q7zyv4njq6zse35tn7cpygnnbv.py
# Topologically Sorted Source Nodes: [out_31, out_32, out_33], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_31 => convolution_9
# out_32 => relu_9
# out_33 => _unsafe_index_23, _unsafe_index_24
# Graph fragment:
# %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_22, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {})
# %_unsafe_index_23 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_9, [None, None, %sub_37, None]), kwargs = {})
# %_unsafe_index_24 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_23, [None, None, None, %sub_37]), kwargs = {})
triton_poi_fused_convolution_reflection_pad2d_relu_9 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_9(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 591872
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 34
x1 = (xindex // 34) % 34
x4 = (xindex // 1156)
x2 = (xindex // 1156) % 128
x5 = xindex
tmp0 = tl.load(in_ptr0 + (1023 + ((-1)*(tl_math.abs((-31) + (tl_math.abs((-1) + x0))))) + ((-32)*(tl_math.abs((-31) + (tl_math.abs((-1) + x1))))) + (1024*x4)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x5), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/bu/cbuvyw4fe3xbsdcjmotlovg3kxgvi3ofzc3qlcpjtkkuyytb22ws.py
# Topologically Sorted Source Nodes: [out_36], Original ATen: [aten.arange]
# Source node to ATen node mapping:
# out_36 => iota_28
# Graph fragment:
# %iota_28 : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
triton_poi_fused_arange_10 = async_compile.triton('triton_poi_fused_arange_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_arange_10(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/fn/cfndjiv3tblgvnqtytlbgh4w5inf7gba2up5wfjsuaevqfszyxak.py
# Topologically Sorted Source Nodes: [out_36], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
# Source node to ATen node mapping:
# out_36 => add_12, add_13, convert_element_type_12, convert_element_type_13, mul_12, mul_13
# Graph fragment:
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota_28, 1), kwargs = {})
# %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_12, 0), kwargs = {})
# %convert_element_type_12 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add_12, torch.float32), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_12, 0.0), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_13, 0.5), kwargs = {})
# %convert_element_type_13 : [num_users=3] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%mul_13, torch.int64), kwargs = {})
triton_poi_fused__to_copy_add_arange_mul_11 = async_compile.triton('triton_poi_fused__to_copy_add_arange_mul_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_mul_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_11(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/rm/crmkhdiqj6544wyexgor4rnkds7gglwjet2cygw3o64zawf6zh7h.py
# Topologically Sorted Source Nodes: [out_34, out_35, out_36, out_37], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_34 => convolution_10
# out_35 => relu_10
# out_36 => _unsafe_index_25
# out_37 => _unsafe_index_26, _unsafe_index_27
# Graph fragment:
# %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_24, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {})
# %_unsafe_index_25 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_10, [None, None, %unsqueeze_3, %convert_element_type_13]), kwargs = {})
# %_unsafe_index_26 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_25, [None, None, %sub_45, None]), kwargs = {})
# %_unsafe_index_27 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_26, [None, None, None, %sub_45]), kwargs = {})
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12 = async_compile.triton('triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1115136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 66) % 66
x0 = xindex % 66
x4 = (xindex // 4356)
x2 = (xindex // 4356) % 64
x7 = xindex
tmp0 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1)))))), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (63 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0)))))), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + (32*tmp4) + (1024*x4)), xmask, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x7), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3t/c3tabqt44sb4glrpzzppdivi6ri4ru3tms7yd2a263tjtky77sll.py
# Topologically Sorted Source Nodes: [out_38, out_39, out_40], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
# Source node to ATen node mapping:
# out_38 => convolution_11
# out_39 => relu_11
# out_40 => _unsafe_index_28, _unsafe_index_29
# Graph fragment:
# %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_27, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_11 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {})
# %_unsafe_index_28 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_11, [None, None, %sub_45, None]), kwargs = {})
# %_unsafe_index_29 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_28, [None, None, None, %sub_45]), kwargs = {})
triton_poi_fused_convolution_reflection_pad2d_relu_13 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_13(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1115136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 66
x1 = (xindex // 66) % 66
x4 = (xindex // 4356)
x2 = (xindex // 4356) % 64
x5 = xindex
tmp0 = tl.load(in_ptr0 + (4095 + ((-1)*(tl_math.abs((-63) + (tl_math.abs((-1) + x0))))) + ((-64)*(tl_math.abs((-63) + (tl_math.abs((-1) + x1))))) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x5), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ln/cln46y6bcljj5xvgyl7h2nw5krdqozyeit2hebhehl5zbzlutyda.py
# Topologically Sorted Source Nodes: [out_41], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out_41 => convolution_12
# Graph fragment:
# %convolution_12 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_29, %primals_26, %primals_27, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_14 = async_compile.triton('triton_poi_fused_convolution_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_14', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/cj/ccjccu7zc7ogdpljitls2hefhpl6qq2kpfnn26koefpxdfdv7teq.py
# Topologically Sorted Source Nodes: [out_38, out_39], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_38 => convolution_11
# out_39 => relu_11
# Graph fragment:
# %convolution_11 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_27, %primals_24, %primals_25, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_11 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_11,), kwargs = {})
# %le_18 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_11, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_15 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/at/catvmzd72emtja24agoetxsfbfoouankui4el2vao7ua26an3h5e.py
# Topologically Sorted Source Nodes: [out_34, out_35], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_34 => convolution_10
# out_35 => relu_10
# Graph fragment:
# %convolution_10 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_24, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_10 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_10,), kwargs = {})
# %le_37 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_10, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_16 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 64
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/eu/ceu4vjwnu7t72daazfpt2wr6v3l3op2tzwyfbbm2wcynm5vjzmkk.py
# Topologically Sorted Source Nodes: [out_31, out_32], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_31 => convolution_9
# out_32 => relu_9
# Graph fragment:
# %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_22, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {})
# %le_56 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_9, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_17 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 1024) % 128
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/g7/cg7u5oo3boouswvtbbyzyk3b6wbhd74gf7zcz66gyyh2akxdphhi.py
# Topologically Sorted Source Nodes: [out_27, out_28], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_27 => convolution_8
# out_28 => relu_8
# Graph fragment:
# %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_19, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {})
# %le_75 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_8, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_18 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 128
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/cl/ccl6rdg5ilfmge5dt7ngbjb3ox5h4bpvbi7ffnd7mckl4lruweqh.py
# Topologically Sorted Source Nodes: [out_24, out_25], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_24 => convolution_7
# out_25 => relu_7
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_17, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_7 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {})
# %le_94 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_7, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_19 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_19(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 256
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/m3/cm3chxnerwp2olw2trs5cfxyfg5jjej3imjwwln6dvqacawhinod.py
# Topologically Sorted Source Nodes: [out_14, out_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_14 => convolution_4
# out_15 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_10, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
# %le_151 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_20 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_20', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_20(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 256
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ts/ctswyyscojlcdj3bvsxhx5ujnib7w6opid7m4lucqvluzcl3n5pv.py
# Topologically Sorted Source Nodes: [out_11, out_12], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_11 => convolution_3
# out_12 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_8, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
# %le_170 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_21 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_21', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_21(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 512
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/bb/cbbl3sfaozoe4jbyrqweizaizeix4urgms7ffifscr2veiod4gcu.py
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_1 => convolution
# out_2 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le_227 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_22 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_22', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_22(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32768
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 16) % 512
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27 = args
args.clear()
assert_size_stride(primals_1, (4, 512, 4, 4), (8192, 16, 4, 1))
assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (512, ), (1, ))
assert_size_stride(primals_4, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_5, (512, ), (1, ))
assert_size_stride(primals_6, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_7, (512, ), (1, ))
assert_size_stride(primals_8, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_9, (512, ), (1, ))
assert_size_stride(primals_10, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (256, ), (1, ))
assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (256, ), (1, ))
assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (256, ), (1, ))
assert_size_stride(primals_18, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_19, (128, ), (1, ))
assert_size_stride(primals_20, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_21, (128, ), (1, ))
assert_size_stride(primals_22, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_23, (64, ), (1, ))
assert_size_stride(primals_24, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_25, (64, ), (1, ))
assert_size_stride(primals_26, (3, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_27, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 6, 6), (18432, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.reflection_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0.run(primals_1, buf0, 73728, grid=grid(73728), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 512, 4, 4), (8192, 16, 4, 1))
buf2 = empty_strided_cuda((8, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_1.run(buf2, 8, grid=grid(8), stream=stream0)
buf3 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1, out_2, out_3, out_4], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2.run(buf2, buf1, primals_3, buf3, 204800, grid=grid(204800), stream=stream0)
# Topologically Sorted Source Nodes: [out_5], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 512, 8, 8), (32768, 64, 8, 1))
buf5 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_5, out_6, out_7], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf4, primals_5, buf5, 204800, grid=grid(204800), stream=stream0)
# Topologically Sorted Source Nodes: [out_8], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 512, 8, 8), (32768, 64, 8, 1))
buf7 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_8, out_9, out_10], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf6, primals_7, buf7, 204800, grid=grid(204800), stream=stream0)
# Topologically Sorted Source Nodes: [out_11], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 512, 8, 8), (32768, 64, 8, 1))
buf9 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_11, out_12, out_13], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_3.run(buf8, primals_9, buf9, 204800, grid=grid(204800), stream=stream0)
# Topologically Sorted Source Nodes: [out_14], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 256, 8, 8), (16384, 64, 8, 1))
buf11 = empty_strided_cuda((16, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [out_16], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_4.run(buf11, 16, grid=grid(16), stream=stream0)
buf12 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_14, out_15, out_16, out_17], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5.run(buf11, buf10, primals_11, buf12, 331776, grid=grid(331776), stream=stream0)
# Topologically Sorted Source Nodes: [out_18], Original ATen: [aten.convolution]
buf13 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 256, 16, 16), (65536, 256, 16, 1))
buf14 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_18, out_19, out_20], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_6.run(buf13, primals_13, buf14, 331776, grid=grid(331776), stream=stream0)
# Topologically Sorted Source Nodes: [out_21], Original ATen: [aten.convolution]
buf15 = extern_kernels.convolution(buf14, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 256, 16, 16), (65536, 256, 16, 1))
buf16 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_21, out_22, out_23], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_6.run(buf15, primals_15, buf16, 331776, grid=grid(331776), stream=stream0)
# Topologically Sorted Source Nodes: [out_24], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 256, 16, 16), (65536, 256, 16, 1))
buf18 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_24, out_25, out_26], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_6.run(buf17, primals_17, buf18, 331776, grid=grid(331776), stream=stream0)
# Topologically Sorted Source Nodes: [out_27], Original ATen: [aten.convolution]
buf19 = extern_kernels.convolution(buf18, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1))
buf20 = empty_strided_cuda((32, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [out_29], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_7.run(buf20, 32, grid=grid(32), stream=stream0)
buf21 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_27, out_28, out_29, out_30], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8.run(buf20, buf19, primals_19, buf21, 591872, grid=grid(591872), stream=stream0)
# Topologically Sorted Source Nodes: [out_31], Original ATen: [aten.convolution]
buf22 = extern_kernels.convolution(buf21, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1024, 32, 1))
buf23 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_31, out_32, out_33], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_9.run(buf22, primals_21, buf23, 591872, grid=grid(591872), stream=stream0)
# Topologically Sorted Source Nodes: [out_34], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf23, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf25 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [out_36], Original ATen: [aten.arange]
triton_poi_fused_arange_10.run(buf25, 64, grid=grid(64), stream=stream0)
buf26 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [out_36], Original ATen: [aten.arange, aten.add, aten.mul, aten._to_copy]
triton_poi_fused__to_copy_add_arange_mul_11.run(buf26, 64, grid=grid(64), stream=stream0)
buf27 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_34, out_35, out_36, out_37], Original ATen: [aten.convolution, aten.relu, aten._unsafe_index, aten.reflection_pad2d]
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12.run(buf26, buf24, primals_23, buf27, 1115136, grid=grid(1115136), stream=stream0)
# Topologically Sorted Source Nodes: [out_38], Original ATen: [aten.convolution]
buf28 = extern_kernels.convolution(buf27, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf29 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_38, out_39, out_40], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d]
triton_poi_fused_convolution_reflection_pad2d_relu_13.run(buf28, primals_25, buf29, 1115136, grid=grid(1115136), stream=stream0)
# Topologically Sorted Source Nodes: [out_41], Original ATen: [aten.convolution]
buf30 = extern_kernels.convolution(buf29, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf31 = buf30; del buf30 # reuse
# Topologically Sorted Source Nodes: [out_41], Original ATen: [aten.convolution]
triton_poi_fused_convolution_14.run(buf31, primals_27, 49152, grid=grid(49152), stream=stream0)
del primals_27
buf32 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_38, out_39], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_15.run(buf28, primals_25, buf32, 1048576, grid=grid(1048576), stream=stream0)
del buf28
del primals_25
buf33 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_34, out_35], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_16.run(buf24, primals_23, buf33, 262144, grid=grid(262144), stream=stream0)
del buf24
del primals_23
buf34 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_31, out_32], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_17.run(buf22, primals_21, buf34, 524288, grid=grid(524288), stream=stream0)
del buf22
del primals_21
buf35 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_27, out_28], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_18.run(buf19, primals_19, buf35, 131072, grid=grid(131072), stream=stream0)
del buf19
del primals_19
buf36 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_24, out_25], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_19.run(buf17, primals_17, buf36, 262144, grid=grid(262144), stream=stream0)
del buf17
del primals_17
buf37 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_21, out_22], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_19.run(buf15, primals_15, buf37, 262144, grid=grid(262144), stream=stream0)
del buf15
del primals_15
buf38 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_18, out_19], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_19.run(buf13, primals_13, buf38, 262144, grid=grid(262144), stream=stream0)
del buf13
del primals_13
buf39 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_14, out_15], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_20.run(buf10, primals_11, buf39, 65536, grid=grid(65536), stream=stream0)
del buf10
del primals_11
buf40 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_11, out_12], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_21.run(buf8, primals_9, buf40, 131072, grid=grid(131072), stream=stream0)
del buf8
del primals_9
buf41 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_8, out_9], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_21.run(buf6, primals_7, buf41, 131072, grid=grid(131072), stream=stream0)
del buf6
del primals_7
buf42 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_5, out_6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_21.run(buf4, primals_5, buf42, 131072, grid=grid(131072), stream=stream0)
del buf4
del primals_5
buf43 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_22.run(buf1, primals_3, buf43, 32768, grid=grid(32768), stream=stream0)
del buf1
del primals_3
return (buf31, primals_2, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, buf0, buf2, buf3, buf5, buf7, buf9, buf11, buf12, buf14, buf16, buf18, buf20, buf21, buf23, buf25, buf26, buf27, buf29, buf32, buf33, buf34, buf35, buf36, buf37, buf38, buf39, buf40, buf41, buf42, buf43, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 512, 4, 4), (8192, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((3, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 6
x1 = xindex // 6 % 6
x2 = xindex // 36
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2), None,
eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, None)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_1(out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 10 % 10
x0 = xindex % 10
x4 = xindex // 100
x2 = xindex // 100 % 512
x7 = xindex
tmp0 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x1
))), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (7 + -1 * tl_math.abs(-7 + tl_math.abs(-1 + x0
))), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 4 * tmp4 + 16 * x4), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x7, tmp13, None)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_3(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 10
x1 = xindex // 10 % 10
x4 = xindex // 100
x2 = xindex // 100 % 512
x5 = xindex
tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-7 + tl_math.abs(-1 +
x0)) + -8 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 64 * x4), None,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x5, tmp4, None)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_4(out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 18 % 18
x0 = xindex % 18
x4 = xindex // 324
x2 = xindex // 324 % 256
x7 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 +
x1))), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-15 + tl_math.abs(-1 +
x0))), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 8, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 8 * tmp4 + 64 * x4), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x7, tmp13, None)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_6(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 18
x1 = xindex // 18 % 18
x4 = xindex // 324
x2 = xindex // 324 % 256
x5 = xindex
tmp0 = tl.load(in_ptr0 + (255 + -1 * tl_math.abs(-15 + tl_math.abs(-1 +
x0)) + -16 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 256 * x4),
None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x5, tmp4, None)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_7(out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 34 % 34
x0 = xindex % 34
x4 = xindex // 1156
x2 = xindex // 1156 % 128
x7 = xindex
tmp0 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 +
x1))), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (31 + -1 * tl_math.abs(-31 + tl_math.abs(-1 +
x0))), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 16, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 16 * tmp4 + 256 * x4), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x7, tmp13, None)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_9(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 34
x1 = xindex // 34 % 34
x4 = xindex // 1156
x2 = xindex // 1156 % 128
x5 = xindex
tmp0 = tl.load(in_ptr0 + (1023 + -1 * tl_math.abs(-31 + tl_math.abs(-1 +
x0)) + -32 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 1024 * x4),
None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x5, tmp4, None)
@triton.jit
def triton_poi_fused_arange_10(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_mul_11(out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12(in_ptr0
, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1115136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 66 % 66
x0 = xindex % 66
x4 = xindex // 4356
x2 = xindex // 4356 % 64
x7 = xindex
tmp0 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-63 + tl_math.abs(-1 +
x1))), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (63 + -1 * tl_math.abs(-63 + tl_math.abs(-1 +
x0))), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr1 + (tmp8 + 32 * tmp4 + 1024 * x4), xmask,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x7, tmp13, xmask)
@triton.jit
def triton_poi_fused_convolution_reflection_pad2d_relu_13(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1115136
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 66
x1 = xindex // 66 % 66
x4 = xindex // 4356
x2 = xindex // 4356 % 64
x5 = xindex
tmp0 = tl.load(in_ptr0 + (4095 + -1 * tl_math.abs(-63 + tl_math.abs(-1 +
x0)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 4096 * x4),
xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + x5, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 3
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_15(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_16(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 64
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 128
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 128
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_19(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 256
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_20(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 256
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_21(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 512
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_22(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 16 % 512
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27) = args
args.clear()
assert_size_stride(primals_1, (4, 512, 4, 4), (8192, 16, 4, 1))
assert_size_stride(primals_2, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_3, (512,), (1,))
assert_size_stride(primals_4, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_5, (512,), (1,))
assert_size_stride(primals_6, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_7, (512,), (1,))
assert_size_stride(primals_8, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_9, (512,), (1,))
assert_size_stride(primals_10, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (256,), (1,))
assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (256,), (1,))
assert_size_stride(primals_16, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_17, (256,), (1,))
assert_size_stride(primals_18, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_19, (128,), (1,))
assert_size_stride(primals_20, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_21, (128,), (1,))
assert_size_stride(primals_22, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_23, (64,), (1,))
assert_size_stride(primals_24, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_25, (64,), (1,))
assert_size_stride(primals_26, (3, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_27, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 512, 6, 6), (18432, 36, 6, 1), torch.
float32)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(73728)](primals_1, buf0,
73728, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 512, 4, 4), (8192, 16, 4, 1))
buf2 = empty_strided_cuda((8,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_1[grid(8)](buf2, 8, XBLOCK
=8, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1),
torch.float32)
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_2[grid
(204800)](buf2, buf1, primals_3, buf3, 204800, XBLOCK=512,
num_warps=8, num_stages=1)
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 512, 8, 8), (32768, 64, 8, 1))
buf5 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(204800)](buf4
, primals_5, buf5, 204800, XBLOCK=512, num_warps=8, num_stages=1)
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 512, 8, 8), (32768, 64, 8, 1))
buf7 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(204800)](buf6
, primals_7, buf7, 204800, XBLOCK=512, num_warps=8, num_stages=1)
buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 512, 8, 8), (32768, 64, 8, 1))
buf9 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_3[grid(204800)](buf8
, primals_9, buf9, 204800, XBLOCK=512, num_warps=8, num_stages=1)
buf10 = extern_kernels.convolution(buf9, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 256, 8, 8), (16384, 64, 8, 1))
buf11 = empty_strided_cuda((16,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_4[grid(16)](buf11, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf12 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1),
torch.float32)
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_5[grid
(331776)](buf11, buf10, primals_11, buf12, 331776, XBLOCK=1024,
num_warps=4, num_stages=1)
buf13 = extern_kernels.convolution(buf12, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 256, 16, 16), (65536, 256, 16, 1))
buf14 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_6[grid(331776)](
buf13, primals_13, buf14, 331776, XBLOCK=1024, num_warps=4,
num_stages=1)
buf15 = extern_kernels.convolution(buf14, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 256, 16, 16), (65536, 256, 16, 1))
buf16 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_6[grid(331776)](
buf15, primals_15, buf16, 331776, XBLOCK=1024, num_warps=4,
num_stages=1)
buf17 = extern_kernels.convolution(buf16, primals_16, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 256, 16, 16), (65536, 256, 16, 1))
buf18 = empty_strided_cuda((4, 256, 18, 18), (82944, 324, 18, 1),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_6[grid(331776)](
buf17, primals_17, buf18, 331776, XBLOCK=1024, num_warps=4,
num_stages=1)
buf19 = extern_kernels.convolution(buf18, primals_18, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 128, 16, 16), (32768, 256, 16, 1))
buf20 = empty_strided_cuda((32,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_7[grid(32)](buf20, 32,
XBLOCK=32, num_warps=1, num_stages=1)
buf21 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1),
torch.float32)
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_8[grid
(591872)](buf20, buf19, primals_19, buf21, 591872, XBLOCK=1024,
num_warps=4, num_stages=1)
buf22 = extern_kernels.convolution(buf21, primals_20, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf22, (4, 128, 32, 32), (131072, 1024, 32, 1))
buf23 = empty_strided_cuda((4, 128, 34, 34), (147968, 1156, 34, 1),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_9[grid(591872)](
buf22, primals_21, buf23, 591872, XBLOCK=512, num_warps=8,
num_stages=1)
buf24 = extern_kernels.convolution(buf23, primals_22, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 64, 32, 32), (65536, 1024, 32, 1))
buf25 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_arange_10[grid(64)](buf25, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf26 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_add_arange_mul_11[grid(64)](buf26, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf27 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1),
torch.float32)
triton_poi_fused__unsafe_index_convolution_reflection_pad2d_relu_12[
grid(1115136)](buf26, buf24, primals_23, buf27, 1115136, XBLOCK
=1024, num_warps=4, num_stages=1)
buf28 = extern_kernels.convolution(buf27, primals_24, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf29 = empty_strided_cuda((4, 64, 66, 66), (278784, 4356, 66, 1),
torch.float32)
triton_poi_fused_convolution_reflection_pad2d_relu_13[grid(1115136)](
buf28, primals_25, buf29, 1115136, XBLOCK=1024, num_warps=4,
num_stages=1)
buf30 = extern_kernels.convolution(buf29, primals_26, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 3, 64, 64), (12288, 4096, 64, 1))
buf31 = buf30
del buf30
triton_poi_fused_convolution_14[grid(49152)](buf31, primals_27,
49152, XBLOCK=512, num_warps=4, num_stages=1)
del primals_27
buf32 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_15[grid(1048576)](
buf28, primals_25, buf32, 1048576, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf28
del primals_25
buf33 = empty_strided_cuda((4, 64, 32, 32), (65536, 1024, 32, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_16[grid(262144)](
buf24, primals_23, buf33, 262144, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf24
del primals_23
buf34 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_17[grid(524288)](
buf22, primals_21, buf34, 524288, XBLOCK=512, num_warps=8,
num_stages=1)
del buf22
del primals_21
buf35 = empty_strided_cuda((4, 128, 16, 16), (32768, 256, 16, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_18[grid(131072)](
buf19, primals_19, buf35, 131072, XBLOCK=512, num_warps=8,
num_stages=1)
del buf19
del primals_19
buf36 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_19[grid(262144)](
buf17, primals_17, buf36, 262144, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf17
del primals_17
buf37 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_19[grid(262144)](
buf15, primals_15, buf37, 262144, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf15
del primals_15
buf38 = empty_strided_cuda((4, 256, 16, 16), (65536, 256, 16, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_19[grid(262144)](
buf13, primals_13, buf38, 262144, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf13
del primals_13
buf39 = empty_strided_cuda((4, 256, 8, 8), (16384, 64, 8, 1), torch
.bool)
triton_poi_fused_convolution_relu_threshold_backward_20[grid(65536)](
buf10, primals_11, buf39, 65536, XBLOCK=512, num_warps=4,
num_stages=1)
del buf10
del primals_11
buf40 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch
.bool)
triton_poi_fused_convolution_relu_threshold_backward_21[grid(131072)](
buf8, primals_9, buf40, 131072, XBLOCK=512, num_warps=8,
num_stages=1)
del buf8
del primals_9
buf41 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch
.bool)
triton_poi_fused_convolution_relu_threshold_backward_21[grid(131072)](
buf6, primals_7, buf41, 131072, XBLOCK=512, num_warps=8,
num_stages=1)
del buf6
del primals_7
buf42 = empty_strided_cuda((4, 512, 8, 8), (32768, 64, 8, 1), torch
.bool)
triton_poi_fused_convolution_relu_threshold_backward_21[grid(131072)](
buf4, primals_5, buf42, 131072, XBLOCK=512, num_warps=8,
num_stages=1)
del buf4
del primals_5
buf43 = empty_strided_cuda((4, 512, 4, 4), (8192, 16, 4, 1), torch.bool
)
triton_poi_fused_convolution_relu_threshold_backward_22[grid(32768)](
buf1, primals_3, buf43, 32768, XBLOCK=256, num_warps=4,
num_stages=1)
del buf1
del primals_3
return (buf31, primals_2, primals_4, primals_6, primals_8, primals_10,
primals_12, primals_14, primals_16, primals_18, primals_20,
primals_22, primals_24, primals_26, buf0, buf2, buf3, buf5, buf7,
buf9, buf11, buf12, buf14, buf16, buf18, buf20, buf21, buf23, buf25,
buf26, buf27, buf29, buf32, buf33, buf34, buf35, buf36, buf37,
buf38, buf39, buf40, buf41, buf42, buf43)
class decoder5New(nn.Module):
def __init__(self):
super(decoder5New, self).__init__()
self.reflecPad15 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv15 = nn.Conv2d(512, 512, 3, 1, 0)
self.relu15 = nn.ReLU(inplace=True)
self.unpool = nn.UpsamplingNearest2d(scale_factor=2)
self.reflecPad16 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv16 = nn.Conv2d(512, 512, 3, 1, 0)
self.relu16 = nn.ReLU(inplace=True)
self.reflecPad17 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv17 = nn.Conv2d(512, 512, 3, 1, 0)
self.relu17 = nn.ReLU(inplace=True)
self.reflecPad18 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv18 = nn.Conv2d(512, 512, 3, 1, 0)
self.relu18 = nn.ReLU(inplace=True)
self.reflecPad19 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv19 = nn.Conv2d(512, 256, 3, 1, 0)
self.relu19 = nn.ReLU(inplace=True)
self.unpool2 = nn.UpsamplingNearest2d(scale_factor=2)
self.reflecPad20 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv20 = nn.Conv2d(256, 256, 3, 1, 0)
self.relu20 = nn.ReLU(inplace=True)
self.reflecPad21 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv21 = nn.Conv2d(256, 256, 3, 1, 0)
self.relu21 = nn.ReLU(inplace=True)
self.reflecPad22 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv22 = nn.Conv2d(256, 256, 3, 1, 0)
self.relu22 = nn.ReLU(inplace=True)
self.reflecPad23 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv23 = nn.Conv2d(256, 128, 3, 1, 0)
self.relu23 = nn.ReLU(inplace=True)
self.unpool3 = nn.UpsamplingNearest2d(scale_factor=2)
self.reflecPad24 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv24 = nn.Conv2d(128, 128, 3, 1, 0)
self.relu24 = nn.ReLU(inplace=True)
self.reflecPad25 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv25 = nn.Conv2d(128, 64, 3, 1, 0)
self.relu25 = nn.ReLU(inplace=True)
self.unpool4 = nn.UpsamplingNearest2d(scale_factor=2)
self.reflecPad26 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv26 = nn.Conv2d(64, 64, 3, 1, 0)
self.relu26 = nn.ReLU(inplace=True)
self.reflecPad27 = nn.ReflectionPad2d((1, 1, 1, 1))
self.conv27 = nn.Conv2d(64, 3, 3, 1, 0)
def forward(self, input_0):
primals_2 = self.conv15.weight
primals_3 = self.conv15.bias
primals_4 = self.conv16.weight
primals_5 = self.conv16.bias
primals_6 = self.conv17.weight
primals_7 = self.conv17.bias
primals_8 = self.conv18.weight
primals_9 = self.conv18.bias
primals_10 = self.conv19.weight
primals_11 = self.conv19.bias
primals_12 = self.conv20.weight
primals_13 = self.conv20.bias
primals_14 = self.conv21.weight
primals_15 = self.conv21.bias
primals_16 = self.conv22.weight
primals_17 = self.conv22.bias
primals_18 = self.conv23.weight
primals_19 = self.conv23.bias
primals_20 = self.conv24.weight
primals_21 = self.conv24.bias
primals_22 = self.conv25.weight
primals_23 = self.conv25.bias
primals_24 = self.conv26.weight
primals_25 = self.conv26.bias
primals_26 = self.conv27.weight
primals_27 = self.conv27.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27])
return output[0]
|
guswl8033/ARtists
|
decoder5
| false
| 3,603
|
[
"Apache-2.0"
] | 0
|
d353195872c1ef1a1aa68659a32fb47779a416fc
|
https://github.com/guswl8033/ARtists/tree/d353195872c1ef1a1aa68659a32fb47779a416fc
|
PositionwiseFeedForward
|
import math
import torch
import torch.distributed
import torch.nn as nn
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 *
torch.pow(x, 3))))
class PositionwiseFeedForward(nn.Module):
""" A two-layer Feed-Forward-Network with residual layer norm.
Args:
d_model (int): the size of input for the first-layer of the FFN.
d_ff (int): the hidden layer size of the second-layer
of the FNN.
dropout (float): dropout probability in :math:`[0, 1)`.
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForward, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-06)
self.actv = gelu
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x):
inter = self.dropout_1(self.actv(self.w_1(self.layer_norm(x))))
output = self.dropout_2(self.w_2(inter))
return output + x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d_model': 4, 'd_ff': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.distributed
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-06
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_mul_pow_tanh_2(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = tmp0 * tmp0
tmp4 = tmp3 * tmp0
tmp5 = 0.044715
tmp6 = tmp4 * tmp5
tmp7 = tmp0 + tmp6
tmp8 = 0.7978845608028654
tmp9 = tmp7 * tmp8
tmp10 = libdevice.tanh(tmp9)
tmp11 = 1.0
tmp12 = tmp10 + tmp11
tmp13 = tmp2 * tmp12
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0,
buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0,
buf1, primals_1, primals_2, buf2, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del buf0
del buf1
del primals_1
del primals_2
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf2, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_pow_tanh_2[grid(256)](buf3, buf4, 256,
XBLOCK=256, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused_add_3[grid(256)](buf6, primals_7, primals_3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
return buf6, primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0
), buf3, reinterpret_tensor(buf4, (64, 4), (4, 1), 0
), primals_6, primals_4
def gelu(x):
return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 *
torch.pow(x, 3))))
class PositionwiseFeedForwardNew(nn.Module):
""" A two-layer Feed-Forward-Network with residual layer norm.
Args:
d_model (int): the size of input for the first-layer of the FFN.
d_ff (int): the hidden layer size of the second-layer
of the FNN.
dropout (float): dropout probability in :math:`[0, 1)`.
"""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForwardNew, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-06)
self.actv = gelu
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, input_0):
primals_4 = self.w_1.weight
primals_1 = self.w_1.bias
primals_6 = self.w_2.weight
primals_2 = self.w_2.bias
primals_5 = self.layer_norm.weight
primals_7 = self.layer_norm.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
GraphGrailAi/summ-abs-dev
|
PositionwiseFeedForward
| false
| 2,368
|
[
"MIT"
] | 0
|
512f253bf72b6529589b29d06959b560b79f1cde
|
https://github.com/GraphGrailAi/summ-abs-dev/tree/512f253bf72b6529589b29d06959b560b79f1cde
|
HardSwish
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/4n/c4n4t4ob46tjofubvbx7kuypv4fkq77j7kjunchukdfb6wpttdx6.py
# Topologically Sorted Source Nodes: [add, relu6, inner, mul], Original ATen: [aten.add, aten.hardtanh, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# inner => div
# mul => mul
# relu6 => clamp_max, clamp_min
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %div), kwargs = {})
triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tmp9 = tmp0 * tmp8
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, relu6, inner, mul], Original ATen: [aten.add, aten.hardtanh, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
from torch.nn import functional as F
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 3.0
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = 6.0
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = 0.16666666666666666
tmp8 = tmp6 * tmp7
tmp9 = tmp0 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0,
256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def hard_swish(x, inplace: 'bool'=False):
inner = F.relu6(x + 3.0).div_(6.0)
return x.mul_(inner) if inplace else x.mul(inner)
class HardSwishNew(nn.Module):
def __init__(self, inplace: 'bool'=False):
super(HardSwishNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Fanzhongjie/ARFE
|
HardSwish
| false
| 458
|
[
"Apache-2.0"
] | 0
|
4b96b8c5bc0895d3d30acec2a490f81a860fe860
|
https://github.com/Fanzhongjie/ARFE/tree/4b96b8c5bc0895d3d30acec2a490f81a860fe860
|
GatedConvTranspose
|
import torch
import torch.nn as nn
import torch.utils.data
class GatedConvTranspose(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, output_padding=0, groups=1):
super(GatedConvTranspose, self).__init__()
self.layer_f = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size, stride=stride, padding=padding, output_padding=
output_padding, groups=groups)
self.layer_g = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size, stride=stride, padding=padding, output_padding=
output_padding, groups=groups)
def forward(self, x):
f = self.layer_f(x)
g = torch.sigmoid(self.layer_g(x))
return f * g
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 49 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + x3, xmask)
tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tl.sigmoid(tmp5)
tmp7 = tmp2 * tmp6
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(in_out_ptr1 + x3, tmp5, xmask)
tl.store(out_ptr0 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1))
buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 7, 7), (196, 49, 7, 1))
buf1 = buf0
del buf0
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_mul_sigmoid_0[grid(784)](buf1, buf3,
primals_2, primals_5, buf4, 784, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_2
del primals_5
return buf4, primals_1, primals_3, primals_4, buf1, buf3
class GatedConvTransposeNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, output_padding=0, groups=1):
super(GatedConvTransposeNew, self).__init__()
self.layer_f = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size, stride=stride, padding=padding, output_padding=
output_padding, groups=groups)
self.layer_g = nn.ConvTranspose2d(in_channels, out_channels,
kernel_size, stride=stride, padding=padding, output_padding=
output_padding, groups=groups)
def forward(self, input_0):
primals_1 = self.layer_f.weight
primals_2 = self.layer_f.bias
primals_3 = self.layer_g.weight
primals_5 = self.layer_g.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
D-hash-code/ffjord
|
GatedConvTranspose
| false
| 11,355
|
[
"MIT"
] | 0
|
3647ab35537a8bac3b4dc1e45a593819ac8e2c18
|
https://github.com/D-hash-code/ffjord/tree/3647ab35537a8bac3b4dc1e45a593819ac8e2c18
|
_Residual_Block
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/7o/c7o5ttyweofz42kjophypjktbctv6rlvcw3xdxc4lcl7kzkau6rb.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256, 4096], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 256
xnumel = 4096
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (262144*y1)), tmp0, ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/cg/ccgjbjra22jzcgrej4cregu4qnsuv4valsbpzazlnyx6d4zadmny.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4096
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ra/crarmf7s2qf36jg27hprl42qtwcxcnnoyrgzgevtstzj4qgsdzwl.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 8192
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = (yindex // 64)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/dd/cddy2xs2uderg6rhu3vap3su355lmjpkrmadmh5gnbcfg2frfd5z.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ih/cihu7ohoiwwrblocurozhw6ihpzbq4oc43mseo4n6wd7ronp74tw.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 32768
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = (yindex // 128)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ks/ckseolxcn4us7f7nstfb5fcnac3setezrwkzoer7icg2hkznld3f.py
# Unsorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 65536
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = (yindex // 256)
tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/gb/cgbgdvu6dbspyyhnsmpzfukazt2ppl6i64rxeg4eon6csfalrolz.py
# Topologically Sorted Source Nodes: [conv2d, prelu], Original ATen: [aten.convolution, aten._prelu_kernel]
# Source node to ATen node mapping:
# conv2d => convolution
# prelu => gt, mul, where
# Graph fragment:
# %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %convolution), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused__prelu_kernel_convolution_6 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_6(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + (x2), tmp2, None)
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/mv/cmvnowfb3oy3pbt7flo5qjqnjh7k3o4nvj3j352gyt4xogtyiqhr.py
# Topologically Sorted Source Nodes: [conv2d_1, out, out_1], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# out => gt_1, mul_1, where_1
# out_1 => add
# Graph fragment:
# %convolution_1 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_5, %primals_6, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %convolution_1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {})
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %where_1), kwargs = {})
triton_poi_fused__prelu_kernel_add_convolution_7 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_add_convolution_7(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), None)
tmp6 = tl.load(in_ptr2 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp4 = 0.0
tmp5 = tmp2 > tmp4
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp5, tmp2, tmp8)
tmp10 = tmp3 + tmp9
tl.store(in_out_ptr0 + (x2), tmp2, None)
tl.store(out_ptr0 + (x2), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/7w/c7w73gmmkdsirnvywtc4ajcpxvvxqgvvm4brbqqcjmmdkokgpdim.py
# Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten._prelu_kernel]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# out_2 => gt_2, mul_2, where_2
# Graph fragment:
# %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%add, %primals_8, %primals_9, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %convolution_2), kwargs = {})
# %where_2 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {})
triton_poi_fused__prelu_kernel_convolution_8 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_8(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + (x2), tmp2, None)
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/zk/czkkxdgtlyqrqdvrseox24se7djiklw4ywwqg5deataobvbixncw.py
# Topologically Sorted Source Nodes: [conv2d_3, out_3, out_4], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# out_3 => gt_3, mul_3, where_3
# out_4 => add_1
# Graph fragment:
# %convolution_3 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where_2, %primals_11, %primals_12, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, %convolution_3), kwargs = {})
# %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {})
# %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_2, %where_3), kwargs = {})
triton_poi_fused__prelu_kernel_add_convolution_9 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_add_convolution_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), None)
tmp6 = tl.load(in_ptr2 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp4 = 0.0
tmp5 = tmp2 > tmp4
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp5, tmp2, tmp8)
tmp10 = tmp3 + tmp9
tl.store(in_out_ptr0 + (x2), tmp2, None)
tl.store(out_ptr0 + (x2), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/fi/cfix2abznyuwifr2phemvjcx6o7zb25abcp4m24ipozb6rcuhaft.py
# Topologically Sorted Source Nodes: [conv2d_4, out_5], Original ATen: [aten.convolution, aten._prelu_kernel]
# Source node to ATen node mapping:
# conv2d_4 => convolution_4
# out_5 => gt_4, mul_4, where_4
# Graph fragment:
# %convolution_4 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%add_1, %primals_14, %primals_15, [2, 2], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_4 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_4, 0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_4, %convolution_4), kwargs = {})
# %where_4 : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt_4, %convolution_4, %mul_4), kwargs = {})
triton_poi_fused__prelu_kernel_convolution_10 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_10(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + (x2), tmp2, None)
tl.store(out_ptr0 + (x2), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/uo/cuozfwqvuszxwhln4ecmax73rh2magjexf3mcj56cuthbp7saobb.py
# Topologically Sorted Source Nodes: [conv2d_5, out_6, out_7], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
# Source node to ATen node mapping:
# conv2d_5 => convolution_5
# out_6 => gt_5, mul_5, where_5
# out_7 => add_2
# Graph fragment:
# %convolution_5 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where_4, %primals_17, %primals_18, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_5, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %convolution_5), kwargs = {})
# %where_5 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_5, %convolution_5, %mul_5), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_4, %where_5), kwargs = {})
triton_poi_fused__prelu_kernel_add_convolution_11 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_add_convolution_11(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x2), None)
tmp6 = tl.load(in_ptr2 + (0))
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp4 = 0.0
tmp5 = tmp2 > tmp4
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp5, tmp2, tmp8)
tmp10 = tmp3 + tmp9
tl.store(in_out_ptr0 + (x2), tmp2, None)
tl.store(out_ptr0 + (x2), tmp10, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/uz/cuzovxgz3xpshhaf3gtwzhdoklaeircgoc5xwk6ilmx6gxtmwsce.py
# Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out_9 => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%view_7, %add_1], 1), kwargs = {})
triton_poi_fused_cat_12 = async_compile.triton('triton_poi_fused_cat_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 256
x1 = (xindex // 256) % 32
x2 = (xindex // 8192) % 32
x3 = (xindex // 262144)
x4 = (xindex // 256)
x5 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((2*(x2 % 2)) + (4*x0) + (512*(x1 // 2)) + (8192*(x2 // 2)) + (131072*x3) + (x1 % 2)), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + ((2*(x2 % 2)) + (4*x0) + (x1 % 2)), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 256, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr2 + ((128*x4) + ((-128) + x0)), tmp10, eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + (x5), tmp14, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/le/clekkenw5icxsovzemdjklozrlbwhcapkmsbd6e5grknqd6xsyvy.py
# Topologically Sorted Source Nodes: [out_10], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out_10 => convolution_7
# Graph fragment:
# %convolution_7 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_22, %primals_23, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_13 = async_compile.triton('triton_poi_fused_convolution_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/jo/cjoj4oqa3cykwpnoykynnq6m5n2tz6k6ogfuy7o5zmo6oogghuzw.py
# Topologically Sorted Source Nodes: [out_14], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out_14 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%view_10, %add], 1), kwargs = {})
triton_poi_fused_cat_14 = async_compile.triton('triton_poi_fused_cat_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_14(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2097152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = (xindex // 128) % 64
x2 = (xindex // 8192) % 64
x3 = (xindex // 524288)
x4 = (xindex // 128)
x5 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((2*(x2 % 2)) + (4*x0) + (256*(x1 // 2)) + (8192*(x2 // 2)) + (262144*x3) + (x1 % 2)), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + ((2*(x2 % 2)) + (4*x0) + (x1 % 2)), tmp4, eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tmp11 = tl.full([1], 128, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tl.load(in_ptr2 + ((64*x4) + ((-64) + x0)), tmp10, eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + (x5), tmp14, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/yy/cyyjsyxytcxq2twk3gzpswngag7dkwauaesis6dj3xgdhf2nzlxr.py
# Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out_15 => convolution_10
# Graph fragment:
# %convolution_10 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_29, %primals_30, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_15 = async_compile.triton('triton_poi_fused_convolution_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_15', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/oj/cojkkojtv4ngahkvad7zqurayjljjzpmcfzqr44legm2r2bdfyfb.py
# Topologically Sorted Source Nodes: [out_18, out_19], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# out_18 => convolution_13
# out_19 => add_5
# Graph fragment:
# %convolution_13 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_4, %primals_37, %primals_38, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_13, %primals_1), kwargs = {})
triton_poi_fused_add_convolution_16 = async_compile.triton('triton_poi_fused_add_convolution_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384, 64], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_16(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16384
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4096
y1 = (yindex // 4096)
tmp0 = tl.load(in_ptr0 + (x2 + (64*y3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2 + (64*y3)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (y0 + (4096*x2) + (262144*y1)), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38 = args
args.clear()
assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1))
assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (1, ), (1, ))
assert_size_stride(primals_5, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_6, (64, ), (1, ))
assert_size_stride(primals_7, (1, ), (1, ))
assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (128, ), (1, ))
assert_size_stride(primals_10, (1, ), (1, ))
assert_size_stride(primals_11, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_12, (128, ), (1, ))
assert_size_stride(primals_13, (1, ), (1, ))
assert_size_stride(primals_14, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (256, ), (1, ))
assert_size_stride(primals_16, (1, ), (1, ))
assert_size_stride(primals_17, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_18, (256, ), (1, ))
assert_size_stride(primals_19, (1, ), (1, ))
assert_size_stride(primals_20, (512, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_21, (512, ), (1, ))
assert_size_stride(primals_22, (128, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_23, (128, ), (1, ))
assert_size_stride(primals_24, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_25, (128, ), (1, ))
assert_size_stride(primals_26, (1, ), (1, ))
assert_size_stride(primals_27, (256, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_28, (256, ), (1, ))
assert_size_stride(primals_29, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_30, (64, ), (1, ))
assert_size_stride(primals_31, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_32, (64, ), (1, ))
assert_size_stride(primals_33, (1, ), (1, ))
assert_size_stride(primals_34, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_35, (64, ), (1, ))
assert_size_stride(primals_36, (1, ), (1, ))
assert_size_stride(primals_37, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_38, (64, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
stream0 = get_raw_stream(0)
triton_poi_fused_0.run(primals_1, buf0, 256, 4096, grid=grid(256, 4096), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_2, buf1, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_5, buf2, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_5
buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(primals_8, buf3, 8192, 9, grid=grid(8192, 9), stream=stream0)
del primals_8
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_11, buf4, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_11
buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_4.run(primals_14, buf5, 32768, 9, grid=grid(32768, 9), stream=stream0)
del primals_14
buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_5.run(primals_17, buf6, 65536, 9, grid=grid(65536, 9), stream=stream0)
del primals_17
buf7 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_3.run(primals_24, buf7, 16384, 9, grid=grid(16384, 9), stream=stream0)
del primals_24
buf8 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_31, buf8, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_31
buf9 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_34, buf9, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_34
buf10 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.float32)
# Unsorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(primals_37, buf10, 4096, 9, grid=grid(4096, 9), stream=stream0)
del primals_37
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf11 = extern_kernels.convolution(buf0, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf12 = buf11; del buf11 # reuse
buf13 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32)
# Topologically Sorted Source Nodes: [conv2d, prelu], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_6.run(buf12, primals_3, primals_4, buf13, 1048576, grid=grid(1048576), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, buf2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf15 = buf14; del buf14 # reuse
buf16 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, out, out_1], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
triton_poi_fused__prelu_kernel_add_convolution_7.run(buf15, primals_6, buf0, primals_7, buf16, 1048576, grid=grid(1048576), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(buf16, buf3, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf18 = buf17; del buf17 # reuse
buf19 = empty_strided_cuda((4, 128, 32, 32), (131072, 1, 4096, 128), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_2, out_2], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_8.run(buf18, primals_9, primals_10, buf19, 524288, grid=grid(524288), stream=stream0)
del primals_9
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf20 = extern_kernels.convolution(buf19, buf4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf21 = buf20; del buf20 # reuse
buf22 = empty_strided_cuda((4, 128, 32, 32), (131072, 1, 4096, 128), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_3, out_3, out_4], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
triton_poi_fused__prelu_kernel_add_convolution_9.run(buf21, primals_12, buf19, primals_13, buf22, 524288, grid=grid(524288), stream=stream0)
del primals_12
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf23 = extern_kernels.convolution(buf22, buf5, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf24 = buf23; del buf23 # reuse
buf25 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_4, out_5], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_10.run(buf24, primals_15, primals_16, buf25, 262144, grid=grid(262144), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf26 = extern_kernels.convolution(buf25, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf27 = buf26; del buf26 # reuse
buf28 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_5, out_6, out_7], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
triton_poi_fused__prelu_kernel_add_convolution_11.run(buf27, primals_18, buf25, primals_19, buf28, 262144, grid=grid(262144), stream=stream0)
del primals_18
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf29 = extern_kernels.convolution(buf28, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf29, (4, 512, 16, 16), (131072, 1, 8192, 512))
buf30 = empty_strided_cuda((4, 256, 32, 32), (262144, 1, 8192, 256), torch.float32)
# Topologically Sorted Source Nodes: [out_9], Original ATen: [aten.cat]
triton_poi_fused_cat_12.run(buf29, primals_21, buf22, buf30, 1048576, grid=grid(1048576), stream=stream0)
del primals_21
# Topologically Sorted Source Nodes: [out_10], Original ATen: [aten.convolution]
buf31 = extern_kernels.convolution(buf30, primals_22, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf31, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf32 = buf31; del buf31 # reuse
# Topologically Sorted Source Nodes: [out_10], Original ATen: [aten.convolution]
triton_poi_fused_convolution_13.run(buf32, primals_23, 524288, grid=grid(524288), stream=stream0)
del primals_23
# Topologically Sorted Source Nodes: [conv2d_8], Original ATen: [aten.convolution]
buf33 = extern_kernels.convolution(buf32, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf34 = buf33; del buf33 # reuse
buf35 = reinterpret_tensor(buf29, (4, 128, 32, 32), (131072, 1, 4096, 128), 0); del buf29 # reuse
# Topologically Sorted Source Nodes: [conv2d_8, out_11, out_12], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
triton_poi_fused__prelu_kernel_add_convolution_9.run(buf34, primals_25, buf32, primals_26, buf35, 524288, grid=grid(524288), stream=stream0)
del primals_25
# Topologically Sorted Source Nodes: [conv2d_9], Original ATen: [aten.convolution]
buf36 = extern_kernels.convolution(buf35, primals_27, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 256, 32, 32), (262144, 1, 8192, 256))
buf37 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.float32)
# Topologically Sorted Source Nodes: [out_14], Original ATen: [aten.cat]
triton_poi_fused_cat_14.run(buf36, primals_28, buf16, buf37, 2097152, grid=grid(2097152), stream=stream0)
del primals_28
# Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.convolution]
buf38 = extern_kernels.convolution(buf37, primals_29, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf39 = buf38; del buf38 # reuse
# Topologically Sorted Source Nodes: [out_15], Original ATen: [aten.convolution]
triton_poi_fused_convolution_15.run(buf39, primals_30, 1048576, grid=grid(1048576), stream=stream0)
del primals_30
# Topologically Sorted Source Nodes: [conv2d_11], Original ATen: [aten.convolution]
buf40 = extern_kernels.convolution(buf39, buf8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf40, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf41 = buf40; del buf40 # reuse
buf42 = reinterpret_tensor(buf36, (4, 64, 64, 64), (262144, 1, 4096, 64), 0); del buf36 # reuse
# Topologically Sorted Source Nodes: [conv2d_11, prelu_7], Original ATen: [aten.convolution, aten._prelu_kernel]
triton_poi_fused__prelu_kernel_convolution_6.run(buf41, primals_32, primals_33, buf42, 1048576, grid=grid(1048576), stream=stream0)
del primals_32
# Topologically Sorted Source Nodes: [conv2d_12], Original ATen: [aten.convolution]
buf43 = extern_kernels.convolution(buf42, buf9, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf44 = buf43; del buf43 # reuse
buf45 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_12, out_16, out_17], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
triton_poi_fused__prelu_kernel_add_convolution_7.run(buf44, primals_35, buf39, primals_36, buf45, 1048576, grid=grid(1048576), stream=stream0)
del primals_35
# Topologically Sorted Source Nodes: [out_18], Original ATen: [aten.convolution]
buf46 = extern_kernels.convolution(buf45, buf10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf47 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_18, out_19], Original ATen: [aten.convolution, aten.add]
triton_poi_fused_add_convolution_16.run(buf46, primals_38, buf0, buf47, 16384, 64, grid=grid(16384, 64), stream=stream0)
del buf46
del primals_38
return (buf47, buf0, buf1, primals_4, buf2, primals_7, buf3, primals_10, buf4, primals_13, buf5, primals_16, buf6, primals_19, primals_20, primals_22, buf7, primals_26, primals_27, primals_29, buf8, primals_33, buf9, primals_36, buf10, buf12, buf13, buf15, buf16, buf18, buf19, buf21, buf22, buf24, buf25, buf27, buf28, buf30, buf32, buf34, buf35, buf37, buf39, buf41, buf42, buf44, buf45, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 64, 64, 64), (262144, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((512, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((128, 256, 1, 1), (256, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((256, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((64, 128, 1, 1), (128, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_35 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_36 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_37 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_38 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 256
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 64 * x2 + 262144 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 9
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 256
y1 = yindex // 256
tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_6(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + x2, tmp2, None)
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused__prelu_kernel_add_convolution_7(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, None)
tmp6 = tl.load(in_ptr2 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp4 = 0.0
tmp5 = tmp2 > tmp4
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp5, tmp2, tmp8)
tmp10 = tmp3 + tmp9
tl.store(in_out_ptr0 + x2, tmp2, None)
tl.store(out_ptr0 + x2, tmp10, None)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_8(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + x2, tmp2, None)
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused__prelu_kernel_add_convolution_9(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, None)
tmp6 = tl.load(in_ptr2 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp4 = 0.0
tmp5 = tmp2 > tmp4
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp5, tmp2, tmp8)
tmp10 = tmp3 + tmp9
tl.store(in_out_ptr0 + x2, tmp2, None)
tl.store(out_ptr0 + x2, tmp10, None)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_10(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + x2, tmp2, None)
tl.store(out_ptr0 + x2, tmp8, None)
@triton.jit
def triton_poi_fused__prelu_kernel_add_convolution_11(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, None)
tmp6 = tl.load(in_ptr2 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp4 = 0.0
tmp5 = tmp2 > tmp4
tmp8 = tmp7 * tmp2
tmp9 = tl.where(tmp5, tmp2, tmp8)
tmp10 = tmp3 + tmp9
tl.store(in_out_ptr0 + x2, tmp2, None)
tl.store(out_ptr0 + x2, tmp10, None)
@triton.jit
def triton_poi_fused_cat_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 256
x1 = xindex // 256 % 32
x2 = xindex // 8192 % 32
x3 = xindex // 262144
x4 = xindex // 256
x5 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (2 * (x2 % 2) + 4 * x0 + 512 * (x1 // 2) +
8192 * (x2 // 2) + 131072 * x3 + x1 % 2), tmp4, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (2 * (x2 % 2) + 4 * x0 + x1 % 2), tmp4,
eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 256, tl.int64)
tmp13 = tl.load(in_ptr2 + (128 * x4 + (-128 + x0)), tmp10,
eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + x5, tmp14, None)
@triton.jit
def triton_poi_fused_convolution_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, None)
@triton.jit
def triton_poi_fused_cat_14(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 128
x1 = xindex // 128 % 64
x2 = xindex // 8192 % 64
x3 = xindex // 524288
x4 = xindex // 128
x5 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (2 * (x2 % 2) + 4 * x0 + 256 * (x1 // 2) +
8192 * (x2 // 2) + 262144 * x3 + x1 % 2), tmp4, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (2 * (x2 % 2) + 4 * x0 + x1 % 2), tmp4,
eviction_policy='evict_last', other=0.0)
tmp7 = tmp5 + tmp6
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp4, tmp7, tmp8)
tmp10 = tmp0 >= tmp3
tl.full([1], 128, tl.int64)
tmp13 = tl.load(in_ptr2 + (64 * x4 + (-64 + x0)), tmp10,
eviction_policy='evict_last', other=0.0)
tmp14 = tl.where(tmp4, tmp9, tmp13)
tl.store(out_ptr0 + x5, tmp14, None)
@triton.jit
def triton_poi_fused_convolution_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, None)
@triton.jit
def triton_poi_fused_add_convolution_16(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
xnumel = 64
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4096
y1 = yindex // 4096
tmp0 = tl.load(in_ptr0 + (x2 + 64 * y3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2 + 64 * y3), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(out_ptr0 + (y0 + 4096 * x2 + 262144 * y1), tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35, primals_36, primals_37, primals_38
) = args
args.clear()
assert_size_stride(primals_1, (4, 64, 64, 64), (262144, 4096, 64, 1))
assert_size_stride(primals_2, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (1,), (1,))
assert_size_stride(primals_5, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_6, (64,), (1,))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (1,), (1,))
assert_size_stride(primals_11, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_12, (128,), (1,))
assert_size_stride(primals_13, (1,), (1,))
assert_size_stride(primals_14, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_15, (256,), (1,))
assert_size_stride(primals_16, (1,), (1,))
assert_size_stride(primals_17, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_18, (256,), (1,))
assert_size_stride(primals_19, (1,), (1,))
assert_size_stride(primals_20, (512, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_21, (512,), (1,))
assert_size_stride(primals_22, (128, 256, 1, 1), (256, 1, 1, 1))
assert_size_stride(primals_23, (128,), (1,))
assert_size_stride(primals_24, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_25, (128,), (1,))
assert_size_stride(primals_26, (1,), (1,))
assert_size_stride(primals_27, (256, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_28, (256,), (1,))
assert_size_stride(primals_29, (64, 128, 1, 1), (128, 1, 1, 1))
assert_size_stride(primals_30, (64,), (1,))
assert_size_stride(primals_31, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_32, (64,), (1,))
assert_size_stride(primals_33, (1,), (1,))
assert_size_stride(primals_34, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_35, (64,), (1,))
assert_size_stride(primals_36, (1,), (1,))
assert_size_stride(primals_37, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_38, (64,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64),
torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(256, 4096)](primals_1, buf0, 256, 4096,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.
float32)
triton_poi_fused_1[grid(4096, 9)](primals_2, buf1, 4096, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.
float32)
triton_poi_fused_1[grid(4096, 9)](primals_5, buf2, 4096, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_5
buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_2[grid(8192, 9)](primals_8, buf3, 8192, 9, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf4 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_3[grid(16384, 9)](primals_11, buf4, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_11
buf5 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_4[grid(32768, 9)](primals_14, buf5, 32768, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_14
buf6 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256),
torch.float32)
triton_poi_fused_5[grid(65536, 9)](primals_17, buf6, 65536, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_17
buf7 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128),
torch.float32)
triton_poi_fused_3[grid(16384, 9)](primals_24, buf7, 16384, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_24
buf8 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.
float32)
triton_poi_fused_1[grid(4096, 9)](primals_31, buf8, 4096, 9, XBLOCK
=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_31
buf9 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch.
float32)
triton_poi_fused_1[grid(4096, 9)](primals_34, buf9, 4096, 9, XBLOCK
=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_34
buf10 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch
.float32)
triton_poi_fused_1[grid(4096, 9)](primals_37, buf10, 4096, 9,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_37
buf11 = extern_kernels.convolution(buf0, buf1, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf12 = buf11
del buf11
buf13 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64),
torch.float32)
triton_poi_fused__prelu_kernel_convolution_6[grid(1048576)](buf12,
primals_3, primals_4, buf13, 1048576, XBLOCK=512, num_warps=8,
num_stages=1)
del primals_3
buf14 = extern_kernels.convolution(buf13, buf2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf15 = buf14
del buf14
buf16 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64),
torch.float32)
triton_poi_fused__prelu_kernel_add_convolution_7[grid(1048576)](buf15,
primals_6, buf0, primals_7, buf16, 1048576, XBLOCK=512,
num_warps=8, num_stages=1)
del primals_6
buf17 = extern_kernels.convolution(buf16, buf3, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf17, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf18 = buf17
del buf17
buf19 = empty_strided_cuda((4, 128, 32, 32), (131072, 1, 4096, 128),
torch.float32)
triton_poi_fused__prelu_kernel_convolution_8[grid(524288)](buf18,
primals_9, primals_10, buf19, 524288, XBLOCK=1024, num_warps=4,
num_stages=1)
del primals_9
buf20 = extern_kernels.convolution(buf19, buf4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf21 = buf20
del buf20
buf22 = empty_strided_cuda((4, 128, 32, 32), (131072, 1, 4096, 128),
torch.float32)
triton_poi_fused__prelu_kernel_add_convolution_9[grid(524288)](buf21,
primals_12, buf19, primals_13, buf22, 524288, XBLOCK=512,
num_warps=8, num_stages=1)
del primals_12
buf23 = extern_kernels.convolution(buf22, buf5, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf24 = buf23
del buf23
buf25 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused__prelu_kernel_convolution_10[grid(262144)](buf24,
primals_15, primals_16, buf25, 262144, XBLOCK=512, num_warps=8,
num_stages=1)
del primals_15
buf26 = extern_kernels.convolution(buf25, buf6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 256, 16, 16), (65536, 1, 4096, 256))
buf27 = buf26
del buf26
buf28 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256),
torch.float32)
triton_poi_fused__prelu_kernel_add_convolution_11[grid(262144)](buf27,
primals_18, buf25, primals_19, buf28, 262144, XBLOCK=1024,
num_warps=4, num_stages=1)
del primals_18
buf29 = extern_kernels.convolution(buf28, primals_20, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf29, (4, 512, 16, 16), (131072, 1, 8192, 512))
buf30 = empty_strided_cuda((4, 256, 32, 32), (262144, 1, 8192, 256),
torch.float32)
triton_poi_fused_cat_12[grid(1048576)](buf29, primals_21, buf22,
buf30, 1048576, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_21
buf31 = extern_kernels.convolution(buf30, primals_22, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf31, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf32 = buf31
del buf31
triton_poi_fused_convolution_13[grid(524288)](buf32, primals_23,
524288, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_23
buf33 = extern_kernels.convolution(buf32, buf7, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf33, (4, 128, 32, 32), (131072, 1, 4096, 128))
buf34 = buf33
del buf33
buf35 = reinterpret_tensor(buf29, (4, 128, 32, 32), (131072, 1,
4096, 128), 0)
del buf29
triton_poi_fused__prelu_kernel_add_convolution_9[grid(524288)](buf34,
primals_25, buf32, primals_26, buf35, 524288, XBLOCK=512,
num_warps=8, num_stages=1)
del primals_25
buf36 = extern_kernels.convolution(buf35, primals_27, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 256, 32, 32), (262144, 1, 8192, 256))
buf37 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128),
torch.float32)
triton_poi_fused_cat_14[grid(2097152)](buf36, primals_28, buf16,
buf37, 2097152, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_28
buf38 = extern_kernels.convolution(buf37, primals_29, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf39 = buf38
del buf38
triton_poi_fused_convolution_15[grid(1048576)](buf39, primals_30,
1048576, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_30
buf40 = extern_kernels.convolution(buf39, buf8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf40, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf41 = buf40
del buf40
buf42 = reinterpret_tensor(buf36, (4, 64, 64, 64), (262144, 1, 4096,
64), 0)
del buf36
triton_poi_fused__prelu_kernel_convolution_6[grid(1048576)](buf41,
primals_32, primals_33, buf42, 1048576, XBLOCK=512, num_warps=8,
num_stages=1)
del primals_32
buf43 = extern_kernels.convolution(buf42, buf9, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf43, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf44 = buf43
del buf43
buf45 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64),
torch.float32)
triton_poi_fused__prelu_kernel_add_convolution_7[grid(1048576)](buf44,
primals_35, buf39, primals_36, buf45, 1048576, XBLOCK=512,
num_warps=8, num_stages=1)
del primals_35
buf46 = extern_kernels.convolution(buf45, buf10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf46, (4, 64, 64, 64), (262144, 1, 4096, 64))
buf47 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1),
torch.float32)
triton_poi_fused_add_convolution_16[grid(16384, 64)](buf46,
primals_38, buf0, buf47, 16384, 64, XBLOCK=64, YBLOCK=64,
num_warps=8, num_stages=1)
del buf46
del primals_38
return (buf47, buf0, buf1, primals_4, buf2, primals_7, buf3, primals_10,
buf4, primals_13, buf5, primals_16, buf6, primals_19, primals_20,
primals_22, buf7, primals_26, primals_27, primals_29, buf8,
primals_33, buf9, primals_36, buf10, buf12, buf13, buf15, buf16,
buf18, buf19, buf21, buf22, buf24, buf25, buf27, buf28, buf30,
buf32, buf34, buf35, buf37, buf39, buf41, buf42, buf44, buf45)
class _Residual_BlockNew(nn.Module):
def __init__(self, num_chans=64):
super(_Residual_BlockNew, self).__init__()
bias = True
self.conv1 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride=
1, padding=1, bias=bias)
self.relu2 = nn.PReLU()
self.conv3 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride=
1, padding=1, bias=bias)
self.relu4 = nn.PReLU()
self.conv5 = nn.Conv2d(num_chans, num_chans * 2, kernel_size=3,
stride=2, padding=1, bias=bias)
self.relu6 = nn.PReLU()
self.conv7 = nn.Conv2d(num_chans * 2, num_chans * 2, kernel_size=3,
stride=1, padding=1, bias=bias)
self.relu8 = nn.PReLU()
self.conv9 = nn.Conv2d(num_chans * 2, num_chans * 4, kernel_size=3,
stride=2, padding=1, bias=bias)
self.relu10 = nn.PReLU()
self.conv11 = nn.Conv2d(num_chans * 4, num_chans * 4, kernel_size=3,
stride=1, padding=1, bias=bias)
self.relu12 = nn.PReLU()
self.conv13 = nn.Conv2d(num_chans * 4, num_chans * 8, kernel_size=1,
stride=1, padding=0, bias=bias)
self.up14 = nn.PixelShuffle(2)
self.conv15 = nn.Conv2d(num_chans * 4, num_chans * 2, kernel_size=1,
stride=1, padding=0, bias=bias)
self.conv16 = nn.Conv2d(num_chans * 2, num_chans * 2, kernel_size=3,
stride=1, padding=1, bias=bias)
self.relu17 = nn.PReLU()
self.conv18 = nn.Conv2d(num_chans * 2, num_chans * 4, kernel_size=1,
stride=1, padding=0, bias=bias)
self.up19 = nn.PixelShuffle(2)
self.conv20 = nn.Conv2d(num_chans * 2, num_chans, kernel_size=1,
stride=1, padding=0, bias=bias)
self.conv21 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride
=1, padding=1, bias=bias)
self.relu22 = nn.PReLU()
self.conv23 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride
=1, padding=1, bias=bias)
self.relu24 = nn.PReLU()
self.conv25 = nn.Conv2d(num_chans, num_chans, kernel_size=3, stride
=1, padding=1, bias=bias)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.relu2.weight
primals_5 = self.conv3.weight
primals_6 = self.conv3.bias
primals_7 = self.relu4.weight
primals_8 = self.conv5.weight
primals_9 = self.conv5.bias
primals_10 = self.relu6.weight
primals_11 = self.conv7.weight
primals_12 = self.conv7.bias
primals_13 = self.relu8.weight
primals_14 = self.conv9.weight
primals_15 = self.conv9.bias
primals_16 = self.relu10.weight
primals_17 = self.conv11.weight
primals_18 = self.conv11.bias
primals_19 = self.relu12.weight
primals_20 = self.conv13.weight
primals_21 = self.conv13.bias
primals_22 = self.conv15.weight
primals_23 = self.conv15.bias
primals_24 = self.conv16.weight
primals_25 = self.conv16.bias
primals_26 = self.relu17.weight
primals_27 = self.conv18.weight
primals_28 = self.conv18.bias
primals_29 = self.conv20.weight
primals_30 = self.conv20.bias
primals_31 = self.conv21.weight
primals_32 = self.conv21.bias
primals_33 = self.relu22.weight
primals_34 = self.conv23.weight
primals_35 = self.conv23.bias
primals_36 = self.relu24.weight
primals_37 = self.conv25.weight
primals_38 = self.conv25.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35, primals_36, primals_37, primals_38])
return output[0]
|
albangossard/Course-inverse-problems-and-unrolled-networks
|
_Residual_Block
| false
| 1,443
|
[
"MIT"
] | 0
|
0d4161c905149817e3abff9e70c101f36fac4270
|
https://github.com/albangossard/Course-inverse-problems-and-unrolled-networks/tree/0d4161c905149817e3abff9e70c101f36fac4270
|
ShuffleCatAlt
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/aw/cawqvw2zvkxbionktisrfw2aqhxd4u3wzzm3vh4bdlbsoeuycdt3.py
# Topologically Sorted Source Nodes: [x, setitem, setitem_1], Original ATen: [aten.zeros, aten.copy]
# Source node to ATen node mapping:
# setitem => copy
# setitem_1 => copy_1
# x => full
# Graph fragment:
# %full : [num_users=2] = call_function[target=torch.ops.aten.full.default](args = ([4, 8, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %copy : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_2, %arg0_1), kwargs = {})
# %slice_scatter_default : [num_users=2] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%full, %copy, 1, 0, 9223372036854775807, 2), kwargs = {})
# %copy_1 : [num_users=1] = call_function[target=torch.ops.aten.copy.default](args = (%slice_9, %arg1_1), kwargs = {})
# %slice_scatter_default_1 : [num_users=1] = call_function[target=torch.ops.aten.slice_scatter.default](args = (%slice_scatter_default, %copy_1, 1, 1, 9223372036854775807, 2), kwargs = {})
triton_poi_fused_copy_zeros_0 = async_compile.triton('triton_poi_fused_copy_zeros_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_copy_zeros_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_copy_zeros_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 1, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = ((-1) + x1) % 2
tmp4 = tl.full([1], 0, tl.int64)
tmp5 = tmp3 == tmp4
tmp6 = tmp2 & tmp5
tmp7 = tl.load(in_ptr0 + (x0 + (16*(triton_helpers.div_floor_integer((-1) + x1, 2))) + (64*x2)), tmp6 & xmask, other=0.0)
tmp8 = ((x3 // 16) % 8) % 2
tmp9 = tmp8 == tmp4
tmp10 = tl.load(in_ptr1 + (x0 + (16*(x1 // 2)) + (64*x2)), tmp9 & xmask, other=0.0)
tmp11 = 0.0
tmp12 = tl.where(tmp9, tmp10, tmp11)
tmp13 = tl.where(tmp6, tmp7, tmp12)
tl.store(out_ptr0 + (x3), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, setitem, setitem_1], Original ATen: [aten.zeros, aten.copy]
stream0 = get_raw_stream(0)
triton_poi_fused_copy_zeros_0.run(arg1_1, arg0_1, buf0, 512, grid=grid(512), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_copy_zeros_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 1, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = (-1 + x1) % 2
tmp4 = tl.full([1], 0, tl.int64)
tmp5 = tmp3 == tmp4
tmp6 = tmp2 & tmp5
tmp7 = tl.load(in_ptr0 + (x0 + 16 * triton_helpers.div_floor_integer(-1 +
x1, 2) + 64 * x2), tmp6 & xmask, other=0.0)
tmp8 = x3 // 16 % 8 % 2
tmp9 = tmp8 == tmp4
tmp10 = tl.load(in_ptr1 + (x0 + 16 * (x1 // 2) + 64 * x2), tmp9 & xmask,
other=0.0)
tmp11 = 0.0
tmp12 = tl.where(tmp9, tmp10, tmp11)
tmp13 = tl.where(tmp6, tmp7, tmp12)
tl.store(out_ptr0 + x3, tmp13, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_copy_zeros_0[grid(512)](arg1_1, arg0_1, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class ShuffleCatAltNew(nn.Module):
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
AbhinandanVellanki/yolact_edge
|
ShuffleCatAlt
| false
| 1,953
|
[
"MIT"
] | 0
|
06d6318cf70ef511b19aa1c14f0476e4ffac2722
|
https://github.com/AbhinandanVellanki/yolact_edge/tree/06d6318cf70ef511b19aa1c14f0476e4ffac2722
|
Discriminator
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/lv/clvm7udsuucc354cwdidyuj7lng3dp4x6vt7xo67dgpdpp7rjyls.py
# Topologically Sorted Source Nodes: [bilinear, sigmoid], Original ATen: [aten.add, aten.sigmoid]
# Source node to ATen node mapping:
# bilinear => add
# sigmoid => sigmoid
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %primals_4), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%squeeze,), kwargs = {})
triton_poi_fused_add_sigmoid_0 = async_compile.triton('triton_poi_fused_add_sigmoid_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [bilinear], Original ATen: [aten._trilinear]
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_3
buf1 = buf0
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [bilinear, sigmoid], Original ATen: [aten.add, aten.sigmoid]
stream0 = get_raw_stream(0)
triton_poi_fused_add_sigmoid_0.run(buf2, primals_4, 64, grid=grid(64), stream=stream0)
del primals_4
return (buf2, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = torch.ops.aten._trilinear.default(reinterpret_tensor(
primals_2, (64, 4), (4, 1), 0), primals_3, reinterpret_tensor(
primals_1, (64, 4), (4, 1), 0), [1, 3], [0], [1, 2], [2, 3])
del primals_3
buf1 = buf0
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
get_raw_stream(0)
triton_poi_fused_add_sigmoid_0[grid(64)](buf2, primals_4, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_4
return buf2, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf2
class DiscriminatorNew(nn.Module):
def __init__(self, n_in, n_out):
super(DiscriminatorNew, self).__init__()
self.f_k = nn.Bilinear(n_in, n_out, 1)
self.sigm = nn.Sigmoid()
for m in self.modules():
self.weights_init(m)
def weights_init(self, m):
if isinstance(m, nn.Bilinear):
torch.nn.init.xavier_uniform_(m.weight.data)
if m.bias is not None:
m.bias.data.fill_(0.0)
def forward(self, input_0, input_1):
primals_3 = self.f_k.weight
primals_4 = self.f_k.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
caojiangxia/BiGI
|
Discriminator
| false
| 14,996
|
[
"MIT"
] | 57
|
ed54c20523a5b3f295b90a9c08f7c54e8258d04a
|
https://github.com/caojiangxia/BiGI/tree/ed54c20523a5b3f295b90a9c08f7c54e8258d04a
|
GaussMembFunc
|
import torch
def _mk_param(val):
"""Make a torch parameter from a scalar value"""
if isinstance(val, torch.Tensor):
val = val.item()
return torch.nn.Parameter(torch.tensor(val, dtype=torch.float))
class GaussMembFunc(torch.nn.Module):
"""
Gaussian membership functions, defined by two parameters:
mu, the mean (center)
sigma, the standard deviation.
"""
def __init__(self, mu, sigma):
super(GaussMembFunc, self).__init__()
self.register_parameter('mu', _mk_param(mu))
self.register_parameter('sigma', _mk_param(sigma))
def forward(self, x):
val = torch.exp(-torch.pow(x - self.mu, 2) / (2 * self.sigma ** 2))
return val
def pretty(self):
return 'GaussMembFunc {} {}'.format(self.mu, self.sigma)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'mu': 4, 'sigma': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_exp_mul_neg_pow_sub_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp6 = tl.load(in_ptr2 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp3 = tmp0 - tmp2
tmp4 = tmp3 * tmp3
tmp5 = -tmp4
tmp8 = tmp7 * tmp7
tmp9 = 2.0
tmp10 = tmp8 * tmp9
tmp11 = tmp5 / tmp10
tmp12 = tl_math.exp(tmp11)
tl.store(out_ptr0 + x0, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_exp_mul_neg_pow_sub_0[grid(256)](primals_2,
primals_1, primals_3, buf0, 256, XBLOCK=256, num_warps=4,
num_stages=1)
return buf0, primals_1, primals_2, primals_3, buf0
def _mk_param(val):
"""Make a torch parameter from a scalar value"""
if isinstance(val, torch.Tensor):
val = val.item()
return torch.nn.Parameter(torch.tensor(val, dtype=torch.float))
class GaussMembFuncNew(torch.nn.Module):
"""
Gaussian membership functions, defined by two parameters:
mu, the mean (center)
sigma, the standard deviation.
"""
def __init__(self, mu, sigma):
super(GaussMembFuncNew, self).__init__()
self.register_parameter('mu', _mk_param(mu))
self.register_parameter('sigma', _mk_param(sigma))
def pretty(self):
return 'GaussMembFunc {} {}'.format(self.mu, self.sigma)
def forward(self, input_0):
primals_1 = self.mu
primals_3 = self.sigma
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
GradyKurpasi/anfis-pytorch
|
GaussMembFunc
| false
| 9,089
|
[
"MIT"
] | 0
|
4cce596193a8bc65e632405ca66d116c771033d7
|
https://github.com/GradyKurpasi/anfis-pytorch/tree/4cce596193a8bc65e632405ca66d116c771033d7
|
CombinedTargetMSELoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/3x/c3x4dfdpczepakwjr65svilah4l3hkarfrl226xahz32qv5ozznu.py
# Topologically Sorted Source Nodes: [heatmap_pred_1, heatmap_gt_1, mse_loss, mul_2, loss, mul_3, mul_4, mse_loss_1, mul_5, loss_1, mul_6, mul_7, mse_loss_2, mul_8, loss_2, truediv], Original ATen: [aten.mul, aten.mse_loss, aten.add, aten.div]
# Source node to ATen node mapping:
# heatmap_gt_1 => mul_1
# heatmap_pred_1 => mul
# loss => add
# loss_1 => add_1
# loss_2 => add_2
# mse_loss => mean, pow_1, sub
# mse_loss_1 => mean_1, pow_2, sub_1
# mse_loss_2 => mean_2, pow_3, sub_2
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# mul_6 => mul_6
# mul_7 => mul_7
# mul_8 => mul_8
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, %select), kwargs = {})
# %mul_1 : [num_users=5] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, %select_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, 0.0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %squeeze_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %squeeze_3), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %mul_4), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 0.5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_5), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %squeeze_4), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %squeeze_5), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_6, %mul_7), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, 0.5), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_8), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 1), kwargs = {})
triton_per_fused_add_div_mse_loss_mul_0 = async_compile.triton('triton_per_fused_add_div_mse_loss_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mse_loss_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 - tmp4
tmp6 = tmp5 * tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp11 = tmp4 * tmp10
tmp13 = tmp4 * tmp12
tmp14 = tmp11 - tmp13
tmp15 = tmp14 * tmp14
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp18 = tl.sum(tmp16, 1)[:, None]
tmp20 = tmp4 * tmp19
tmp22 = tmp4 * tmp21
tmp23 = tmp20 - tmp22
tmp24 = tmp23 * tmp23
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.sum(tmp25, 1)[:, None]
tmp28 = 4.0
tmp29 = tmp9 / tmp28
tmp30 = 0.5
tmp31 = tmp29 * tmp30
tmp32 = 0.0
tmp33 = tmp31 + tmp32
tmp34 = tmp18 / tmp28
tmp35 = tmp34 * tmp30
tmp36 = tmp33 + tmp35
tmp37 = tmp27 / tmp28
tmp38 = tmp37 * tmp30
tmp39 = tmp36 + tmp38
tmp40 = 1.0
tmp41 = tmp39 * tmp40
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp41, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [heatmap_pred_1, heatmap_gt_1, mse_loss, mul_2, loss, mul_3, mul_4, mse_loss_1, mul_5, loss_1, mul_6, mul_7, mse_loss_2, mul_8, loss_2, truediv], Original ATen: [aten.mul, aten.mse_loss, aten.add, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mse_loss_mul_0.run(buf3, arg0_1, arg2_1, arg1_1, 1, 4, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 - tmp4
tmp6 = tmp5 * tmp5
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.sum(tmp7, 1)[:, None]
tmp11 = tmp4 * tmp10
tmp13 = tmp4 * tmp12
tmp14 = tmp11 - tmp13
tmp15 = tmp14 * tmp14
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp18 = tl.sum(tmp16, 1)[:, None]
tmp20 = tmp4 * tmp19
tmp22 = tmp4 * tmp21
tmp23 = tmp20 - tmp22
tmp24 = tmp23 * tmp23
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.sum(tmp25, 1)[:, None]
tmp28 = 4.0
tmp29 = tmp9 / tmp28
tmp30 = 0.5
tmp31 = tmp29 * tmp30
tmp32 = 0.0
tmp33 = tmp31 + tmp32
tmp34 = tmp18 / tmp28
tmp35 = tmp34 * tmp30
tmp36 = tmp33 + tmp35
tmp37 = tmp27 / tmp28
tmp38 = tmp37 * tmp30
tmp39 = tmp36 + tmp38
tmp40 = 1.0
tmp41 = tmp39 * tmp40
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp41, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
assert_size_stride(arg2_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf3 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_mse_loss_mul_0[grid(1)](buf3, arg0_1,
arg2_1, arg1_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf3,
class CombinedTargetMSELossNew(nn.Module):
"""MSE loss for combined target.
CombinedTarget: The combination of classification target
(response map) and regression target (offset map).
Paper ref: Huang et al. The Devil is in the Details: Delving into
Unbiased Data Processing for Human Pose Estimation (CVPR 2020).
Args:
use_target_weight (bool): Option to use weighted MSE loss.
Different joint types may have different target weights.
"""
def __init__(self, use_target_weight):
super().__init__()
self.criterion = nn.MSELoss(reduction='mean')
self.use_target_weight = use_target_weight
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
chaowentao/mmpose
|
CombinedTargetMSELoss
| false
| 15,013
|
[
"Apache-2.0"
] | 367
|
b528c60ef4fab56d35d1ed7e187023794639be26
|
https://github.com/chaowentao/mmpose/tree/b528c60ef4fab56d35d1ed7e187023794639be26
|
Hsigmoid
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/al/calq2n2c6yqrixmkhatumobmz5aiem2fkhbma7mrxbgbs6pw5oaq.py
# Topologically Sorted Source Nodes: [mul, add, relu6, truediv], Original ATen: [aten.mul, aten.add, aten.hardtanh, aten.div]
# Source node to ATen node mapping:
# add => add
# mul => mul
# relu6 => clamp_max, clamp_min
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 3.0), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 6), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%clamp_max, 6.0), kwargs = {})
triton_poi_fused_add_div_hardtanh_mul_0 = async_compile.triton('triton_poi_fused_add_div_hardtanh_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_hardtanh_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.2
tmp2 = tmp0 * tmp1
tmp3 = 3.0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = 6.0
tmp8 = triton_helpers.minimum(tmp6, tmp7)
tmp9 = 0.16666666666666666
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, add, relu6, truediv], Original ATen: [aten.mul, aten.add, aten.hardtanh, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.2
tmp2 = tmp0 * tmp1
tmp3 = 3.0
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = 6.0
tmp8 = triton_helpers.minimum(tmp6, tmp7)
tmp9 = 0.16666666666666666
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0,
256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class HsigmoidNew(nn.Module):
def __init__(self, inplace=True):
super(HsigmoidNew, self).__init__()
self.inplace = inplace
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
BHD233/PaddleOCR2Pytorch
|
Hsigmoid
| false
| 13,341
|
[
"Apache-2.0"
] | 364
|
f114069b3e2669c6adf0adf9596756205f184c9c
|
https://github.com/BHD233/PaddleOCR2Pytorch/tree/f114069b3e2669c6adf0adf9596756205f184c9c
|
SEModule
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/l3/cl35tzbhrd24dhunkbb6gjs54aklpyr46oikqhoylcgmkcmhujil.py
# Topologically Sorted Source Nodes: [x_se], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# x_se => mean
# Graph fragment:
# %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1, -2], True), kwargs = {})
triton_per_fused_mean_0 = async_compile.triton('triton_per_fused_mean_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/sh/cshbgrlhlsuuebcz7jbje66sr2nkeng6kilqpqluwrr5ru2afxle.py
# Topologically Sorted Source Nodes: [x_se_1, x_se_2], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_se_1 => convolution
# x_se_2 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%mean, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/k2/ck2mamkqpmuzem4n3p4ij6fmfpy2bcbblg6sx6wwslgqwuqq5ifh.py
# Topologically Sorted Source Nodes: [x_se_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_se_3 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/lp/clprvnh5p6cmadxtwzizwydrpjlwxohxixbw4ntucp6srbu6gtis.py
# Topologically Sorted Source Nodes: [sigmoid, mul], Original ATen: [aten.sigmoid, aten.mul]
# Source node to ATen node mapping:
# mul => mul
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {})
triton_poi_fused_mul_sigmoid_3 = async_compile.triton('triton_poi_fused_mul_sigmoid_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 16)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (8, ), (1, ))
assert_size_stride(primals_4, (4, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [x_se], Original ATen: [aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_mean_0.run(buf1, primals_1, 16, 16, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [x_se_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 1, 1), (8, 1, 1, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_se_1, x_se_2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_3, 32, grid=grid(32), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [x_se_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_se_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf5, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid, mul], Original ATen: [aten.sigmoid, aten.mul]
triton_poi_fused_mul_sigmoid_3.run(primals_1, buf5, buf6, 256, grid=grid(256), stream=stream0)
return (buf6, primals_1, primals_2, primals_4, buf1, buf3, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((8, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 8, 1, 1), (8, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_3(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 16
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tl.sigmoid(tmp1)
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (8, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (8,), (1,))
assert_size_stride(primals_4, (4, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 8, 1, 1), (8, 1, 1, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(32)](buf3, primals_3, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_3
buf4 = extern_kernels.convolution(buf3, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 1, 1), (4, 1, 1, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(16)](buf5, primals_5, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_sigmoid_3[grid(256)](primals_1, buf5, buf6,
256, XBLOCK=256, num_warps=4, num_stages=1)
return buf6, primals_1, primals_2, primals_4, buf1, buf3, buf5
class SEModuleNew(nn.Module):
def __init__(self, channels, reduction=16, act_layer=nn.ReLU):
super(SEModuleNew, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
reduction_channels = max(channels // reduction, 8)
self.fc1 = nn.Conv2d(channels, reduction_channels, kernel_size=1,
padding=0, bias=True)
self.act = act_layer(inplace=True)
self.fc2 = nn.Conv2d(reduction_channels, channels, kernel_size=1,
padding=0, bias=True)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
Fanzhongjie/ARFE
|
SEModule
| false
| 450
|
[
"Apache-2.0"
] | 0
|
4b96b8c5bc0895d3d30acec2a490f81a860fe860
|
https://github.com/Fanzhongjie/ARFE/tree/4b96b8c5bc0895d3d30acec2a490f81a860fe860
|
SigmoidDeepLiftModel
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/3v/c3v7n6hzyrv5pn6uojl3hf6tko347a672spakigdzmqm7ebd4zwl.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/2h/c2h7x7vqvl2ldlya5jpbhvac4kxygymipwfzvir2qf4zuwykft5n.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_3,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + (x0), tmp1, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [lin1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, buf4, 256, grid=grid(256), stream=stream0)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [lin2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf3, 256, grid=grid(256), stream=stream0)
return (buf3, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf3, primals_3, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp3 = 0.0
tmp4 = tmp2 <= tmp3
tl.store(in_out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.sigmoid(tmp0)
tl.store(in_out_ptr0 + x0, tmp1, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, buf4,
256, XBLOCK=256, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused_sigmoid_1[grid(256)](buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf3, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf3, primals_3, buf4
class SigmoidDeepLiftModelNew(nn.Module):
"""
Model architecture from:
https://medium.com/coinmonks/create-a-neural-network-in
-pytorch-and-make-your-life-simpler-ec5367895199
"""
def __init__(self, num_in, num_hidden, num_out):
super().__init__()
self.num_in = num_in
self.num_hidden = num_hidden
self.num_out = num_out
self.lin1 = nn.Linear(num_in, num_hidden, bias=False)
self.lin2 = nn.Linear(num_hidden, num_out, bias=False)
self.lin1.weight = nn.Parameter(torch.ones(num_hidden, num_in))
self.lin2.weight = nn.Parameter(torch.ones(num_out, num_hidden))
self.relu1 = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.lin1.weight
primals_3 = self.lin2.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Europium248/captum
|
SigmoidDeepLiftModel
| false
| 468
|
[
"BSD-3-Clause"
] | 0
|
ac02fae2651b8d68a44bcb9d03b91cbb3959f2fc
|
https://github.com/Europium248/captum/tree/ac02fae2651b8d68a44bcb9d03b91cbb3959f2fc
|
BesselBasis
|
import math
import torch
import torch.jit
import torch.nn.functional
from torch import nn
import torch.nn
class BesselBasis(nn.Module):
r_max: 'float'
prefactor: 'float'
def __init__(self, r_max, num_basis=8, trainable=True):
"""Radial Bessel Basis, as proposed in DimeNet: https://arxiv.org/abs/2003.03123
Parameters
----------
r_max : float
Cutoff radius
num_basis : int
Number of Bessel Basis functions
trainable : bool
Train the :math:`n \\pi` part or not.
"""
super(BesselBasis, self).__init__()
self.trainable = trainable
self.num_basis = num_basis
self.r_max = float(r_max)
self.prefactor = 2.0 / self.r_max
bessel_weights = torch.linspace(start=1.0, end=num_basis, steps=
num_basis) * math.pi
if self.trainable:
self.bessel_weights = nn.Parameter(bessel_weights)
else:
self.register_buffer('bessel_weights', bessel_weights)
def forward(self, x):
"""
Evaluate Bessel Basis for input x.
Parameters
----------
x : torch.Tensor
Input
"""
numerator = torch.sin(self.bessel_weights * x.unsqueeze(-1) / self.
r_max)
return self.prefactor * (numerator / x.unsqueeze(-1))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'r_max': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.jit
import torch.nn.functional
from torch import nn
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_mul_sin_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp3 = 0.25
tmp4 = tmp2 * tmp3
tmp5 = tl_math.sin(tmp4)
tmp6 = tmp5 / tmp1
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tl.store(out_ptr0 + x2, tmp8, None)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (8,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 8), (512, 128, 32, 8, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_div_mul_sin_0[grid(2048)](primals_1, primals_2,
buf0, 2048, XBLOCK=128, num_warps=4, num_stages=1)
return buf0, primals_1, primals_2
class BesselBasisNew(nn.Module):
r_max: 'float'
prefactor: 'float'
def __init__(self, r_max, num_basis=8, trainable=True):
"""Radial Bessel Basis, as proposed in DimeNet: https://arxiv.org/abs/2003.03123
Parameters
----------
r_max : float
Cutoff radius
num_basis : int
Number of Bessel Basis functions
trainable : bool
Train the :math:`n \\pi` part or not.
"""
super(BesselBasisNew, self).__init__()
self.trainable = trainable
self.num_basis = num_basis
self.r_max = float(r_max)
self.prefactor = 2.0 / self.r_max
bessel_weights = torch.linspace(start=1.0, end=num_basis, steps=
num_basis) * math.pi
if self.trainable:
self.bessel_weights = nn.Parameter(bessel_weights)
else:
self.register_buffer('bessel_weights', bessel_weights)
def forward(self, input_0):
primals_1 = self.bessel_weights
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
albertzhu01/nequip
|
BesselBasis
| false
| 1,396
|
[
"MIT"
] | 0
|
63ba41185e7852ebb6f68983ec30d1f569e43271
|
https://github.com/albertzhu01/nequip/tree/63ba41185e7852ebb6f68983ec30d1f569e43271
|
Homoscedastic
|
import torch
class Homoscedastic(torch.nn.Module):
"""https://arxiv.homoscedasticorg/abs/1705.07115"""
def __init__(self, n_tasks, reduction='sum'):
super(Homoscedastic, self).__init__()
self.n_tasks = n_tasks
self.log_vars = torch.nn.Parameter(torch.zeros(self.n_tasks))
self.reduction = reduction
def forward(self, losses):
device = losses.device
stds = (torch.exp(self.log_vars) ** (1 / 2)).to(device)
coeffs = 1 / stds ** 2
multi_task_losses = coeffs * losses + torch.log(stds)
if self.reduction == 'sum':
multi_task_losses = multi_task_losses.sum()
if self.reduction == 'mean':
multi_task_losses = multi_task_losses.mean()
return multi_task_losses
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_tasks': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_exp_log_mul_pow_reciprocal_sum_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex % 4
r2 = rindex
tmp0 = tl.load(in_ptr0 + r0, None, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + r2, None)
tmp1 = tl_math.exp(tmp0)
tmp2 = libdevice.sqrt(tmp1)
tmp3 = tmp2 * tmp2
tmp4 = tl.full([1], 1, tl.int32)
tmp5 = tmp4 / tmp3
tmp6 = 1.0
tmp7 = tmp5 * tmp6
tmp9 = tmp7 * tmp8
tmp10 = tl_math.log(tmp2)
tmp11 = tmp9 + tmp10
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_add_exp_log_mul_pow_reciprocal_sum_0[grid(1)](
primals_2, primals_1, buf0, 1, 256, num_warps=2, num_stages=1)
return buf0, primals_1, primals_2
class HomoscedasticNew(torch.nn.Module):
"""https://arxiv.homoscedasticorg/abs/1705.07115"""
def __init__(self, n_tasks, reduction='sum'):
super(HomoscedasticNew, self).__init__()
self.n_tasks = n_tasks
self.log_vars = torch.nn.Parameter(torch.zeros(self.n_tasks))
self.reduction = reduction
def forward(self, input_0):
primals_2 = self.log_vars
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
moelmahdy/JRS-MTL
|
Homoscedastic
| false
| 4,022
|
[
"BSD-3-Clause"
] | 0
|
5abec9e06dad2721929738b1734350ed847e9d5a
|
https://github.com/moelmahdy/JRS-MTL/tree/5abec9e06dad2721929738b1734350ed847e9d5a
|
PositionwiseFeedForward
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/3v/c3vxisrcvpivjiljyrwifud4ef5ufg6hhb5foeewz3z7exlpvh2b.py
# Topologically Sorted Source Nodes: [relu, contiguous_1], Original ATen: [aten.relu, aten.clone, aten.threshold_backward]
# Source node to ATen node mapping:
# contiguous_1 => clone_1
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_clone_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_clone_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_relu_threshold_backward_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_relu_threshold_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr1 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu, contiguous_1], Original ATen: [aten.relu, aten.clone, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_relu_threshold_backward_0.run(buf0, primals_2, buf1, buf3, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_relu_threshold_backward_0(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr1 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_clone_relu_threshold_backward_0[grid(256)](buf0,
primals_2, buf1, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = buf0
del buf0
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf3
class PositionwiseFeedForwardNew(nn.Module):
"""Implements FFN equation."""
def __init__(self, d_model, d_ff, dropout=0.1):
super(PositionwiseFeedForwardNew, self).__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.norm = nn.Sequential()
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = None
def forward(self, input_0):
primals_1 = self.w_1.weight
primals_2 = self.w_1.bias
primals_4 = self.w_2.weight
primals_5 = self.w_2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
fellenB/dcp
|
PositionwiseFeedForward
| false
| 3,492
|
[
"MIT"
] | 0
|
3ca7724799d38ff8a56acb4b8b9011bb41932cb0
|
https://github.com/fellenB/dcp/tree/3ca7724799d38ff8a56acb4b8b9011bb41932cb0
|
TensorClampMax
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/tg/ctggfgjpksbppsxvi7yflqjzicnuldsi7ay5mnalfyyjmn4pnrxt.py
# Topologically Sorted Source Nodes: [clamp_max], Original ATen: [aten.clamp_max]
# Source node to ATen node mapping:
# clamp_max => clamp_max
# Graph fragment:
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%arg0_1, 0.1), kwargs = {})
triton_poi_fused_clamp_max_0 = async_compile.triton('triton_poi_fused_clamp_max_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.1
tmp2 = triton_helpers.minimum(tmp0, tmp1)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp_max], Original ATen: [aten.clamp_max]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_max_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.1
tmp2 = triton_helpers.minimum(tmp0, tmp1)
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_max_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class TensorClampMaxNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
bunderhi/torch2trt
|
TensorClampMax
| false
| 1,614
|
[
"MIT"
] | 0
|
fa5e31e742a0f0c9a9ee38909a6fa56bb07ba96d
|
https://github.com/bunderhi/torch2trt/tree/fa5e31e742a0f0c9a9ee38909a6fa56bb07ba96d
|
CharbonnierLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/4o/c4oqy72fdaliouj3mb6dz74zmds2djttl7pvwrhlac4244bp4hf7.py
# Topologically Sorted Source Nodes: [diff, mul, add, sqrt, loss], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.sum]
# Source node to ATen node mapping:
# add => add
# diff => sub
# loss => sum_1
# mul => mul
# sqrt => sqrt
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %sub), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1e-06), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sqrt,), kwargs = {})
triton_per_fused_add_mul_sqrt_sub_sum_0 = async_compile.triton('triton_per_fused_add_mul_sqrt_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_sqrt_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_sqrt_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 1e-06
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tl.store(out_ptr0 + (tl.full([1], 0, tl.int32)), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [diff, mul, add, sqrt, loss], Original ATen: [aten.sub, aten.mul, aten.add, aten.sqrt, aten.sum]
stream0 = get_raw_stream(0)
triton_per_fused_add_mul_sqrt_sub_sum_0.run(arg0_1, arg1_1, buf0, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mul_sqrt_sub_sum_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 1e-06
tmp5 = tmp3 + tmp4
tmp6 = libdevice.sqrt(tmp5)
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_add_mul_sqrt_sub_sum_0[grid(1)](arg0_1, arg1_1,
buf0, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class CharbonnierLossNew(nn.Module):
"""Charbonnier Loss (L1)"""
def __init__(self, eps=1e-06):
super(CharbonnierLossNew, self).__init__()
self.eps = eps
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
AbnerVictor/HCFlow
|
CharbonnierLoss
| false
| 9,088
|
[
"Apache-2.0"
] | 0
|
e55938ac9f58c117898e3d161ddc73b14d15289b
|
https://github.com/AbnerVictor/HCFlow/tree/e55938ac9f58c117898e3d161ddc73b14d15289b
|
NextMinMinusAbsBlockNoNorm
|
import torch
import warnings
import torch.nn as nn
import torch.nn.functional as F
from torch import optim as optim
class LayerNorm(nn.Module):
""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-06, data_format='channels_last'
):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ['channels_last', 'channels_first']:
raise NotImplementedError
self.normalized_shape = normalized_shape,
def forward(self, x):
if self.data_format == 'channels_last':
return F.layer_norm(x, self.normalized_shape, self.weight, self
.bias, self.eps)
elif self.data_format == 'channels_first':
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class Minimum(nn.Module):
def forward(self, x, y):
return torch.minimum(x, y)
class NextMinBlock(nn.Module):
""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
kernel_size (int): dws kernel_size
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_path=0.0, layer_scale_init_value=1e-06,
kernel_size=7):
super().__init__()
if kernel_size != 7:
warnings.warn(f'Using kernel_size: {kernel_size}')
self.dwconv_left = nn.Conv2d(dim, dim, kernel_size=kernel_size,
padding=kernel_size // 2, groups=dim)
self.dwconv_right = nn.Conv2d(dim, dim, kernel_size=kernel_size,
padding=kernel_size // 2, groups=dim)
self.instance_norm_relu = nn.Sequential(nn.InstanceNorm2d(dim), nn.
ReLU())
self.min = Minimum()
self.norm = LayerNorm(dim, eps=1e-06)
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path
) if drop_path > 0.0 else nn.Identity()
def forward(self, x):
input = x
x_left = self.dwconv_left(x)
x_right = self.dwconv_right(x)
x_left = self.instance_norm_relu(x_left)
x_right = self.instance_norm_relu(x_right)
x = self.min(x_left, x_right)
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2)
x = input + self.drop_path(x)
return x
class Abs(nn.Module):
def forward(self, x):
return torch.abs(x)
class NextMinMinusAbsBlockNoNorm(NextMinBlock):
def __init__(self, dim, drop_path=0.0, layer_scale_init_value=1e-06,
kernel_size=7):
super().__init__(dim, drop_path=drop_path, layer_scale_init_value=
layer_scale_init_value, kernel_size=kernel_size)
self.lambda_ = 2.0
self.abs = Abs()
self.instance_norm_relu = nn.Sequential(nn.ReLU())
def forward(self, x):
input = x
x_left = self.dwconv_left(x)
x_right = self.dwconv_right(x)
x_left = self.instance_norm_relu(x_left)
x_right = self.instance_norm_relu(x_right)
x = self.lambda_ * self.min(x_left, x_right) - self.abs(x_left -
x_right)
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2)
x = input + self.drop_path(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import warnings
import torch.nn as nn
import torch.nn.functional as F
from torch import optim as optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask)
tmp11 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp13 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask)
tmp21 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp23 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask)
tmp31 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp33 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp1, tmp3)
tmp5 = triton_helpers.minimum(tmp2, tmp4)
tmp6 = 2.0
tmp7 = tmp5 * tmp6
tmp8 = tmp2 - tmp4
tmp9 = tl_math.abs(tmp8)
tmp10 = tmp7 - tmp9
tmp12 = triton_helpers.maximum(tmp1, tmp11)
tmp14 = triton_helpers.maximum(tmp1, tmp13)
tmp15 = triton_helpers.minimum(tmp12, tmp14)
tmp16 = tmp15 * tmp6
tmp17 = tmp12 - tmp14
tmp18 = tl_math.abs(tmp17)
tmp19 = tmp16 - tmp18
tmp20 = tmp10 + tmp19
tmp22 = triton_helpers.maximum(tmp1, tmp21)
tmp24 = triton_helpers.maximum(tmp1, tmp23)
tmp25 = triton_helpers.minimum(tmp22, tmp24)
tmp26 = tmp25 * tmp6
tmp27 = tmp22 - tmp24
tmp28 = tl_math.abs(tmp27)
tmp29 = tmp26 - tmp28
tmp30 = tmp20 + tmp29
tmp32 = triton_helpers.maximum(tmp1, tmp31)
tmp34 = triton_helpers.maximum(tmp1, tmp33)
tmp35 = triton_helpers.minimum(tmp32, tmp34)
tmp36 = tmp35 * tmp6
tmp37 = tmp32 - tmp34
tmp38 = tl_math.abs(tmp37)
tmp39 = tmp36 - tmp38
tmp40 = tmp30 + tmp39
tmp41 = 4.0
tmp42 = tmp40 / tmp41
tmp43 = tmp10 - tmp42
tmp44 = tmp43 * tmp43
tmp45 = tmp19 - tmp42
tmp46 = tmp45 * tmp45
tmp47 = tmp44 + tmp46
tmp48 = tmp29 - tmp42
tmp49 = tmp48 * tmp48
tmp50 = tmp47 + tmp49
tmp51 = tmp39 - tmp42
tmp52 = tmp51 * tmp51
tmp53 = tmp50 + tmp52
tmp54 = tmp53 / tmp41
tl.store(out_ptr0 + x2, tmp42, xmask)
tl.store(out_ptr1 + x2, tmp54, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr,
XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y1 = yindex // 4
y0 = yindex % 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tmp3 = tl.load(in_ptr1 + (x2 + 16 * y3), xmask & ymask)
tmp11 = tl.load(in_ptr2 + (x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp13 = tl.load(in_ptr3 + (x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp18 = tl.load(in_ptr4 + y0, ymask, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr5 + y0, ymask, eviction_policy='evict_last')
tmp1 = tl.full([1, 1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp1, tmp3)
tmp5 = triton_helpers.minimum(tmp2, tmp4)
tmp6 = 2.0
tmp7 = tmp5 * tmp6
tmp8 = tmp2 - tmp4
tmp9 = tl_math.abs(tmp8)
tmp10 = tmp7 - tmp9
tmp12 = tmp10 - tmp11
tmp14 = 1e-06
tmp15 = tmp13 + tmp14
tmp16 = libdevice.rsqrt(tmp15)
tmp17 = tmp12 * tmp16
tmp19 = tmp17 * tmp18
tmp21 = tmp19 + tmp20
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp21, xmask & ymask)
@triton.jit
def triton_poi_fused_gelu_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tl.store(out_ptr0 + (x2 + 16 * y3), tmp4, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 1, 7, 7), (49, 49, 7, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 1, 7, 7), (49, 49, 7, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (16, 4), (4, 1))
assert_size_stride(primals_9, (16,), (1,))
assert_size_stride(primals_10, (4, 16), (16, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1,
1), padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(256)](buf3, primals_5, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64)](buf1, buf3, buf4,
buf5, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_2[grid(16, 16)](buf1, buf3, buf4,
buf5, primals_6, primals_7, buf6, 16, 16, XBLOCK=16, YBLOCK=16,
num_warps=4, num_stages=1)
del buf4
del buf5
del primals_7
buf7 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf6, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_8, (4, 16), (1, 4), 0),
alpha=1, beta=1, out=buf7)
del primals_9
buf8 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.
float32)
triton_poi_fused_gelu_3[grid(1024)](buf7, buf8, 1024, XBLOCK=256,
num_warps=4, num_stages=1)
buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf8, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_10, (16, 4), (1, 16), 0
), alpha=1, beta=1, out=buf9)
del primals_11
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_4[grid(16, 16)](primals_1, primals_12, buf9,
buf10, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
return (buf10, primals_1, primals_2, primals_4, primals_6, primals_12,
buf1, buf3, reinterpret_tensor(buf6, (64, 4), (4, 1), 0), buf7,
reinterpret_tensor(buf8, (64, 16), (16, 1), 0), buf9, primals_10,
primals_8)
class LayerNorm(nn.Module):
""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-06, data_format='channels_last'
):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ['channels_last', 'channels_first']:
raise NotImplementedError
self.normalized_shape = normalized_shape,
def forward(self, x):
if self.data_format == 'channels_last':
return F.layer_norm(x, self.normalized_shape, self.weight, self
.bias, self.eps)
elif self.data_format == 'channels_first':
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class Minimum(nn.Module):
def forward(self, x, y):
return torch.minimum(x, y)
class NextMinBlock(nn.Module):
""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
kernel_size (int): dws kernel_size
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_path=0.0, layer_scale_init_value=1e-06,
kernel_size=7):
super().__init__()
if kernel_size != 7:
warnings.warn(f'Using kernel_size: {kernel_size}')
self.dwconv_left = nn.Conv2d(dim, dim, kernel_size=kernel_size,
padding=kernel_size // 2, groups=dim)
self.dwconv_right = nn.Conv2d(dim, dim, kernel_size=kernel_size,
padding=kernel_size // 2, groups=dim)
self.instance_norm_relu = nn.Sequential(nn.InstanceNorm2d(dim), nn.
ReLU())
self.min = Minimum()
self.norm = LayerNorm(dim, eps=1e-06)
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path
) if drop_path > 0.0 else nn.Identity()
def forward(self, x):
input = x
x_left = self.dwconv_left(x)
x_right = self.dwconv_right(x)
x_left = self.instance_norm_relu(x_left)
x_right = self.instance_norm_relu(x_right)
x = self.min(x_left, x_right)
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2)
x = input + self.drop_path(x)
return x
class Abs(nn.Module):
def forward(self, x):
return torch.abs(x)
class NextMinMinusAbsBlockNoNormNew(NextMinBlock):
def __init__(self, dim, drop_path=0.0, layer_scale_init_value=1e-06,
kernel_size=7):
super().__init__(dim, drop_path=drop_path, layer_scale_init_value=
layer_scale_init_value, kernel_size=kernel_size)
self.lambda_ = 2.0
self.abs = Abs()
self.instance_norm_relu = nn.Sequential(nn.ReLU())
def forward(self, input_0):
primals_3 = self.gamma
primals_2 = self.dwconv_left.weight
primals_5 = self.dwconv_left.bias
primals_4 = self.dwconv_right.weight
primals_6 = self.dwconv_right.bias
primals_7 = self.norm.weight
primals_11 = self.norm.bias
primals_8 = self.pwconv1.weight
primals_9 = self.pwconv1.bias
primals_10 = self.pwconv2.weight
primals_12 = self.pwconv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0]
|
pgruening/ConvNeXt
|
NextMinMinusAbsBlockNoNorm
| false
| 12,893
|
[
"MIT"
] | 0
|
e9a1beaf312f3a724f0c21d098efbe7db872b049
|
https://github.com/pgruening/ConvNeXt/tree/e9a1beaf312f3a724f0c21d098efbe7db872b049
|
ToRGB
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_3, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/2o/c2oqkq7zaubqmw7vuixxlseb2ff5jzqqbyczicxlmsahuxwdpdyp.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, 1), kwargs = {})
triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/on/conl6eemb3vyjzkllydlouehrcxphkzifo5kmslz6fgiz6ixsw5h.py
# Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_2 => mul_2
# weight => mul_3
# Graph fragment:
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.5), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %view), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/go/cgoav6av4bzem4wmdmkiowlmjpeiubwc67bqu6es4aivwlfpxzhh.py
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# out_3 => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_6), kwargs = {})
triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_3, buf0, 16, grid=grid(16), stream=stream0)
del primals_3
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
triton_poi_fused_mul_1.run(primals_4, buf1, 4, grid=grid(4), stream=stream0)
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1, out], Original ATen: [aten.mul, aten.addmm]
extern_kernels.addmm(buf1, primals_5, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_2, weight], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_2, buf2, buf3, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.add]
triton_poi_fused_add_3.run(buf5, primals_6, 192, grid=grid(192), stream=stream0)
del primals_6
return (buf5, primals_2, primals_5, buf2, reinterpret_tensor(buf3, (12, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4, 4), (256, 16, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 3, 4, 1, 1), (12, 4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 3, 1, 1), (3, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.autograd import Function
import math
import random
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 3, 4, 1, 1), (12, 4, 1, 1, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (1, 3, 1, 1), (3, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_3, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_3
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mul_1[grid(4)](primals_4, buf1, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_4
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(buf1, primals_5, reinterpret_tensor(buf0, (4,
4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del buf0
del buf1
buf3 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.
float32)
triton_poi_fused_mul_2[grid(48)](primals_2, buf2, buf3, 48, XBLOCK=
64, num_warps=1, num_stages=1)
buf4 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf3, (12, 4,
1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf4, (1, 12, 4, 4), (192, 16, 4, 1))
buf5 = reinterpret_tensor(buf4, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf4
triton_poi_fused_add_3[grid(192)](buf5, primals_6, 192, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_6
return buf5, primals_2, primals_5, buf2, reinterpret_tensor(buf3, (12,
4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(primals_1, (1, 16, 4,
4), (256, 16, 4, 1), 0)
def upsample(in_tens, out_H=64):
in_H = in_tens.shape[2]
scale_factor = 1.0 * out_H / in_H
return nn.Upsample(scale_factor=scale_factor, mode='bilinear',
align_corners=False)(in_tens)
def make_kernel(k):
k = torch.tensor(k, dtype=torch.float32)
if k.ndim == 1:
k = k[None, :] * k[:, None]
k /= k.sum()
return k
def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0,
pad_x1, pad_y0, pad_y1):
_, channel, in_h, in_w = input.shape
input = input.reshape(-1, in_h, in_w, 1)
_, in_h, in_w, minor = input.shape
kernel_h, kernel_w = kernel.shape
out = input.view(-1, in_h, 1, in_w, 1, minor)
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0),
max(pad_y1, 0)])
out = out[:, max(-pad_y0, 0):out.shape[1] - max(-pad_y1, 0), max(-
pad_x0, 0):out.shape[2] - max(-pad_x1, 0), :]
out = out.permute(0, 3, 1, 2)
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x +
pad_x0 + pad_x1])
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
out = F.conv2d(out, w)
out = out.reshape(-1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h +
1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1)
out = out.permute(0, 2, 3, 1)
out = out[:, ::down_y, ::down_x, :]
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
return out.view(-1, channel, out_h, out_w)
def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)):
if input.device.type == 'cpu':
out = upfirdn2d_native(input, kernel, up, up, down, down, pad[0],
pad[1], pad[0], pad[1])
else:
out = UpFirDn2d.apply(input, kernel, (up, up), (down, down), (pad[0
], pad[1], pad[0], pad[1]))
return out
def fused_leaky_relu(input, bias=None, negative_slope=0.2, scale=2 ** 0.5):
if input.device.type == 'cpu':
if bias is not None:
rest_dim = [1] * (input.ndim - bias.ndim - 1)
return F.leaky_relu(input + bias.view(1, bias.shape[0], *
rest_dim), negative_slope=0.2) * scale
else:
return F.leaky_relu(input, negative_slope=0.2) * scale
else:
return FusedLeakyReLUFunction.apply(input, bias, negative_slope, scale)
class UpFirDn2dBackward(Function):
@staticmethod
def forward(ctx, grad_output, kernel, grad_kernel, up, down, pad, g_pad,
in_size, out_size):
up_x, up_y = up
down_x, down_y = down
g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1 = g_pad
grad_output = grad_output.reshape(-1, out_size[0], out_size[1], 1)
grad_input = upfirdn2d_op.upfirdn2d(grad_output, grad_kernel,
down_x, down_y, up_x, up_y, g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1)
grad_input = grad_input.view(in_size[0], in_size[1], in_size[2],
in_size[3])
ctx.save_for_backward(kernel)
pad_x0, pad_x1, pad_y0, pad_y1 = pad
ctx.up_x = up_x
ctx.up_y = up_y
ctx.down_x = down_x
ctx.down_y = down_y
ctx.pad_x0 = pad_x0
ctx.pad_x1 = pad_x1
ctx.pad_y0 = pad_y0
ctx.pad_y1 = pad_y1
ctx.in_size = in_size
ctx.out_size = out_size
return grad_input
@staticmethod
def backward(ctx, gradgrad_input):
kernel, = ctx.saved_tensors
gradgrad_input = gradgrad_input.reshape(-1, ctx.in_size[2], ctx.
in_size[3], 1)
gradgrad_out = upfirdn2d_op.upfirdn2d(gradgrad_input, kernel, ctx.
up_x, ctx.up_y, ctx.down_x, ctx.down_y, ctx.pad_x0, ctx.pad_x1,
ctx.pad_y0, ctx.pad_y1)
gradgrad_out = gradgrad_out.view(ctx.in_size[0], ctx.in_size[1],
ctx.out_size[0], ctx.out_size[1])
return gradgrad_out, None, None, None, None, None, None, None, None
class UpFirDn2d(Function):
@staticmethod
def forward(ctx, input, kernel, up, down, pad):
up_x, up_y = up
down_x, down_y = down
pad_x0, pad_x1, pad_y0, pad_y1 = pad
kernel_h, kernel_w = kernel.shape
_batch, channel, in_h, in_w = input.shape
ctx.in_size = input.shape
input = input.reshape(-1, in_h, in_w, 1)
ctx.save_for_backward(kernel, torch.flip(kernel, [0, 1]))
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
ctx.out_size = out_h, out_w
ctx.up = up_x, up_y
ctx.down = down_x, down_y
ctx.pad = pad_x0, pad_x1, pad_y0, pad_y1
g_pad_x0 = kernel_w - pad_x0 - 1
g_pad_y0 = kernel_h - pad_y0 - 1
g_pad_x1 = in_w * up_x - out_w * down_x + pad_x0 - up_x + 1
g_pad_y1 = in_h * up_y - out_h * down_y + pad_y0 - up_y + 1
ctx.g_pad = g_pad_x0, g_pad_x1, g_pad_y0, g_pad_y1
out = upfirdn2d_op.upfirdn2d(input, kernel, up_x, up_y, down_x,
down_y, pad_x0, pad_x1, pad_y0, pad_y1)
out = out.view(-1, channel, out_h, out_w)
return out
@staticmethod
def backward(ctx, grad_output):
kernel, grad_kernel = ctx.saved_tensors
grad_input = UpFirDn2dBackward.apply(grad_output, kernel,
grad_kernel, ctx.up, ctx.down, ctx.pad, ctx.g_pad, ctx.in_size,
ctx.out_size)
return grad_input, None, None, None, None
class Upsample(nn.Module):
def __init__(self, kernel, factor=2):
super().__init__()
self.factor = factor
kernel = make_kernel(kernel) * factor ** 2
self.register_buffer('kernel', kernel)
p = kernel.shape[0] - factor
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2
self.pad = pad0, pad1
def forward(self, input):
out = upfirdn2d(input, self.kernel, up=self.factor, down=1, pad=
self.pad)
return out
class Blur(nn.Module):
def __init__(self, kernel, pad, upsample_factor=1):
super().__init__()
kernel = make_kernel(kernel)
if upsample_factor > 1:
kernel = kernel * upsample_factor ** 2
self.register_buffer('kernel', kernel)
self.pad = pad
def forward(self, input):
out = upfirdn2d(input, self.kernel, pad=self.pad)
return out
class FusedLeakyReLUFunctionBackward(Function):
@staticmethod
def forward(ctx, grad_output, out, bias, negative_slope, scale):
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
empty = grad_output.new_empty(0)
grad_input = fused.fused_bias_act(grad_output, empty, out, 3, 1,
negative_slope, scale)
dim = [0]
if grad_input.ndim > 2:
dim += list(range(2, grad_input.ndim))
if bias:
grad_bias = grad_input.sum(dim).detach()
else:
grad_bias = None
return grad_input, grad_bias
@staticmethod
def backward(ctx, gradgrad_input, gradgrad_bias):
out, = ctx.saved_tensors
gradgrad_out = fused.fused_bias_act(gradgrad_input, gradgrad_bias,
out, 3, 1, ctx.negative_slope, ctx.scale)
return gradgrad_out, None, None, None, None
class FusedLeakyReLUFunction(Function):
@staticmethod
def forward(ctx, input, bias, negative_slope, scale):
empty = input.new_empty(0)
if bias is None:
bias = empty
ctx.bias = bias is not None
out = fused.fused_bias_act(input, bias, empty, 3, 0, negative_slope,
scale)
ctx.save_for_backward(out)
ctx.negative_slope = negative_slope
ctx.scale = scale
return out
@staticmethod
def backward(ctx, grad_output):
out, = ctx.saved_tensors
grad_input, grad_bias = FusedLeakyReLUFunctionBackward.apply(
grad_output, out, ctx.bias, ctx.negative_slope, ctx.scale)
return grad_input, grad_bias, None, None
class EqualLinear(nn.Module):
def __init__(self, in_dim, out_dim, bias=True, bias_init=0, lr_mul=1,
activation=None):
super().__init__()
self.weight = nn.Parameter(torch.randn(out_dim, in_dim).div_(lr_mul))
if bias:
self.bias = nn.Parameter(torch.zeros(out_dim).fill_(bias_init))
else:
self.bias = None
self.activation = activation
self.scale = 1 / math.sqrt(in_dim) * lr_mul
self.lr_mul = lr_mul
def forward(self, input):
if self.activation:
out = F.linear(input, self.weight * self.scale)
out = fused_leaky_relu(out, self.bias * self.lr_mul)
else:
out = F.linear(input, self.weight * self.scale, bias=self.bias *
self.lr_mul)
return out
def __repr__(self):
return (
f'{self.__class__.__name__}({self.weight.shape[1]}, {self.weight.shape[0]})'
)
class ModulatedConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, style_dim,
modulation_type='style', factorization_rank=5, num_kernels=1,
use_sigmoid=False, demodulate=True, upsample=False, downsample=
False, blur_kernel=[1, 3, 3, 1]):
super().__init__()
assert modulation_type in ['style', 'factorized']
assert num_kernels > 0
self.eps = 1e-08
self.kernel_size = kernel_size
self.in_channel = in_channel
self.out_channel = out_channel
self.upsample = upsample
self.downsample = downsample
self.factorization_rank = factorization_rank
self.use_sigmoid = use_sigmoid
self.modulation_type = modulation_type
self.num_kernels = num_kernels
if upsample:
factor = 2
p = len(blur_kernel) - factor - (kernel_size - 1)
pad0 = (p + 1) // 2 + factor - 1
pad1 = p // 2 + 1
self.blur = Blur(blur_kernel, pad=(pad0, pad1), upsample_factor
=factor)
if downsample:
factor = 2
p = len(blur_kernel) - factor + (kernel_size - 1)
pad0 = (p + 1) // 2
pad1 = p // 2
self.blur = Blur(blur_kernel, pad=(pad0, pad1))
fan_in = in_channel * kernel_size ** 2
self.scale = 1 / math.sqrt(fan_in)
self.padding = kernel_size // 2
self.weight = nn.Parameter(torch.randn(num_kernels, out_channel,
in_channel, kernel_size, kernel_size))
if num_kernels > 1:
self.kernel_attention = EqualLinear(style_dim, num_kernels,
bias_init=0, lr_mul=1.0)
if modulation_type == 'style':
self.modulation = EqualLinear(style_dim, in_channel, bias_init=1)
if modulation_type == 'factorized':
if use_sigmoid:
self.modulation = EqualLinear(style_dim, (in_channel +
out_channel) * self.factorization_rank, bias_init=0)
else:
self.modulation = EqualLinear(style_dim, (in_channel +
out_channel) * self.factorization_rank, bias_init=1)
self.demodulate = demodulate
def __repr__(self):
return (
f'{self.__class__.__name__}({self.in_channel}, {self.out_channel}, {self.kernel_size}, upsample={self.upsample}, downsample={self.downsample})'
)
def forward(self, input, style, epsilon_greedy=0.1, softmax=None):
batch, in_channel, height, width = input.shape
weight = self.weight
if self.num_kernels > 1:
if softmax is None:
logits = self.kernel_attention(style) * 1.0
softmax = nn.functional.softmax(logits, dim=1)
if random.random() < epsilon_greedy:
logit_noise = torch.randn(logits.shape)
softmax_noise = nn.functional.softmax(logit_noise, dim=1)
alpha = random.random() / 2.0
softmax = softmax * (1.0 - alpha) + softmax_noise * alpha
assert softmax.ndim == 2
weight = torch.unsqueeze(weight, dim=0) * softmax.view(batch,
self.num_kernels, 1, 1, 1, 1)
weight = weight.sum(dim=1)
if self.modulation_type == 'style':
style = self.modulation(style).view(batch, 1, in_channel, 1, 1)
weight = self.scale * weight * style
if self.modulation_type == 'factorized':
ab = self.modulation(style)
a, b = ab[:, :self.out_channel * self.factorization_rank], ab[:,
self.out_channel * self.factorization_rank:]
a, b = a.view(batch, self.out_channel, self.factorization_rank
), b.view(batch, self.factorization_rank, in_channel)
m = torch.bmm(a, b).view(batch, self.out_channel, in_channel, 1, 1)
if self.use_sigmoid:
m = F.sigmoid(m)
weight = self.scale * weight * m
if self.demodulate:
demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-08)
weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)
weight = weight.view(batch * self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
if self.upsample:
input = input.view(1, batch * in_channel, height, width)
weight = weight.view(batch, self.out_channel, in_channel, self.
kernel_size, self.kernel_size)
weight = weight.transpose(1, 2).reshape(batch * in_channel,
self.out_channel, self.kernel_size, self.kernel_size)
out = F.conv_transpose2d(input, weight, padding=0, stride=2,
groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
out = self.blur(out)
elif self.downsample:
input = self.blur(input)
_, _, height, width = input.shape
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
else:
input = input.view(1, batch * in_channel, height, width)
out = F.conv2d(input, weight, padding=self.padding, groups=batch)
_, _, height, width = out.shape
out = out.view(batch, self.out_channel, height, width)
return out
class ToRGBNew(nn.Module):
def __init__(self, in_channel, style_dim, upsample=True, blur_kernel=[1,
3, 3, 1]):
super().__init__()
if upsample:
self.upsample = Upsample(blur_kernel)
else:
self.upsample = None
self.conv = ModulatedConv2d(in_channel, 3, 1, style_dim, demodulate
=False)
self.bias = nn.Parameter(torch.zeros(1, 3, 1, 1))
def forward(self, input_0, input_1):
primals_6 = self.bias
primals_2 = self.conv.weight
primals_3 = self.conv.modulation.weight
primals_4 = self.conv.modulation.bias
primals_1 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
SavvaI/stylegan2-pytorch
|
ToRGB
| false
| 9,522
|
[
"MIT",
"BSD-2-Clause",
"Apache-2.0"
] | 0
|
b8e4b605bd951283ef2c9a784e7afa0a486975bb
|
https://github.com/SavvaI/stylegan2-pytorch/tree/b8e4b605bd951283ef2c9a784e7afa0a486975bb
|
PyramidDown
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/gy/cgyfx47penjbxrnlqdpur6wznrc2npiddss2rmhvsk53kjjd4wdb.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%convolution, %convolution_1, %convolution_2, %convolution_3], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4) % 4
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (4*x2)), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + (4*x2)), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr3 + (x0 + (4*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x3), tmp22, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1, 1, 5, 5), (25, 25, 5, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 0), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 2, 2), (4, 4, 2, 1))
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 16), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 2, 2), (4, 4, 2, 1))
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 32), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 2, 2), (4, 4, 2, 1))
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1, 4, 4), (64, 16, 4, 1), 48), arg1_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 1, 2, 2), (4, 4, 2, 1))
del arg0_1
del arg1_1
buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, buf1, buf2, buf3, buf4, 64, grid=grid(64), stream=stream0)
del buf0
del buf1
del buf2
del buf3
return (buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((1, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 4
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4 * x2), tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + 4 * x2), tmp14 & xmask, eviction_policy
='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 4, tl.int64)
tmp19 = tl.load(in_ptr3 + (x0 + 4 * x2), tmp16 & xmask, eviction_policy
='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x3, tmp22, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1, 1, 5, 5), (25, 25, 5, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1,
4, 4), (64, 16, 4, 1), 0), arg1_1, stride=(2, 2), padding=(2, 2
), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 2, 2), (4, 4, 2, 1))
buf1 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1,
4, 4), (64, 16, 4, 1), 16), arg1_1, stride=(2, 2), padding=(2,
2), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 2, 2), (4, 4, 2, 1))
buf2 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1,
4, 4), (64, 16, 4, 1), 32), arg1_1, stride=(2, 2), padding=(2,
2), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 2, 2), (4, 4, 2, 1))
buf3 = extern_kernels.convolution(reinterpret_tensor(arg0_1, (4, 1,
4, 4), (64, 16, 4, 1), 48), arg1_1, stride=(2, 2), padding=(2,
2), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf3, (4, 1, 2, 2), (4, 4, 2, 1))
del arg0_1
del arg1_1
buf4 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(64)](buf0, buf1, buf2, buf3, buf4, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del buf1
del buf2
del buf3
return buf4,
class PyramidDownNew(nn.Module):
def __init__(self) ->None:
super(PyramidDownNew, self).__init__()
self.filter = nn.Parameter(torch.tensor([[1, 4, 6, 4, 1], [4, 16,
24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4,
1]], dtype=torch.float).reshape(1, 1, 5, 5) / 256,
requires_grad=False)
def forward(self, input_0):
arg1_1 = self.filter
arg0_1 = input_0
output = call([arg0_1, arg1_1])
return output[0]
|
masanorihirano/pytorch_extra_mhirano
|
PyramidDown
| false
| 7,165
|
[
"MIT"
] | 1
|
d19e07445567c069793b7ca1a22a846d7cbce58d
|
https://github.com/masanorihirano/pytorch_extra_mhirano/tree/d19e07445567c069793b7ca1a22a846d7cbce58d
|
ResnetBlockFC
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/mp/cmpdsbnpgfsr7uwb7env74mojrq3nlzieqot6rnnkfpbzkkensbi.py
# Topologically Sorted Source Nodes: [relu_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/b3/cb3g6fwupaz5a5j23ckgaqji56bsmt4ixc37lwt344u76m75fqhf.py
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
# Source node to ATen node mapping:
# add => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_3), kwargs = {})
triton_poi_fused_add_2 = async_compile.triton('triton_poi_fused_add_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf2, primals_3, buf5, 256, grid=grid(256), stream=stream0)
del primals_3
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [add], Original ATen: [aten.add]
triton_poi_fused_add_2.run(buf4, primals_1, primals_5, 256, grid=grid(256), stream=stream0)
del primals_1
del primals_5
return (buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0), reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, buf5, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([1], 0, tl.int32)
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(256)](buf2,
primals_3, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf3
triton_poi_fused_add_2[grid(256)](buf4, primals_1, primals_5, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_5
return buf4, reinterpret_tensor(buf0, (64, 4), (4, 1), 0
), reinterpret_tensor(buf2, (64, 4), (4, 1), 0), primals_4, buf5
class ResnetBlockFCNew(nn.Module):
"""
Fully connected ResNet Block class.
Taken from DVR code.
:param size_in (int): input dimension
:param size_out (int): output dimension
:param size_h (int): hidden dimension
"""
def __init__(self, size_in, size_out=None, size_h=None, beta=0.0):
super().__init__()
if size_out is None:
size_out = size_in
if size_h is None:
size_h = min(size_in, size_out)
self.size_in = size_in
self.size_h = size_h
self.size_out = size_out
self.fc_0 = nn.Linear(size_in, size_h)
self.fc_1 = nn.Linear(size_h, size_out)
nn.init.constant_(self.fc_0.bias, 0.0)
nn.init.kaiming_normal_(self.fc_0.weight, a=0, mode='fan_in')
nn.init.constant_(self.fc_1.bias, 0.0)
nn.init.zeros_(self.fc_1.weight)
if beta > 0:
self.activation = nn.Softplus(beta=beta)
else:
self.activation = nn.ReLU()
if size_in == size_out:
self.shortcut = None
else:
self.shortcut = nn.Linear(size_in, size_out, bias=True)
nn.init.constant_(self.shortcut.bias, 0.0)
nn.init.kaiming_normal_(self.shortcut.weight, a=0, mode='fan_in')
def forward(self, input_0):
primals_2 = self.fc_0.weight
primals_3 = self.fc_0.bias
primals_4 = self.fc_1.weight
primals_5 = self.fc_1.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
alrivero/pixel-nerf
|
ResnetBlockFC
| false
| 9,798
|
[
"BSD-2-Clause"
] | 0
|
c054befe189602627f021cda8376adc5940c8668
|
https://github.com/alrivero/pixel-nerf/tree/c054befe189602627f021cda8376adc5940c8668
|
BCEDiceLoss
|
import torch
import torch.nn as nn
import torch.utils.data.distributed
from torch.backends import cudnn as cudnn
class BCEWithLogitsLoss2d(nn.Module):
"""Computationally stable version of 2D BCE loss.
"""
def __init__(self):
super(BCEWithLogitsLoss2d, self).__init__()
self.bce_loss = nn.BCEWithLogitsLoss(None, reduction='mean')
def forward(self, logits, targets):
logits_flat = logits.view(-1)
targets_flat = targets.view(-1)
return self.bce_loss(logits_flat, targets_flat)
class SoftDiceLoss(nn.Module):
"""SoftJaccard loss for binary problems.
"""
def forward(self, logits, labels):
num = labels.size(0)
m1 = torch.sigmoid(logits.view(num, -1))
m2 = labels.view(num, -1)
intersection = (m1 * m2).sum(1)
score = (intersection + 1e-15) / (m1.sum(1) + m2.sum(1) + 1e-15)
dice = score.sum(0) / num
return 1 - dice
class BCEDiceLoss(torch.nn.Module):
def __init__(self):
super(BCEDiceLoss, self).__init__()
self.dice = SoftDiceLoss()
self.bce = BCEWithLogitsLoss2d()
def forward(self, logits, targets):
targets.size(0)
loss = self.bce(logits, targets)
loss += self.dice(logits, targets)
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.utils.data.distributed
from torch.backends import cudnn as cudnn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None)
@triton.jit
def triton_per_fused_mul_sigmoid_sum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp2 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.sigmoid(tmp0)
tmp3 = tmp1 * tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp10 = tl.where(xmask, tmp8, 0)
tmp11 = tl.sum(tmp10, 1)[:, None]
tmp12 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp14 = tl.where(xmask, tmp12, 0)
tmp15 = tl.sum(tmp14, 1)[:, None]
tl.store(out_ptr0 + x0, tmp7, xmask)
tl.store(out_ptr1 + x0, tmp11, xmask)
tl.store(out_ptr2 + x0, tmp15, xmask)
@triton.jit
def triton_per_fused_add_binary_cross_entropy_with_logits_div_rsub_sum_2(
in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.
constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp4 = tl.load(in_ptr2 + r0, None)
tmp11 = tl.load(in_out_ptr0 + 0)
tmp12 = tl.broadcast_to(tmp11, [XBLOCK, 1])
tmp1 = 1e-15
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp5 + tmp1
tmp7 = tmp2 / tmp6
tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK])
tmp10 = tl.sum(tmp8, 1)[:, None]
tmp13 = 256.0
tmp14 = tmp12 / tmp13
tmp15 = 0.25
tmp16 = tmp10 * tmp15
tmp17 = 1.0
tmp18 = tmp17 - tmp16
tmp19 = tmp14 + tmp18
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp19, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_0[grid(1)](arg0_1,
arg1_1, buf0, 1, 256, num_warps=2, num_stages=1)
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
buf3 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused_mul_sigmoid_sum_1[grid(4)](arg1_1, arg0_1, buf1,
buf2, buf3, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf5 = buf0
del buf0
triton_per_fused_add_binary_cross_entropy_with_logits_div_rsub_sum_2[
grid(1)](buf5, buf1, buf2, buf3, 1, 4, XBLOCK=1, num_warps=2,
num_stages=1)
del buf1
del buf2
del buf3
return buf5,
class BCEWithLogitsLoss2d(nn.Module):
"""Computationally stable version of 2D BCE loss.
"""
def __init__(self):
super(BCEWithLogitsLoss2d, self).__init__()
self.bce_loss = nn.BCEWithLogitsLoss(None, reduction='mean')
def forward(self, logits, targets):
logits_flat = logits.view(-1)
targets_flat = targets.view(-1)
return self.bce_loss(logits_flat, targets_flat)
class SoftDiceLoss(nn.Module):
"""SoftJaccard loss for binary problems.
"""
def forward(self, logits, labels):
num = labels.size(0)
m1 = torch.sigmoid(logits.view(num, -1))
m2 = labels.view(num, -1)
intersection = (m1 * m2).sum(1)
score = (intersection + 1e-15) / (m1.sum(1) + m2.sum(1) + 1e-15)
dice = score.sum(0) / num
return 1 - dice
class BCEDiceLossNew(torch.nn.Module):
def __init__(self):
super(BCEDiceLossNew, self).__init__()
self.dice = SoftDiceLoss()
self.bce = BCEWithLogitsLoss2d()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
MIPT-Oulu/Collagen
|
BCEDiceLoss
| false
| 17,666
|
[
"MIT"
] | 4
|
0cbc4285d60e5c9fcc89f629fcf4321e80b7452c
|
https://github.com/MIPT-Oulu/Collagen/tree/0cbc4285d60e5c9fcc89f629fcf4321e80b7452c
|
GatedConv2d
|
import torch
import torch.nn as nn
from torch.nn import Parameter
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class GatedConv2d(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='reflect', activation='elu', norm=
'none', sn=False):
super(GatedConv2d, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
self.mask_conv2d = SpectralNorm(nn.Conv2d(in_channels,
out_channels, kernel_size, stride, padding=0, dilation=
dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
self.mask_conv2d = nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.pad(x)
conv = self.conv2d(x)
mask = self.mask_conv2d(x)
gated_mask = self.sigmoid(mask)
if self.activation:
conv = self.activation(conv)
x = conv * gated_mask
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + x0) + -4 * tl_math
.abs(-3 + x1) + 16 * x2), xmask)
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_elu_mul_sigmoid_1(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr1 + x2, xmask)
tmp4 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = 0.0
tmp7 = tmp2 > tmp6
tmp8 = 1.0
tmp9 = tmp2 * tmp8
tmp10 = libdevice.expm1(tmp9)
tmp11 = tmp10 * tmp8
tmp12 = tl.where(tmp7, tmp9, tmp11)
tmp13 = tl.sigmoid(tmp5)
tmp14 = tmp12 * tmp13
tl.store(in_out_ptr0 + x2, tmp2, xmask)
tl.store(in_out_ptr1 + x2, tmp5, xmask)
tl.store(out_ptr0 + x2, tmp14, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(256)](primals_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 1, 1), (4, 1, 1, 1))
buf3 = extern_kernels.convolution(buf0, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 1, 1), (4, 1, 1, 1))
buf2 = buf1
del buf1
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
triton_poi_fused_convolution_elu_mul_sigmoid_1[grid(16)](buf2, buf4,
primals_3, primals_5, buf5, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del primals_3
del primals_5
return buf5, primals_2, primals_4, buf0, buf2, buf4
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class GatedConv2dNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='reflect', activation='elu', norm=
'none', sn=False):
super(GatedConv2dNew, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU()
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
self.mask_conv2d = SpectralNorm(nn.Conv2d(in_channels,
out_channels, kernel_size, stride, padding=0, dilation=
dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
self.mask_conv2d = nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.conv2d.weight
primals_3 = self.conv2d.bias
primals_2 = self.mask_conv2d.weight
primals_5 = self.mask_conv2d.bias
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
autocomic/deepfillv2
|
GatedConv2d
| false
| 12,136
|
[
"MIT"
] | 0
|
4b0f565accbf20ee90093a4504b1cff0099d9cb9
|
https://github.com/autocomic/deepfillv2/tree/4b0f565accbf20ee90093a4504b1cff0099d9cb9
|
VoxelFeatureExtractor
|
import torch
from torch import nn
class VoxelFeatureExtractor(nn.Module):
"""Computes mean of non-zero points within voxel."""
def forward(self, feature, occupancy):
"""
:feature FloatTensor of shape (N, K, C)
:return FloatTensor of shape (N, C)
"""
denominator = occupancy.type_as(feature).view(-1, 1)
feature = (feature.sum(1) / denominator).contiguous()
return feature
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_sum_0[grid(64)](arg1_1, arg0_1, buf0, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class VoxelFeatureExtractorNew(nn.Module):
"""Computes mean of non-zero points within voxel."""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
eraofelix/PV-RCNN
|
VoxelFeatureExtractor
| false
| 6,647
|
[
"MIT"
] | 1
|
6361ec99cc1c92120263ef56b2c2b003c2cd7264
|
https://github.com/eraofelix/PV-RCNN/tree/6361ec99cc1c92120263ef56b2c2b003c2cd7264
|
ConvLR
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/tz/ctzujsq7awgfba2xg6kyet666mjwc5fqg7u5vdz4wt76nx5kn2km.py
# Topologically Sorted Source Nodes: [conv2d_1, add], Original ATen: [aten.convolution, aten.add]
# Source node to ATen node mapping:
# add => add
# conv2d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution, %primals_3, %primals_4, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_1, %convolution_2), kwargs = {})
triton_poi_fused_add_convolution_0 = async_compile.triton('triton_poi_fused_add_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 81) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 9, 9), (81, 81, 9, 1))
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 9, 9), (324, 81, 9, 1))
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_2, primals_5, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 9, 9), (324, 81, 9, 1))
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, add], Original ATen: [aten.convolution, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_convolution_0.run(buf3, primals_4, buf2, 1296, grid=grid(1296), stream=stream0)
del buf2
del primals_4
return (buf3, primals_1, primals_2, primals_3, primals_5, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 81 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tl.store(in_out_ptr0 + x3, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(4, 4), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 9, 9), (81, 81, 9, 1))
buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 9, 9), (324, 81, 9, 1))
buf2 = extern_kernels.convolution(primals_2, primals_5, stride=(1,
1), padding=(4, 4), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 9, 9), (324, 81, 9, 1))
buf3 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_add_convolution_0[grid(1296)](buf3, primals_4,
buf2, 1296, XBLOCK=128, num_warps=4, num_stages=1)
del buf2
del primals_4
return buf3, primals_1, primals_2, primals_3, primals_5, buf0
class ConvLRNew(nn.Module):
"""[u * v + res] version of torch.nn.ConvLR"""
def __init__(self, in_planes, out_planes, kernel_size, stride, padding,
rank_ratio=0.25, bias=True, device=None, dtype=None):
super().__init__()
sliced_rank = int(min(in_planes, out_planes) * rank_ratio)
self.u = nn.Conv2d(in_channels=in_planes, out_channels=sliced_rank,
kernel_size=kernel_size, stride=stride, padding=padding, bias=
False, device=device, dtype=dtype)
self.v = nn.Conv2d(in_channels=sliced_rank, out_channels=out_planes,
kernel_size=1, stride=1, padding=0, bias=bias, device=device,
dtype=dtype)
self.res = nn.Conv2d(in_channels=in_planes, out_channels=out_planes,
kernel_size=kernel_size, stride=stride, padding=padding, bias=
False, device=device, dtype=dtype)
def forward(self, input_0):
primals_1 = self.u.weight
primals_3 = self.v.weight
primals_4 = self.v.bias
primals_2 = self.res.weight
primals_5 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
razered/alternate
|
ConvLR
| false
| 10,705
|
[
"MIT"
] | 0
|
18e876aadc76d5f675cf940549b4bcd6e80a0288
|
https://github.com/razered/alternate/tree/18e876aadc76d5f675cf940549b4bcd6e80a0288
|
FCNet
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class FCNet(nn.Module):
""" fully-connected neural network """
def __init__(self):
super(FCNet, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc2 = nn.Linear(400, 200)
self.fc3 = nn.Linear(200, 100)
self.fc4 = nn.Linear(100, 10)
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return F.log_softmax(x, dim=1)
def get_inputs():
return [torch.rand([4, 784])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 400
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 200
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 100
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_per_fused__log_softmax_3(in_ptr0, out_ptr2, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
rnumel = 10
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(rmask & xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(rmask & xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tl_math.log(tmp10)
tmp12 = tmp5 - tmp11
tl.store(out_ptr2 + (r1 + 10 * x0), tmp12, rmask & xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 784), (784, 1))
assert_size_stride(primals_2, (400, 784), (784, 1))
assert_size_stride(primals_3, (400,), (1,))
assert_size_stride(primals_4, (200, 400), (400, 1))
assert_size_stride(primals_5, (200,), (1,))
assert_size_stride(primals_6, (100, 200), (200, 1))
assert_size_stride(primals_7, (100,), (1,))
assert_size_stride(primals_8, (10, 100), (100, 1))
assert_size_stride(primals_9, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (784,
400), (1, 784), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(1600)](buf1, primals_3, 1600, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 200), (200, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (400, 200), (
1, 400), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(800)](buf3, primals_5, 800, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 100), (100, 1), torch.float32)
extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (200, 100), (
1, 200), 0), out=buf4)
buf5 = buf4
del buf4
triton_poi_fused_relu_2[grid(400)](buf5, primals_7, 400, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_9, buf5, reinterpret_tensor(primals_8,
(100, 10), (1, 100), 0), alpha=1, beta=1, out=buf6)
del primals_9
buf9 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
triton_per_fused__log_softmax_3[grid(4)](buf6, buf9, 4, 10, XBLOCK=
1, num_warps=2, num_stages=1)
del buf6
return (buf9, primals_1, buf1, buf3, buf5, buf9, primals_8, primals_6,
primals_4)
class FCNetNew(nn.Module):
""" fully-connected neural network """
def __init__(self):
super(FCNetNew, self).__init__()
self.fc1 = nn.Linear(784, 400)
self.fc2 = nn.Linear(400, 200)
self.fc3 = nn.Linear(200, 100)
self.fc4 = nn.Linear(100, 10)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
animeshbchowdhury/robust-pnr-time
|
FCNet
| false
| 12,098
|
[
"BSD-3-Clause"
] | 0
|
301c5d973b8c024a85fdab915986ecf257e7698b
|
https://github.com/animeshbchowdhury/robust-pnr-time/tree/301c5d973b8c024a85fdab915986ecf257e7698b
|
predicates
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/cv/ccv6wuuk2f3t36jk6z6siizklj3kweutyi3yvvr2vh7sazv7nrd4.py
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# ret => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%primals_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/yt/cytqs2smvhzqhhhv5nhgfsoz7g7pop2pi3eoeztc4dtuktnwv56m.py
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# ret => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [ret], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
del buf0
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [ret_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2)
del buf1
return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.functional as func
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](primals_1, buf0, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2)
del buf1
return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0)
class predicatesNew(nn.Module):
def __init__(self, num_predicates, body_len):
"""
Use these to express a choice amongst predicates. For use when
learning rules.
Parameters:
----------
num_predicates: The domain size of predicates
body_len: The number of predicates to choose
"""
super().__init__()
self.log_weights = nn.Parameter(torch.zeros(body_len,
num_predicates).uniform_(-0.1, 0.1))
def get_params(self):
ret = func.softmax(self.log_weights, dim=1)
return ret
def forward(self, input_0):
primals_1 = self.log_weights
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
IBM/LOA
|
predicates
| false
| 8,275
|
[
"MIT"
] | 12
|
9cd402c814f1d9c8b4de52ee18a3cb7ec2c6d07a
|
https://github.com/IBM/LOA/tree/9cd402c814f1d9c8b4de52ee18a3cb7ec2c6d07a
|
TAM
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/v3/cv3dgybcc7jv6jepupgpr7hnjijy3kfsyf6alnhse5bot5d22ca4.py
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.sum, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_1 => sum_1
# out_2 => relu
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_3, [0]), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%sum_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_sum_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_sum_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_sum_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_sum_threshold_backward_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 64)
x2 = xindex
tmp0 = tl.full([1], 0, tl.int64)
tmp1 = tmp0 >= tmp0
tmp2 = tl.full([1], 1, tl.int64)
tmp3 = tmp0 < tmp2
tmp4 = (-1) + x1
tmp5 = tmp4 >= tmp0
tmp6 = tmp5 & tmp3
tmp7 = tl.load(in_ptr0 + ((-64) + x2), tmp6 & xmask, other=0.0)
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp3, tmp7, tmp8)
tmp10 = tmp0 >= tmp2
tmp11 = tl.full([1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_out_ptr0 + (x2), tmp13 & xmask, other=0.0)
tmp15 = tmp0 >= tmp11
tmp16 = tl.full([1], 3, tl.int64)
tmp17 = tmp0 < tmp16
tmp18 = 1 + x1
tmp19 = tl.full([1], 4, tl.int64)
tmp20 = tmp18 < tmp19
tmp21 = tmp20 & tmp15
tmp22 = tl.load(in_ptr1 + (64 + x2), tmp21 & xmask, other=0.0)
tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype)
tmp24 = tl.where(tmp15, tmp22, tmp23)
tmp25 = tl.where(tmp13, tmp14, tmp24)
tmp26 = tl.where(tmp3, tmp9, tmp25)
tmp27 = tmp2 >= tmp0
tmp28 = tmp2 < tmp2
tmp29 = tmp5 & tmp28
tmp30 = tl.load(in_ptr0 + ((-64) + x2), tmp29 & xmask, other=0.0)
tmp31 = tl.full(tmp30.shape, 0.0, tmp30.dtype)
tmp32 = tl.where(tmp28, tmp30, tmp31)
tmp33 = tmp2 >= tmp2
tmp34 = tmp2 < tmp11
tmp35 = tmp33 & tmp34
tmp36 = tl.load(in_out_ptr0 + (x2), tmp35 & xmask, other=0.0)
tmp37 = tmp2 >= tmp11
tmp38 = tmp2 < tmp16
tmp39 = tmp20 & tmp37
tmp40 = tl.load(in_ptr1 + (64 + x2), tmp39 & xmask, other=0.0)
tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype)
tmp42 = tl.where(tmp37, tmp40, tmp41)
tmp43 = tl.where(tmp35, tmp36, tmp42)
tmp44 = tl.where(tmp28, tmp32, tmp43)
tmp45 = tmp26 + tmp44
tmp46 = tmp11 >= tmp0
tmp47 = tmp11 < tmp2
tmp48 = tmp5 & tmp47
tmp49 = tl.load(in_ptr0 + ((-64) + x2), tmp48 & xmask, other=0.0)
tmp50 = tl.full(tmp49.shape, 0.0, tmp49.dtype)
tmp51 = tl.where(tmp47, tmp49, tmp50)
tmp52 = tmp11 >= tmp2
tmp53 = tmp11 < tmp11
tmp54 = tmp52 & tmp53
tmp55 = tl.load(in_out_ptr0 + (x2), tmp54 & xmask, other=0.0)
tmp56 = tmp11 >= tmp11
tmp57 = tmp11 < tmp16
tmp58 = tmp20 & tmp56
tmp59 = tl.load(in_ptr1 + (64 + x2), tmp58 & xmask, other=0.0)
tmp60 = tl.full(tmp59.shape, 0.0, tmp59.dtype)
tmp61 = tl.where(tmp56, tmp59, tmp60)
tmp62 = tl.where(tmp54, tmp55, tmp61)
tmp63 = tl.where(tmp47, tmp51, tmp62)
tmp64 = tmp45 + tmp63
tmp65 = tl.full([1], 0, tl.int32)
tmp66 = triton_helpers.maximum(tmp65, tmp64)
tmp67 = 0.0
tmp68 = tmp66 <= tmp67
tl.store(out_ptr0 + (x2), tmp68, xmask)
tl.store(out_ptr1 + (x2), tmp66, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_2, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(primals_2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = reinterpret_tensor(buf1, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0); del buf1 # reuse
buf4 = empty_strided_cuda((1, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.bool)
buf5 = empty_strided_cuda((1, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1, out_2], Original ATen: [aten.sum, aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_sum_threshold_backward_0.run(buf3, buf0, buf2, buf4, buf5, 256, grid=grid(256), stream=stream0)
del buf0
del buf2
del buf3
return (reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_2, primals_3, primals_4, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1, 1, 1), (1, 1, 1, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_sum_threshold_backward_0(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 64
x2 = xindex
tmp0 = tl.full([1], 0, tl.int64)
tmp2 = tl.full([1], 1, tl.int64)
tmp3 = tmp0 < tmp2
tmp4 = -1 + x1
tmp5 = tmp4 >= tmp0
tmp6 = tmp5 & tmp3
tmp7 = tl.load(in_ptr0 + (-64 + x2), tmp6 & xmask, other=0.0)
tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype)
tmp9 = tl.where(tmp3, tmp7, tmp8)
tmp10 = tmp0 >= tmp2
tmp11 = tl.full([1], 2, tl.int64)
tmp12 = tmp0 < tmp11
tmp13 = tmp10 & tmp12
tmp14 = tl.load(in_out_ptr0 + x2, tmp13 & xmask, other=0.0)
tmp15 = tmp0 >= tmp11
tl.full([1], 3, tl.int64)
tmp18 = 1 + x1
tmp19 = tl.full([1], 4, tl.int64)
tmp20 = tmp18 < tmp19
tmp21 = tmp20 & tmp15
tmp22 = tl.load(in_ptr1 + (64 + x2), tmp21 & xmask, other=0.0)
tmp23 = tl.full(tmp22.shape, 0.0, tmp22.dtype)
tmp24 = tl.where(tmp15, tmp22, tmp23)
tmp25 = tl.where(tmp13, tmp14, tmp24)
tmp26 = tl.where(tmp3, tmp9, tmp25)
tmp28 = tmp2 < tmp2
tmp29 = tmp5 & tmp28
tmp30 = tl.load(in_ptr0 + (-64 + x2), tmp29 & xmask, other=0.0)
tmp31 = tl.full(tmp30.shape, 0.0, tmp30.dtype)
tmp32 = tl.where(tmp28, tmp30, tmp31)
tmp33 = tmp2 >= tmp2
tmp34 = tmp2 < tmp11
tmp35 = tmp33 & tmp34
tmp36 = tl.load(in_out_ptr0 + x2, tmp35 & xmask, other=0.0)
tmp37 = tmp2 >= tmp11
tmp39 = tmp20 & tmp37
tmp40 = tl.load(in_ptr1 + (64 + x2), tmp39 & xmask, other=0.0)
tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype)
tmp42 = tl.where(tmp37, tmp40, tmp41)
tmp43 = tl.where(tmp35, tmp36, tmp42)
tmp44 = tl.where(tmp28, tmp32, tmp43)
tmp45 = tmp26 + tmp44
tmp47 = tmp11 < tmp2
tmp48 = tmp5 & tmp47
tmp49 = tl.load(in_ptr0 + (-64 + x2), tmp48 & xmask, other=0.0)
tmp50 = tl.full(tmp49.shape, 0.0, tmp49.dtype)
tmp51 = tl.where(tmp47, tmp49, tmp50)
tmp52 = tmp11 >= tmp2
tmp53 = tmp11 < tmp11
tmp54 = tmp52 & tmp53
tmp55 = tl.load(in_out_ptr0 + x2, tmp54 & xmask, other=0.0)
tmp56 = tmp11 >= tmp11
tmp58 = tmp20 & tmp56
tmp59 = tl.load(in_ptr1 + (64 + x2), tmp58 & xmask, other=0.0)
tmp60 = tl.full(tmp59.shape, 0.0, tmp59.dtype)
tmp61 = tl.where(tmp56, tmp59, tmp60)
tmp62 = tl.where(tmp54, tmp55, tmp61)
tmp63 = tl.where(tmp47, tmp51, tmp62)
tmp64 = tmp45 + tmp63
tmp65 = tl.full([1], 0, tl.int32)
tmp66 = triton_helpers.maximum(tmp65, tmp64)
tmp67 = 0.0
tmp68 = tmp66 <= tmp67
tl.store(out_ptr0 + x2, tmp68, xmask)
tl.store(out_ptr1 + x2, tmp66, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_4, (4, 1, 1, 1), (1, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = extern_kernels.convolution(primals_2, primals_3, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = extern_kernels.convolution(primals_2, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = reinterpret_tensor(buf1, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0
)
del buf1
buf4 = empty_strided_cuda((1, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.bool)
buf5 = empty_strided_cuda((1, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_relu_sum_threshold_backward_0[grid(256)](buf3,
buf0, buf2, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del buf2
del buf3
return reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, primals_2, primals_3, primals_4, buf4
class SEModule(nn.Module):
def __init__(self, channels, dw_conv):
super().__init__()
ks = 1
pad = (ks - 1) // 2
self.fc1 = nn.Conv2d(channels, channels, kernel_size=ks, padding=
pad, groups=channels if dw_conv else 1, bias=False)
def forward(self, x):
x = self.fc1(x)
return x
class TAMNew(nn.Module):
def __init__(self, duration, channels, dw_conv=True, blending_frames=3,
blending_method='sum'):
super().__init__()
self.blending_frames = blending_frames
self.blending_method = blending_method
if blending_frames == 3:
self.prev_se = SEModule(channels, dw_conv)
self.next_se = SEModule(channels, dw_conv)
self.curr_se = SEModule(channels, dw_conv)
else:
self.blending_layers = nn.ModuleList([SEModule(channels,
dw_conv) for _ in range(blending_frames)])
self.relu = nn.ReLU(inplace=True)
self.duration = duration
def name(self):
return 'TAM-b{}-{}'.format(self.blending_frames, self.blending_method)
def forward(self, input_0):
primals_1 = self.prev_se.fc1.weight
primals_3 = self.next_se.fc1.weight
primals_4 = self.curr_se.fc1.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
peter-yys-yoon/traditional-dance-recognition
|
TAM
| false
| 12,960
|
[
"Apache-2.0"
] | 0
|
be4939d53b838624a04dba0826532c65421d1325
|
https://github.com/peter-yys-yoon/traditional-dance-recognition/tree/be4939d53b838624a04dba0826532c65421d1325
|
conv_head_pooling
|
import torch
import torch.nn as nn
import torch.utils.data
class conv_head_pooling(nn.Module):
def __init__(self, in_feature, out_feature, stride, conv_type,
padding_mode='zeros', dilation=1):
super(conv_head_pooling, self).__init__()
if conv_type == 'depthwise':
_groups = in_feature
else:
_groups = 1
None
self.conv = nn.Conv2d(in_feature, out_feature, kernel_size=3,
padding=dilation, dilation=dilation, stride=stride,
padding_mode=padding_mode, groups=_groups)
self.fc = nn.Linear(in_feature, out_feature)
def forward(self, x, cls_token):
x = self.conv(x)
cls_token = self.fc(cls_token)
return x, cls_token
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_feature': 4, 'out_feature': 4, 'stride': 1,
'conv_type': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_2, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf2)
del primals_4
del primals_5
return buf1, reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, primals_3, reinterpret_tensor(primals_6, (64, 4), (4,
1), 0)
class conv_head_poolingNew(nn.Module):
def __init__(self, in_feature, out_feature, stride, conv_type,
padding_mode='zeros', dilation=1):
super(conv_head_poolingNew, self).__init__()
if conv_type == 'depthwise':
_groups = in_feature
else:
_groups = 1
None
self.conv = nn.Conv2d(in_feature, out_feature, kernel_size=3,
padding=dilation, dilation=dilation, stride=stride,
padding_mode=padding_mode, groups=_groups)
self.fc = nn.Linear(in_feature, out_feature)
def forward(self, input_0, input_1):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_4 = self.fc.weight
primals_5 = self.fc.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0], output[1]
|
tsubauaaa/d2go
|
conv_head_pooling
| false
| 4,505
|
[
"Apache-2.0"
] | 0
|
9f746159ebf78ce79f644c405ca8695bc29d1075
|
https://github.com/tsubauaaa/d2go/tree/9f746159ebf78ce79f644c405ca8695bc29d1075
|
MultiHead
|
import math
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.data.distributed
def matmul(x, y):
if x.dim() == y.dim():
return x @ y
if x.dim() == y.dim() - 1:
return (x.unsqueeze(-2) @ y).squeeze(-2)
return (x @ y.unsqueeze(-2)).squeeze(-2)
class Attention(nn.Module):
def __init__(self, d_key, drop_ratio, causal):
super().__init__()
self.scale = math.sqrt(d_key)
self.dropout = nn.Dropout(drop_ratio)
self.causal = causal
def forward(self, query, key, value):
dot_products = matmul(query, key.transpose(1, 2))
if query.dim() == 3 and (self is None or self.causal):
tri = torch.ones(key.size(1), key.size(1)).triu(1) * INF
if key.is_cuda:
tri = tri
dot_products.data.sub_(tri.unsqueeze(0))
return matmul(self.dropout(F.softmax(dot_products / self.scale, dim
=-1)), value)
class MultiHead(nn.Module):
def __init__(self, d_key, d_value, n_heads, drop_ratio, causal=False):
super().__init__()
self.attention = Attention(d_key, drop_ratio, causal=causal)
self.wq = nn.Linear(d_key, d_key, bias=False)
self.wk = nn.Linear(d_key, d_key, bias=False)
self.wv = nn.Linear(d_value, d_value, bias=False)
self.wo = nn.Linear(d_value, d_key, bias=False)
self.n_heads = n_heads
def forward(self, query, key, value):
query, key, value = self.wq(query), self.wk(key), self.wv(value)
query, key, value = (x.chunk(self.n_heads, -1) for x in (query, key,
value))
return self.wo(torch.cat([self.attention(q, k, v) for q, k, v in
zip(query, key, value)], -1))
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'d_key': 4, 'd_value': 4, 'n_heads': 4, 'drop_ratio': 0.5}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
from torch import nn
import torch.nn.functional as F
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last',
other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + x1, tmp9 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + x1, tmp14 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 4, tl.int64)
tmp19 = tl.load(in_ptr3 + x1, tmp16 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x2, tmp22, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1),
0), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf3, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = buf3
del buf3
triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf5, reinterpret_tensor(buf2, (4, 4, 1), (16, 4,
1), 0), out=buf6)
buf7 = buf4
del buf4
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1),
1), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 1), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_0[grid(64)](buf7, buf8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf9 = buf7
del buf7
triton_poi_fused__softmax_1[grid(64)](buf8, buf9, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf9, reinterpret_tensor(buf2, (4, 4, 1), (16, 4,
1), 1), out=buf10)
buf11 = buf8
del buf8
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1),
2), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 2), out=buf11)
buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_0[grid(64)](buf11, buf12, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf13 = buf11
del buf11
triton_poi_fused__softmax_1[grid(64)](buf12, buf13, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf14 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf13, reinterpret_tensor(buf2, (4, 4, 1), (16,
4, 1), 2), out=buf14)
buf15 = buf12
del buf12
extern_kernels.bmm(reinterpret_tensor(buf0, (4, 4, 1), (16, 4, 1),
3), reinterpret_tensor(buf1, (4, 1, 4), (16, 1, 4), 3), out=buf15)
buf16 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_0[grid(64)](buf15, buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf17 = buf15
del buf15
triton_poi_fused__softmax_1[grid(64)](buf16, buf17, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf17, reinterpret_tensor(buf2, (4, 4, 1), (16,
4, 1), 3), out=buf18)
buf19 = buf16
del buf16
triton_poi_fused_cat_2[grid(64)](buf6, buf10, buf14, buf18, buf19,
64, XBLOCK=64, num_warps=1, num_stages=1)
del buf10
del buf14
del buf18
del buf6
buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf19, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf20)
return reinterpret_tensor(buf20, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_4, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), buf5, buf9, buf13, buf17, reinterpret_tensor(buf19, (16, 4), (4,
1), 0), primals_7, reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 3
), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 3
), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 3
), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 2
), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 2
), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 2
), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 1
), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 1
), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 1
), reinterpret_tensor(buf2, (4, 1, 4), (16, 1, 4), 0
), reinterpret_tensor(buf0, (4, 1, 4), (16, 1, 4), 0
), reinterpret_tensor(buf1, (4, 4, 1), (16, 4, 1), 0)
def matmul(x, y):
if x.dim() == y.dim():
return x @ y
if x.dim() == y.dim() - 1:
return (x.unsqueeze(-2) @ y).squeeze(-2)
return (x @ y.unsqueeze(-2)).squeeze(-2)
class Attention(nn.Module):
def __init__(self, d_key, drop_ratio, causal):
super().__init__()
self.scale = math.sqrt(d_key)
self.dropout = nn.Dropout(drop_ratio)
self.causal = causal
def forward(self, query, key, value):
dot_products = matmul(query, key.transpose(1, 2))
if query.dim() == 3 and (self is None or self.causal):
tri = torch.ones(key.size(1), key.size(1)).triu(1) * INF
if key.is_cuda:
tri = tri
dot_products.data.sub_(tri.unsqueeze(0))
return matmul(self.dropout(F.softmax(dot_products / self.scale, dim
=-1)), value)
class MultiHeadNew(nn.Module):
def __init__(self, d_key, d_value, n_heads, drop_ratio, causal=False):
super().__init__()
self.attention = Attention(d_key, drop_ratio, causal=causal)
self.wq = nn.Linear(d_key, d_key, bias=False)
self.wk = nn.Linear(d_key, d_key, bias=False)
self.wv = nn.Linear(d_value, d_value, bias=False)
self.wo = nn.Linear(d_value, d_key, bias=False)
self.n_heads = n_heads
def forward(self, input_0, input_1, input_2):
primals_1 = self.wq.weight
primals_3 = self.wk.weight
primals_5 = self.wv.weight
primals_7 = self.wo.weight
primals_2 = input_0
primals_4 = input_1
primals_6 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
xurantju/densecap
|
MultiHead
| false
| 11,050
|
[
"BSD-3-Clause"
] | 0
|
2e58501e453bf98b9cc892e5b64997f5c1dfc808
|
https://github.com/xurantju/densecap/tree/2e58501e453bf98b9cc892e5b64997f5c1dfc808
|
FCNetwork
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class FCNetwork(nn.Module):
def __init__(self, state_size, action_size, output_gate=None):
super(FCNetwork, self).__init__()
self.fc1 = nn.Linear(state_size, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, action_size)
self.output_gate = output_gate
def forward(self, input):
x = F.relu(self.fc1(input))
x = F.relu(self.fc2(x))
x = self.fc3(x)
if self.output_gate is not None:
x = self.output_gate(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'state_size': 4, 'action_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (256, 256), (256, 1))
assert_size_stride(primals_5, (256,), (1,))
assert_size_stride(primals_6, (4, 256), (256, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf6, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 256), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf3,
primals_5, buf5, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 256),
(256, 1), 0), reinterpret_tensor(primals_6, (256, 4), (1, 256),
0), alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 256), (256, 1), 0
), reinterpret_tensor(buf3, (64, 256), (256, 1), 0
), primals_6, buf5, primals_4, buf6
class FCNetworkNew(nn.Module):
def __init__(self, state_size, action_size, output_gate=None):
super(FCNetworkNew, self).__init__()
self.fc1 = nn.Linear(state_size, 256)
self.fc2 = nn.Linear(256, 256)
self.fc3 = nn.Linear(256, action_size)
self.output_gate = output_gate
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
JoshVarty/Reacher
|
FCNetwork
| false
| 11,684
|
[
"MIT"
] | 0
|
cab41484aaaeeae177cc625c3697d7e7cd80c2ed
|
https://github.com/JoshVarty/Reacher/tree/cab41484aaaeeae177cc625c3697d7e7cd80c2ed
|
PairwiseLoss
|
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
class PairwiseLoss(nn.Module):
def __init__(self):
super(PairwiseLoss, self).__init__()
def forward(self, x, y):
diff = x - y
return torch.sum(diff * diff)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mul_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp6, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_mul_sub_sum_0[grid(1)](arg0_1, arg1_1, buf0, 1,
256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class PairwiseLossNew(nn.Module):
def __init__(self):
super(PairwiseLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
MinesNicaicai/large-scale-pointcloud-matching
|
PairwiseLoss
| false
| 5,595
|
[
"MIT"
] | 1
|
cfe140f2be1110ed75b6edd27538021e513a31c9
|
https://github.com/MinesNicaicai/large-scale-pointcloud-matching/tree/cfe140f2be1110ed75b6edd27538021e513a31c9
|
NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency
|
import torch
import torch.nn
import torch.onnx
class NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency(torch.
nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency,
self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input1, input2):
model_input = input1 + input2
out1 = self.fc1(model_input)
out1 = self.relu(out1)
out2 = self.fc2(out1)
return out1, out2
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'hidden_size': 4, 'num_classes': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn
import torch.onnx
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](primals_1, primals_2, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_relu_1[grid(256)](buf2, primals_4, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(buf2, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf3)
del primals_6
return buf2, reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(buf0, (64, 4), (4, 1), 0), buf2, primals_5
class NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependencyNew(torch
.nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependencyNew
, self).__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(hidden_size, num_classes)
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0], output[1]
|
mrshu/onnxruntime
|
NeuralNetMultiplePositionalArgumentsMultiOutputsWithDependency
| false
| 7,286
|
[
"MIT"
] | 1
|
335edaa2c485ba0dec877bf4cdbd652e2d5d105c
|
https://github.com/mrshu/onnxruntime/tree/335edaa2c485ba0dec877bf4cdbd652e2d5d105c
|
EntropyLossEncap
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/wp/cwp4ssoyg4ryz2y6xj5oqcpwqbhw5pjsafwlwacoijsmc4meri3d.py
# Topologically Sorted Source Nodes: [add, log, b, sum_1, b_1, b_2], Original ATen: [aten.add, aten.log, aten.mul, aten.sum, aten.mean]
# Source node to ATen node mapping:
# add => add
# b => mul
# b_1 => mul_1
# b_2 => mean
# log => log
# sum_1 => sum_1
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view, 1e-12), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%add,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %log), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, -1.0), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {})
triton_per_fused_add_log_mean_mul_sum_0 = async_compile.triton('triton_per_fused_add_log_mean_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_log_mean_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_log_mean_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + ((64*(r0 // 16)) + (r0 % 16)), None)
tmp5 = tl.load(in_ptr0 + (16 + (64*(r0 // 16)) + (r0 % 16)), None)
tmp10 = tl.load(in_ptr0 + (32 + (64*(r0 // 16)) + (r0 % 16)), None)
tmp15 = tl.load(in_ptr0 + (48 + (64*(r0 // 16)) + (r0 % 16)), None)
tmp1 = 1e-12
tmp2 = tmp0 + tmp1
tmp3 = tl_math.log(tmp2)
tmp4 = tmp0 * tmp3
tmp6 = tmp5 + tmp1
tmp7 = tl_math.log(tmp6)
tmp8 = tmp5 * tmp7
tmp9 = tmp4 + tmp8
tmp11 = tmp10 + tmp1
tmp12 = tl_math.log(tmp11)
tmp13 = tmp10 * tmp12
tmp14 = tmp9 + tmp13
tmp16 = tmp15 + tmp1
tmp17 = tl_math.log(tmp16)
tmp18 = tmp15 * tmp17
tmp19 = tmp14 + tmp18
tmp20 = -1.0
tmp21 = tmp19 * tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = tl.sum(tmp22, 1)[:, None]
tmp25 = 64.0
tmp26 = tmp24 / tmp25
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp26, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [add, log, b, sum_1, b_1, b_2], Original ATen: [aten.add, aten.log, aten.mul, aten.sum, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_add_log_mean_mul_sum_0.run(buf1, arg0_1, 1, 64, grid=grid(1), stream=stream0)
del arg0_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_log_mean_mul_sum_0(in_out_ptr0, in_ptr0, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (64 * (r0 // 16) + r0 % 16), None)
tmp5 = tl.load(in_ptr0 + (16 + 64 * (r0 // 16) + r0 % 16), None)
tmp10 = tl.load(in_ptr0 + (32 + 64 * (r0 // 16) + r0 % 16), None)
tmp15 = tl.load(in_ptr0 + (48 + 64 * (r0 // 16) + r0 % 16), None)
tmp1 = 1e-12
tmp2 = tmp0 + tmp1
tmp3 = tl_math.log(tmp2)
tmp4 = tmp0 * tmp3
tmp6 = tmp5 + tmp1
tmp7 = tl_math.log(tmp6)
tmp8 = tmp5 * tmp7
tmp9 = tmp4 + tmp8
tmp11 = tmp10 + tmp1
tmp12 = tl_math.log(tmp11)
tmp13 = tmp10 * tmp12
tmp14 = tmp9 + tmp13
tmp16 = tmp15 + tmp1
tmp17 = tl_math.log(tmp16)
tmp18 = tmp15 * tmp17
tmp19 = tmp14 + tmp18
tmp20 = -1.0
tmp21 = tmp19 * tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = tl.sum(tmp22, 1)[:, None]
tmp25 = 64.0
tmp26 = tmp24 / tmp25
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp26, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_log_mean_mul_sum_0[grid(1)](buf1, arg0_1, 1,
64, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
return buf1,
def feature_map_permute(input):
s = input.data.shape
l = len(s)
if l == 2:
x = input
elif l == 3:
x = input.permute(0, 2, 1)
elif l == 4:
x = input.permute(0, 2, 3, 1)
elif l == 5:
x = input.permute(0, 2, 3, 4, 1)
else:
x = []
None
x = x.contiguous()
x = x.view(-1, s[1])
return x
class EntropyLoss(nn.Module):
def __init__(self, eps=1e-12):
super(EntropyLoss, self).__init__()
self.eps = eps
def forward(self, x):
b = x * torch.log(x + self.eps)
b = -1.0 * b.sum(dim=1)
b = b.mean()
return b
class EntropyLossEncapNew(nn.Module):
def __init__(self, eps=1e-12):
super(EntropyLossEncapNew, self).__init__()
self.eps = eps
self.entropy_loss = EntropyLoss(eps)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
vartikagpt10/memae-anomaly-detection
|
EntropyLossEncap
| false
| 16,655
|
[
"MIT"
] | 297
|
ceece7714fb241e82ef3f3785d3d1ed86c28113e
|
https://github.com/vartikagpt10/memae-anomaly-detection/tree/ceece7714fb241e82ef3f3785d3d1ed86c28113e
|
Conv2DBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/ma/cmayqy264pnaznjghwuvcajrnw2atnmz54epgqujb67ep2gi6kbq.py
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.replication_pad2d]
# Source node to ATen node mapping:
# pad => _unsafe_index, _unsafe_index_1
# Graph fragment:
# %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_3, [None, None, %clamp_max, None]), kwargs = {})
# %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %clamp_max]), kwargs = {})
triton_poi_fused_replication_pad2d_0 = async_compile.triton('triton_poi_fused_replication_pad2d_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_replication_pad2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8) % 8
x2 = (xindex // 64)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((4*((3) * ((3) <= (((0) * ((0) >= ((-2) + x1)) + ((-2) + x1) * (((-2) + x1) > (0))))) + (((0) * ((0) >= ((-2) + x1)) + ((-2) + x1) * (((-2) + x1) > (0)))) * ((((0) * ((0) >= ((-2) + x1)) + ((-2) + x1) * (((-2) + x1) > (0)))) < (3)))) + (16*x2) + ((3) * ((3) <= (((0) * ((0) >= ((-2) + x0)) + ((-2) + x0) * (((-2) + x0) > (0))))) + (((0) * ((0) >= ((-2) + x0)) + ((-2) + x0) * (((-2) + x0) > (0)))) * ((((0) * ((0) >= ((-2) + x0)) + ((-2) + x0) * (((-2) + x0) > (0)))) < (3)))), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x3), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/42/c42i6kggymcvforsoo45syfc6w3ujwnd3pxalcsjxkelshjyz7gv.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 25) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [pad], Original ATen: [aten.replication_pad2d]
stream0 = get_raw_stream(0)
triton_poi_fused_replication_pad2d_0.run(primals_3, buf0, 1024, grid=grid(1024), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
triton_poi_fused_convolution_1.run(buf2, primals_2, 400, grid=grid(400), stream=stream0)
del primals_2
return (buf2, primals_1, buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_replication_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8 % 8
x2 = xindex // 64
x3 = xindex
tmp0 = tl.load(in_ptr0 + (4 * (3 * (3 <= 0 * (0 >= -2 + x1) + (-2 + x1) *
(-2 + x1 > 0)) + (0 * (0 >= -2 + x1) + (-2 + x1) * (-2 + x1 > 0)) *
(0 * (0 >= -2 + x1) + (-2 + x1) * (-2 + x1 > 0) < 3)) + 16 * x2 + (
3 * (3 <= 0 * (0 >= -2 + x0) + (-2 + x0) * (-2 + x0 > 0)) + (0 * (0 >=
-2 + x0) + (-2 + x0) * (-2 + x0 > 0)) * (0 * (0 >= -2 + x0) + (-2 +
x0) * (-2 + x0 > 0) < 3))), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 25 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_replication_pad2d_0[grid(1024)](primals_3, buf0,
1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 5, 5), (100, 25, 5, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(400)](buf2, primals_2, 400,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf2, primals_1, buf0
def act_layer(act):
if act == 'relu':
return nn.ReLU()
elif act == 'lrelu':
return nn.LeakyReLU(LRELU_SLOPE)
elif act == 'elu':
return nn.ELU()
elif act == 'tanh':
return nn.Tanh()
elif act == 'prelu':
return nn.PReLU()
else:
raise ValueError('%s not recognized.' % act)
def norm_layer2d(norm, channels):
if norm == 'batch':
return nn.BatchNorm2d(channels)
elif norm == 'instance':
return nn.InstanceNorm2d(channels, affine=True)
elif norm == 'layer':
return nn.GroupNorm(1, channels, affine=True)
elif norm == 'group':
return nn.GroupNorm(4, channels, affine=True)
else:
raise ValueError('%s not recognized.' % norm)
class Conv2DBlockNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_sizes, strides,
norm=None, activation=None, padding_mode='replicate'):
super(Conv2DBlockNew, self).__init__()
padding = kernel_sizes // 2 if isinstance(kernel_sizes, int) else (
kernel_sizes[0] // 2, kernel_sizes[1] // 2)
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_sizes,
strides, padding=padding, padding_mode=padding_mode)
if activation is None:
nn.init.xavier_uniform_(self.conv2d.weight, gain=nn.init.
calculate_gain('linear'))
nn.init.zeros_(self.conv2d.bias)
elif activation == 'tanh':
nn.init.xavier_uniform_(self.conv2d.weight, gain=nn.init.
calculate_gain('tanh'))
nn.init.zeros_(self.conv2d.bias)
elif activation == 'lrelu':
nn.init.kaiming_uniform_(self.conv2d.weight, a=LRELU_SLOPE,
nonlinearity='leaky_relu')
nn.init.zeros_(self.conv2d.bias)
elif activation == 'relu':
nn.init.kaiming_uniform_(self.conv2d.weight, nonlinearity='relu')
nn.init.zeros_(self.conv2d.bias)
else:
raise ValueError()
self.activation = None
self.norm = None
if norm is not None:
self.norm = norm_layer2d(norm, out_channels)
if activation is not None:
self.activation = act_layer(activation)
def forward(self, input_0):
primals_1 = self.conv2d.weight
primals_2 = self.conv2d.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
rll-research/ARM
|
Conv2DBlock
| false
| 16,323
|
[
"BSD-3-Clause"
] | 46
|
7a51e00fabdcdbd8ad2b235266c66115e79deeb0
|
https://github.com/rll-research/ARM/tree/7a51e00fabdcdbd8ad2b235266c66115e79deeb0
|
NonSaturatingLogisticDiscriminatorLossCutMix
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/qs/cqsdfmnlh3x4j3kx2wpr736lm3ggwv3mq5kkczkwr47bioyp2i56.py
# Topologically Sorted Source Nodes: [neg, softplus, mul, loss_real, softplus_1, neg_1, add, mul_1, loss_fake], Original ATen: [aten.neg, aten.softplus, aten.mul, aten.mean, aten.add]
# Source node to ATen node mapping:
# add => add
# loss_fake => mean_1
# loss_real => mean
# mul => mul
# mul_1 => mul_1
# neg => neg
# neg_1 => neg_1
# softplus => exp, gt, log1p, where
# softplus_1 => exp_1, gt_1, log1p_1, where_1
# Graph fragment:
# %neg : [num_users=3] = call_function[target=torch.ops.aten.neg.default](args = (%arg0_1,), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%neg, 20), kwargs = {})
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {})
# %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %neg, %log1p), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %arg1_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul,), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {})
# %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {})
# %log1p_1 : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp_1,), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %arg0_1, %log1p_1), kwargs = {})
# %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%arg1_1,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%neg_1, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where_1, %add), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_1,), kwargs = {})
triton_per_fused_add_mean_mul_neg_softplus_0 = async_compile.triton('triton_per_fused_add_mean_mul_neg_softplus_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_neg_softplus_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_mul_neg_softplus_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp7 = tl.load(in_ptr1 + (r0), None)
tmp1 = -tmp0
tmp2 = 20.0
tmp3 = tmp1 > tmp2
tmp4 = tl_math.exp(tmp1)
tmp5 = libdevice.log1p(tmp4)
tmp6 = tl.where(tmp3, tmp1, tmp5)
tmp8 = tmp6 * tmp7
tmp9 = tl.broadcast_to(tmp8, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = tmp0 > tmp2
tmp13 = tl_math.exp(tmp0)
tmp14 = libdevice.log1p(tmp13)
tmp15 = tl.where(tmp12, tmp0, tmp14)
tmp16 = -tmp7
tmp17 = 1.0
tmp18 = tmp16 + tmp17
tmp19 = tmp15 * tmp18
tmp20 = tl.broadcast_to(tmp19, [RBLOCK])
tmp22 = triton_helpers.promote_to_tensor(tl.sum(tmp20, 0))
tmp23 = 256.0
tmp24 = tmp11 / tmp23
tmp25 = tmp22 / tmp23
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp24, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + (tl.full([1], 0, tl.int32)), tmp25, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0; del buf0 # reuse
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [neg, softplus, mul, loss_real, softplus_1, neg_1, add, mul_1, loss_fake], Original ATen: [aten.neg, aten.softplus, aten.mul, aten.mean, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_mul_neg_softplus_0.run(buf2, buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf2, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_mean_mul_neg_softplus_0(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp7 = tl.load(in_ptr1 + r0, None)
tmp1 = -tmp0
tmp2 = 20.0
tmp3 = tmp1 > tmp2
tmp4 = tl_math.exp(tmp1)
tmp5 = libdevice.log1p(tmp4)
tmp6 = tl.where(tmp3, tmp1, tmp5)
tmp8 = tmp6 * tmp7
tmp9 = tl.broadcast_to(tmp8, [RBLOCK])
tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0))
tmp12 = tmp0 > tmp2
tmp13 = tl_math.exp(tmp0)
tmp14 = libdevice.log1p(tmp13)
tmp15 = tl.where(tmp12, tmp0, tmp14)
tmp16 = -tmp7
tmp17 = 1.0
tmp18 = tmp16 + tmp17
tmp19 = tmp15 * tmp18
tmp20 = tl.broadcast_to(tmp19, [RBLOCK])
tmp22 = triton_helpers.promote_to_tensor(tl.sum(tmp20, 0))
tmp23 = 256.0
tmp24 = tmp11 / tmp23
tmp25 = tmp22 / tmp23
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp24, None)
tl.debug_barrier()
tl.store(in_out_ptr1 + tl.full([1], 0, tl.int32), tmp25, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
buf3 = buf1
del buf1
get_raw_stream(0)
triton_per_fused_add_mean_mul_neg_softplus_0[grid(1)](buf2, buf3,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf2, buf3
class NonSaturatingLogisticDiscriminatorLossCutMixNew(nn.Module):
"""
Implementation of the non saturating GAN loss for the discriminator network when performing cut mix augmentation.
"""
def __init__(self) ->None:
"""
Constructor
"""
super(NonSaturatingLogisticDiscriminatorLossCutMixNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0], output[1]
|
ChristophReich1996/Multi-StyleGAN
|
NonSaturatingLogisticDiscriminatorLossCutMix
| false
| 17,103
|
[
"MIT"
] | 7
|
988f2dfea85b3205126b40c61edfb28107eb3173
|
https://github.com/ChristophReich1996/Multi-StyleGAN/tree/988f2dfea85b3205126b40c61edfb28107eb3173
|
Critic
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, 1)
def forward(self, x, u):
x = F.relu(self.l1(torch.cat([x, u], 1)))
x = F.relu(self.l2(x))
x = self.l3(x)
return x
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'state_dim': 4, 'action_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 400
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 300
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (400, 8), (8, 1))
assert_size_stride(primals_4, (400,), (1,))
assert_size_stride(primals_5, (300, 400), (400, 1))
assert_size_stride(primals_6, (300,), (1,))
assert_size_stride(primals_7, (1, 300), (300, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8), (8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(32)](primals_1, primals_2, buf0, 32,
XBLOCK=32, num_warps=1, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 400), (400, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_3, (8, 400), (1,
8), 0), out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_relu_1[grid(1600)](buf2, primals_4, 1600, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((4, 300), (300, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_5, (400, 300), (
1, 400), 0), out=buf3)
buf4 = buf3
del buf3
triton_poi_fused_relu_2[grid(1200)](buf4, primals_6, 1200, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_6
buf6 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7,
(300, 1), (1, 300), 0), alpha=1, beta=1, out=buf6)
del primals_8
return buf6, buf0, buf2, buf4, primals_7, primals_5
class CriticNew(nn.Module):
def __init__(self, state_dim, action_dim):
super(CriticNew, self).__init__()
self.l1 = nn.Linear(state_dim + action_dim, 400)
self.l2 = nn.Linear(400, 300)
self.l3 = nn.Linear(300, 1)
def forward(self, input_0, input_1):
primals_3 = self.l1.weight
primals_4 = self.l1.bias
primals_5 = self.l2.weight
primals_6 = self.l2.bias
primals_7 = self.l3.weight
primals_8 = self.l3.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
SheepiesLab/plato
|
Critic
| false
| 12,080
|
[
"Apache-2.0"
] | 0
|
9f5bbfa4b6952d1b3af24be409982d303d54a169
|
https://github.com/SheepiesLab/plato/tree/9f5bbfa4b6952d1b3af24be409982d303d54a169
|
DQN
|
import torch
import torch.nn as nn
class DQN(nn.Module):
def __init__(self, obs_size: 'int', num_actions: 'int', hidden_size:
'int'=20):
super(DQN, self).__init__()
self.l1 = nn.Linear(obs_size, hidden_size)
self.n1 = nn.LayerNorm(hidden_size, elementwise_affine=True)
self.l3 = nn.Linear(hidden_size, num_actions)
self.activ = torch.nn.LeakyReLU()
def forward(self, x):
hidden = self.activ(self.n1(self.l1(x)))
output = self.l3(hidden)
return output
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'obs_size': 4, 'num_actions': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_leaky_relu_native_layer_norm_0(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 64
rnumel = 20
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 20 * x0), rmask & xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + r1, rmask, eviction_policy='evict_last',
other=0.0)
tmp26 = tl.load(in_ptr2 + r1, rmask, eviction_policy='evict_last',
other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(rmask & xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(rmask & xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 20, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(rmask & xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = 20.0
tmp18 = tmp16 / tmp17
tmp19 = 1e-05
tmp20 = tmp18 + tmp19
tmp21 = libdevice.rsqrt(tmp20)
tmp22 = tmp0 - tmp10
tmp23 = tmp22 * tmp21
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = 0.0
tmp29 = tmp27 > tmp28
tmp30 = 0.01
tmp31 = tmp27 * tmp30
tmp32 = tl.where(tmp29, tmp27, tmp31)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp21, xmask)
tl.store(in_out_ptr1 + (r1 + 20 * x0), tmp32, rmask & xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (20, 4), (4, 1))
assert_size_stride(primals_2, (20,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (20,), (1,))
assert_size_stride(primals_5, (20,), (1,))
assert_size_stride(primals_6, (4, 20), (20, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4),
0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 20), (320, 80, 20, 1), torch.
float32)
buf6 = buf5
del buf5
get_raw_stream(0)
triton_per_fused_leaky_relu_native_layer_norm_0[grid(64)](buf4,
buf6, buf0, primals_4, primals_5, buf1, 64, 20, XBLOCK=8,
num_warps=2, num_stages=1)
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf6, (64, 20),
(20, 1), 0), reinterpret_tensor(primals_6, (20, 4), (1, 20), 0),
alpha=1, beta=1, out=buf7)
del primals_7
return reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_4, primals_5, reinterpret_tensor(primals_3, (64, 4), (4,
1), 0), buf0, buf1, buf4, reinterpret_tensor(buf6, (64, 20), (20, 1), 0
), primals_6
class DQNNew(nn.Module):
def __init__(self, obs_size: 'int', num_actions: 'int', hidden_size:
'int'=20):
super(DQNNew, self).__init__()
self.l1 = nn.Linear(obs_size, hidden_size)
self.n1 = nn.LayerNorm(hidden_size, elementwise_affine=True)
self.l3 = nn.Linear(hidden_size, num_actions)
self.activ = torch.nn.LeakyReLU()
def forward(self, input_0):
primals_1 = self.l1.weight
primals_2 = self.l1.bias
primals_4 = self.n1.weight
primals_5 = self.n1.bias
primals_6 = self.l3.weight
primals_7 = self.l3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
kcorder/vcg_dqn
|
DQN
| false
| 3,819
|
[
"MIT"
] | 0
|
da43892f701fe88a4c751f209da2743fd824d2f5
|
https://github.com/kcorder/vcg_dqn/tree/da43892f701fe88a4c751f209da2743fd824d2f5
|
CoralLayer
|
import torch
import torch.nn
class CoralLayer(torch.nn.Module):
""" Implements CORAL layer described in
Cao, Mirjalili, and Raschka (2020)
*Rank Consistent Ordinal Regression for Neural Networks
with Application to Age Estimation*
Pattern Recognition Letters, https://doi.org/10.1016/j.patrec.2020.11.008
Parameters
-----------
size_in : int
Number of input features for the inputs to the forward method, which
are expected to have shape=(num_examples, num_features).
num_classes : int
Number of classes in the dataset.
preinit_bias : bool (default=True)
If true, it will pre-initialize the biases to descending values in
[0, 1] range instead of initializing it to all zeros. This pre-
initialization scheme results in faster learning and better
generalization performance in practice.
"""
def __init__(self, size_in, num_classes, preinit_bias=True):
super().__init__()
self.size_in, self.size_out = size_in, 1
self.coral_weights = torch.nn.Linear(self.size_in, 1, bias=False)
if preinit_bias:
self.coral_bias = torch.nn.Parameter(torch.arange(num_classes -
1, 0, -1).float() / (num_classes - 1))
else:
self.coral_bias = torch.nn.Parameter(torch.zeros(num_classes -
1).float())
def forward(self, x):
"""
Computes forward pass.
Parameters
-----------
x : torch.tensor, shape=(num_examples, num_features)
Input features.
Returns
-----------
logits : torch.tensor, shape=(num_examples, num_classes-1)
"""
return self.coral_weights(x) + self.coral_bias
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'size_in': 4, 'num_classes': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 3
x0 = xindex % 3
x2 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 3), (48, 12, 3, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_0[grid(192)](buf0, primals_3, buf1, 192,
XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_3
return buf1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0)
class CoralLayerNew(torch.nn.Module):
""" Implements CORAL layer described in
Cao, Mirjalili, and Raschka (2020)
*Rank Consistent Ordinal Regression for Neural Networks
with Application to Age Estimation*
Pattern Recognition Letters, https://doi.org/10.1016/j.patrec.2020.11.008
Parameters
-----------
size_in : int
Number of input features for the inputs to the forward method, which
are expected to have shape=(num_examples, num_features).
num_classes : int
Number of classes in the dataset.
preinit_bias : bool (default=True)
If true, it will pre-initialize the biases to descending values in
[0, 1] range instead of initializing it to all zeros. This pre-
initialization scheme results in faster learning and better
generalization performance in practice.
"""
def __init__(self, size_in, num_classes, preinit_bias=True):
super().__init__()
self.size_in, self.size_out = size_in, 1
self.coral_weights = torch.nn.Linear(self.size_in, 1, bias=False)
if preinit_bias:
self.coral_bias = torch.nn.Parameter(torch.arange(num_classes -
1, 0, -1).float() / (num_classes - 1))
else:
self.coral_bias = torch.nn.Parameter(torch.zeros(num_classes -
1).float())
def forward(self, input_0):
primals_3 = self.coral_bias
primals_1 = self.coral_weights.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
johann-petrak/farm-tools
|
CoralLayer
| false
| 3,756
|
[
"Apache-2.0"
] | 0
|
7d379bbc5b9b079eedd4a11d7bdb1636c0ad834c
|
https://github.com/johann-petrak/farm-tools/tree/7d379bbc5b9b079eedd4a11d7bdb1636c0ad834c
|
CompActor
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# z => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/q5/cq52p2qap7uob2ddnn4qeh67r3muutkp3yhbkqpu4eqaemol3idl.py
# Topologically Sorted Source Nodes: [z_3], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# z_3 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_7,), kwargs = {})
triton_poi_fused_sigmoid_1 = async_compile.triton('triton_poi_fused_sigmoid_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf2 # reuse
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [z_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf8, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [z_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf4, reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [z_3], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_1.run(buf6, primals_9, 256, grid=grid(256), stream=stream0)
del primals_9
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [z_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_11
return (reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(buf3, (64, 4), (4, 1), 0), buf4, buf6, primals_10, primals_8, primals_6, buf8, primals_4, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4, 4), (4, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3,
primals_5, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(buf4, reinterpret_tensor(primals_8, (4, 4), (1, 4
), 0), out=buf5)
buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused_sigmoid_1[grid(256)](buf6, primals_9, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_9
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf6, (64, 4),
(4, 1), 0), reinterpret_tensor(primals_10, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf7)
del primals_11
return reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(
buf3, (64, 4), (4, 1), 0
), buf4, buf6, primals_10, primals_8, primals_6, buf8, primals_4, buf9
class CompActorNew(torch.nn.Module):
def __init__(self, state_dim: 'int', hidden_dim: 'int', action_dim: 'int'):
super(CompActorNew, self).__init__()
self.fc1 = torch.nn.Linear(state_dim, hidden_dim)
self.fc2 = torch.nn.Linear(hidden_dim, hidden_dim)
self.fc3 = torch.nn.Linear(hidden_dim, action_dim)
self.fc4 = torch.nn.Linear(action_dim, action_dim)
self.fc5 = torch.nn.Linear(action_dim, action_dim)
torch.nn.init.constant_(self.fc4.weight, 0)
torch.nn.init.constant_(self.fc4.bias, 0)
torch.nn.init.constant_(self.fc5.weight, 0)
torch.nn.init.constant_(self.fc5.bias, -1)
with torch.no_grad():
for idx, elem in enumerate(self.fc4.weight):
elem[idx] = 2
for idx, elem in enumerate(self.fc4.weight):
elem[idx] = 2
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_10 = self.fc5.weight
primals_11 = self.fc5.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
andreabradpitto/turtlex
|
CompActor
| false
| 1,433
|
[
"Apache-2.0"
] | 0
|
37a2315450f896d10dcb9ebc8968207e476dcf82
|
https://github.com/andreabradpitto/turtlex/tree/37a2315450f896d10dcb9ebc8968207e476dcf82
|
Attention_SEblock
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Attention_SEblock(nn.Module):
def __init__(self, channels, reduction, temperature):
super(Attention_SEblock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(channels, channels // reduction)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(channels // reduction, 2)
self.fc2.bias.data[0] = 0.1
self.fc2.bias.data[1] = 2
self.temperature = temperature
self.channels = channels
def forward(self, x):
x = self.avg_pool(x).view(-1, self.channels)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = F.gumbel_softmax(x, tau=1, hard=True)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4, 'reduction': 4, 'temperature': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tl.store(in_out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused__softmax_add_log_neg_2(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr2 + 2 * x0, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last'
)
tmp11 = tl.load(in_ptr1 + 1)
tmp12 = tl.broadcast_to(tmp11, [XBLOCK])
tmp14 = tl.load(in_ptr2 + (1 + 2 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tmp0 + tmp2
tmp5 = tl_math.log(tmp4)
tmp6 = -tmp5
tmp7 = tmp3 + tmp6
tmp8 = 1.0
tmp9 = tmp7 * tmp8
tmp13 = tmp10 + tmp12
tmp15 = tl_math.log(tmp14)
tmp16 = -tmp15
tmp17 = tmp13 + tmp16
tmp18 = tmp17 * tmp8
tmp19 = triton_helpers.maximum(tmp9, tmp18)
tmp20 = tmp9 - tmp19
tmp21 = tmp20 * tmp8
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp18 - tmp19
tmp24 = tmp23 * tmp8
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp22 + tmp25
tl.store(out_ptr0 + x0, tmp19, xmask)
tl.store(out_ptr1 + x0, tmp26, xmask)
@triton.jit
def triton_poi_fused__softmax_add_log_neg_3(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 2
x1 = xindex // 2
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x2, xmask)
tmp9 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tl_math.log(tmp3)
tmp5 = -tmp4
tmp6 = tmp2 + tmp5
tmp7 = 1.0
tmp8 = tmp6 * tmp7
tmp10 = tmp8 - tmp9
tmp11 = tmp10 * tmp7
tmp12 = tl_math.exp(tmp11)
tmp14 = tmp12 / tmp13
tl.store(in_out_ptr0 + x2, tmp14, xmask)
@triton.jit
def triton_poi_fused_add_max_scatter_sub_4(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 2
x0 = xindex % 2
x2 = xindex
tmp0 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr0 + x2, xmask)
tmp2 = tmp0 > tmp1
tmp3 = tmp0 == tmp1
tmp4 = tmp0 != tmp0
tmp5 = tmp1 != tmp1
tmp6 = tmp4 > tmp5
tmp7 = tmp2 | tmp6
tmp8 = tmp4 & tmp5
tmp9 = tmp3 | tmp8
tmp10 = tl.full([1], 0, tl.int64)
tmp11 = tl.full([1], 1, tl.int64)
tmp12 = tmp10 < tmp11
tmp13 = tmp9 & tmp12
tmp14 = tmp7 | tmp13
tl.where(tmp14, tmp0, tmp1)
tmp16 = tl.where(tmp14, tmp10, tmp11)
tmp17 = x0
tmp18 = tmp16 == tmp17
tmp19 = 1.0
tmp20 = 0.0
tmp21 = tl.where(tmp18, tmp19, tmp20)
tmp23 = tmp21 - tmp22
tmp24 = tmp23 + tmp22
tl.store(out_ptr0 + x2, tmp24, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4), (4, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (2, 1), (1, 1))
assert_size_stride(primals_5, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8,
num_warps=2, num_stages=1)
del primals_1
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (4, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 1), (1, 4), 0), out=buf2)
del primals_2
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(4)](buf3, primals_3, 4, XBLOCK=4,
num_warps=1, num_stages=1)
del primals_3
buf4 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.mm(buf3, reinterpret_tensor(primals_4, (1, 2), (1, 1
), 0), out=buf4)
buf5 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
buf6 = torch.ops.aten.exponential.default(buf5)
del buf5
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf9 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
triton_poi_fused__softmax_add_log_neg_2[grid(4)](buf4, primals_5,
buf7, buf8, buf9, 4, XBLOCK=4, num_warps=1, num_stages=1)
buf10 = buf4
del buf4
triton_poi_fused__softmax_add_log_neg_3[grid(8)](buf10, primals_5,
buf7, buf8, buf9, 8, XBLOCK=8, num_warps=1, num_stages=1)
del buf8
del buf9
del primals_5
buf11 = buf7
del buf7
triton_poi_fused_add_max_scatter_sub_4[grid(8)](buf10, buf11, 8,
XBLOCK=8, num_warps=1, num_stages=1)
return buf11, reinterpret_tensor(buf1, (4, 4), (4, 1), 0
), buf3, buf10, primals_4
class Attention_SEblockNew(nn.Module):
def __init__(self, channels, reduction, temperature):
super(Attention_SEblockNew, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc1 = nn.Linear(channels, channels // reduction)
self.relu = nn.ReLU(inplace=True)
self.fc2 = nn.Linear(channels // reduction, 2)
self.fc2.bias.data[0] = 0.1
self.fc2.bias.data[1] = 2
self.temperature = temperature
self.channels = channels
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
Andrew-Zhu/DyFPN
|
Attention_SEblock
| false
| 7,752
|
[
"Apache-2.0"
] | 32
|
a74463b59c4ce28253c2449a07c0f6692a0147a1
|
https://github.com/Andrew-Zhu/DyFPN/tree/a74463b59c4ce28253c2449a07c0f6692a0147a1
|
Scale
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/s3/cs3xfcsbv3q363t3gue76e5b2o6wfhbslxcdj5vsrheb24anhw4c.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_1), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0)
del primals_1
return (buf0, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](primals_2, primals_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
return buf0, primals_2
class ScaleNew(nn.Module):
"""
A learnable scale parameter
"""
def __init__(self, scale=1.0):
super(ScaleNew, self).__init__()
self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float))
def forward(self, input_0):
primals_1 = self.scale
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
BUPT-PRIV/BalancedGroupSoftmax
|
Scale
| false
| 13,372
|
[
"Apache-2.0"
] | 333
|
90e04fd8ccecd2bc61bbe6053a741ae708da2794
|
https://github.com/BUPT-PRIV/BalancedGroupSoftmax/tree/90e04fd8ccecd2bc61bbe6053a741ae708da2794
|
PEM
|
from _paritybench_helpers import _mock_config
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import init
import torch.nn.parallel
class PEM(torch.nn.Module):
def __init__(self, opt):
super(PEM, self).__init__()
self.feat_dim = opt['pem_feat_dim']
self.batch_size = opt['pem_batch_size']
self.hidden_dim = opt['pem_hidden_dim']
self.u_ratio_m = opt['pem_u_ratio_m']
self.u_ratio_l = opt['pem_u_ratio_l']
self.output_dim = 1
self.pem_best_loss = 1000000
self.fc1 = torch.nn.Linear(in_features=self.feat_dim, out_features=
self.hidden_dim, bias=True)
self.fc2 = torch.nn.Linear(in_features=self.hidden_dim,
out_features=self.output_dim, bias=True)
self.reset_params()
@staticmethod
def weight_init(m):
if isinstance(m, nn.Conv2d):
init.xavier_uniform_(m.weight)
init.constant(m.bias, 0)
def reset_params(self):
for i, m in enumerate(self.modules()):
self.weight_init(m)
def forward(self, x):
x = F.relu(0.1 * self.fc1(x))
x = torch.sigmoid(0.1 * self.fc2(x))
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'opt': _mock_config(pem_feat_dim=4, pem_batch_size=4,
pem_hidden_dim=4, pem_u_ratio_m=4, pem_u_ratio_l=4)}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
from torch.nn import init
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.1
tmp4 = tmp2 * tmp3
tmp5 = tl.full([1], 0, tl.int32)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = 0.0
tmp8 = tmp6 <= tmp7
tl.store(in_out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_mul_sigmoid_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = 0.1
tmp5 = tmp3 * tmp4
tmp6 = tl.sigmoid(tmp5)
tl.store(in_out_ptr0 + x0, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 4), (4, 1))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_mul_relu_threshold_backward_0[grid(256)](buf1,
primals_2, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 1), (1, 4), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf2
triton_poi_fused_mul_sigmoid_1[grid(64)](buf3, primals_5, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf3, primals_4, buf4
class PEMNew(torch.nn.Module):
def __init__(self, opt):
super(PEMNew, self).__init__()
self.feat_dim = opt['pem_feat_dim']
self.batch_size = opt['pem_batch_size']
self.hidden_dim = opt['pem_hidden_dim']
self.u_ratio_m = opt['pem_u_ratio_m']
self.u_ratio_l = opt['pem_u_ratio_l']
self.output_dim = 1
self.pem_best_loss = 1000000
self.fc1 = torch.nn.Linear(in_features=self.feat_dim, out_features=
self.hidden_dim, bias=True)
self.fc2 = torch.nn.Linear(in_features=self.hidden_dim,
out_features=self.output_dim, bias=True)
self.reset_params()
@staticmethod
def weight_init(m):
if isinstance(m, nn.Conv2d):
init.xavier_uniform_(m.weight)
init.constant(m.bias, 0)
def reset_params(self):
for i, m in enumerate(self.modules()):
self.weight_init(m)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
NEUdeep/BSN
|
PEM
| false
| 5,631
|
[
"MIT"
] | 1
|
e987cc159976ebe54027b562d833a92a5aadf864
|
https://github.com/NEUdeep/BSN/tree/e987cc159976ebe54027b562d833a92a5aadf864
|
ArcFace
|
import math
import torch
from itertools import product as product
import torch.nn as nn
import torch.utils.data.distributed
class ArcFace(nn.Module):
def __init__(self, s=64.0, m=0.5):
"""ArcFace formula:
cos(m + theta) = cos(m)cos(theta) - sin(m)sin(theta)
Note that:
0 <= m + theta <= Pi
So if (m + theta) >= Pi, then theta >= Pi - m. In [0, Pi]
we have:
cos(theta) < cos(Pi - m)
So we can use cos(Pi - m) as threshold to check whether
(m + theta) go out of [0, Pi]
Args:
embedding_size: usually 128, 256, 512 ...
class_num: num of people when training
s: scale, see normface https://arxiv.org/abs/1704.06369
m: margin, see SphereFace, CosFace, and ArcFace paper
https://github.com/siriusdemon/Build-Your-Own-Face-Model/blob/master/recognition/model/metric.py
"""
super().__init__()
self.s = s
self.m = m
self.cos_m = math.cos(m)
self.sin_m = math.sin(m)
self.th = math.cos(math.pi - m)
self.mm = math.sin(math.pi - m) * m
def forward(self, cosine, label):
sine = (1.0 - cosine.pow(2)).clamp(0, 1).sqrt()
phi = cosine * self.cos_m - sine * self.sin_m
phi = torch.where(cosine > self.th, phi, cosine - self.mm)
output = cosine * 1.0
batch_size = len(output)
output[range(batch_size), label] = phi[range(batch_size), label]
return output * self.s
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.ones([4], dtype=torch.int64)]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import math
from itertools import product as product
import torch.nn as nn
import torch.utils.data.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_clamp_gt_index_index_put_mul_pow_rsub_sqrt_sub_where_1(
in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16
x0 = xindex % 16
tmp11 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 0, tl.int64)
tmp6 = tl.where(tmp4, tmp5, tmp3)
tmp7 = tl.full([1], 3, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.where(tmp8, tmp1, tmp7)
tmp10 = tl.where(tmp2, tmp6, tmp9)
tmp12 = tl.full([XBLOCK], 4, tl.int32)
tmp13 = tmp11 + tmp12
tmp14 = tmp11 < 0
tmp15 = tl.where(tmp14, tmp13, tmp11)
tl.device_assert((0 <= tmp15) & (tmp15 < 4) | ~xmask,
'index out of bounds: 0 <= tmp15 < 4')
tmp17 = tl.load(in_ptr1 + (x0 + 16 * tmp15 + 64 * tmp10), xmask)
tmp18 = -0.8775825618903726
tmp19 = tmp17 > tmp18
tmp20 = 0.8775825618903728
tmp21 = tmp17 * tmp20
tmp22 = tmp17 * tmp17
tmp23 = 1.0
tmp24 = tmp23 - tmp22
tmp25 = 0.0
tmp26 = triton_helpers.maximum(tmp24, tmp25)
tmp27 = triton_helpers.minimum(tmp26, tmp23)
tmp28 = libdevice.sqrt(tmp27)
tmp29 = 0.479425538604203
tmp30 = tmp28 * tmp29
tmp31 = tmp21 - tmp30
tmp32 = 0.23971276930210156
tmp33 = tmp17 - tmp32
tmp34 = tl.where(tmp19, tmp31, tmp33)
tl.store(out_ptr1 + (x0 + 16 * tmp15 + 64 * tmp10), tmp34, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 64.0
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](arg0_1, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
triton_poi_fused_clamp_gt_index_index_put_mul_pow_rsub_sqrt_sub_where_1[
grid(64)](arg1_1, arg0_1, buf1, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del arg0_1
del arg1_1
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_mul_2[grid(256)](buf1, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf1
return buf3,
class ArcFaceNew(nn.Module):
def __init__(self, s=64.0, m=0.5):
"""ArcFace formula:
cos(m + theta) = cos(m)cos(theta) - sin(m)sin(theta)
Note that:
0 <= m + theta <= Pi
So if (m + theta) >= Pi, then theta >= Pi - m. In [0, Pi]
we have:
cos(theta) < cos(Pi - m)
So we can use cos(Pi - m) as threshold to check whether
(m + theta) go out of [0, Pi]
Args:
embedding_size: usually 128, 256, 512 ...
class_num: num of people when training
s: scale, see normface https://arxiv.org/abs/1704.06369
m: margin, see SphereFace, CosFace, and ArcFace paper
https://github.com/siriusdemon/Build-Your-Own-Face-Model/blob/master/recognition/model/metric.py
"""
super().__init__()
self.s = s
self.m = m
self.cos_m = math.cos(m)
self.sin_m = math.sin(m)
self.th = math.cos(math.pi - m)
self.mm = math.sin(math.pi - m) * m
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
iChenning/face_project
|
ArcFace
| false
| 6,845
|
[
"MIT"
] | 1
|
8d70858817da4d15c7b513ae492034784f57f35f
|
https://github.com/iChenning/face_project/tree/8d70858817da4d15c7b513ae492034784f57f35f
|
EgoAttention
|
import torch
import numpy as np
import torch.nn as nn
from torch.nn import functional as F
def activation_factory(activation_type):
if activation_type == 'RELU':
return F.relu
elif activation_type == 'TANH':
return torch.tanh
elif activation_type == 'ELU':
return nn.ELU()
else:
raise ValueError('Unknown activation_type: {}'.format(activation_type))
def attention(query, key, value, mask=None, dropout=None):
"""
Compute a Scaled Dot Product Attention.
Parameters
----------
query
size: batch, head, 1 (ego-entity), features
key
size: batch, head, entities, features
value
size: batch, head, entities, features
mask
size: batch, head, 1 (absence feature), 1 (ego-entity)
dropout
Returns
-------
The attention softmax(QK^T/sqrt(dk))V
"""
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / np.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
output = torch.matmul(p_attn, value)
return output, p_attn
class BaseModule(torch.nn.Module):
"""
Base torch.nn.Module implementing basic features:
- initialization factory
- normalization parameters
"""
def __init__(self, activation_type='RELU', reset_type='XAVIER'):
super().__init__()
self.activation = activation_factory(activation_type)
self.reset_type = reset_type
def _init_weights(self, m):
if hasattr(m, 'weight'):
if self.reset_type == 'XAVIER':
torch.nn.init.xavier_uniform_(m.weight.data)
elif self.reset_type == 'ZEROS':
torch.nn.init.constant_(m.weight.data, 0.0)
else:
raise ValueError('Unknown reset type')
if hasattr(m, 'bias') and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
def reset(self):
self.apply(self._init_weights)
class EgoAttention(BaseModule):
def __init__(self, feature_size=64, heads=4, dropout_factor=0):
super().__init__()
self.feature_size = feature_size
self.heads = heads
self.dropout_factor = dropout_factor
self.features_per_head = int(self.feature_size / self.heads)
self.value_all = nn.Linear(self.feature_size, self.feature_size,
bias=False)
self.key_all = nn.Linear(self.feature_size, self.feature_size, bias
=False)
self.query_ego = nn.Linear(self.feature_size, self.feature_size,
bias=False)
self.attention_combine = nn.Linear(self.feature_size, self.
feature_size, bias=False)
@classmethod
def default_config(cls):
return {}
def forward(self, ego, others, mask=None):
batch_size = others.shape[0]
n_entities = others.shape[1] + 1
input_all = torch.cat((ego.view(batch_size, 1, self.feature_size),
others), dim=1)
key_all = self.key_all(input_all).view(batch_size, n_entities, self
.heads, self.features_per_head)
value_all = self.value_all(input_all).view(batch_size, n_entities,
self.heads, self.features_per_head)
query_ego = self.query_ego(ego).view(batch_size, 1, self.heads,
self.features_per_head)
key_all = key_all.permute(0, 2, 1, 3)
value_all = value_all.permute(0, 2, 1, 3)
query_ego = query_ego.permute(0, 2, 1, 3)
if mask is not None:
mask = mask.view((batch_size, 1, 1, n_entities)).repeat((1,
self.heads, 1, 1))
value, attention_matrix = attention(query_ego, key_all, value_all,
mask, nn.Dropout(self.dropout_factor))
result = (self.attention_combine(value.reshape((batch_size, self.
feature_size))) + ego.squeeze(1)) / 2
return result, attention_matrix
def get_inputs():
return [torch.rand([4, 1, 64]), torch.rand([4, 1, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
import torch.nn as nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 64 % 2
x0 = xindex % 64
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 2, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 64 * x2), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 256
xnumel = 2
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 64
y1 = yindex // 64
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 64 * x2 + 128 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 2 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_sqrt_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 2
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp8 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = tl.full([1], 4.0, tl.float64)
tmp2 = tl.full([1], 0.0, tl.float64)
tmp3 = tmp1 >= tmp2
tmp4 = 1.0
tmp5 = -1.0
tmp6 = tl.where(tmp3, tmp4, tmp5)
tmp7 = tmp0 * tmp6
tmp9 = tmp8 * tmp6
tmp11 = tmp10 * tmp6
tmp12 = triton_helpers.maximum(tmp9, tmp11)
tmp13 = tmp7 - tmp12
tmp14 = tmp6.to(tl.float64)
tmp15 = tmp14 * tmp1
tmp16 = tmp15.to(tl.float32)
tmp17 = tmp13 / tmp16
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp9 - tmp12
tmp20 = tmp19 / tmp16
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp11 - tmp12
tmp23 = tmp22 / tmp16
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp21 + tmp24
tmp26 = tmp18 / tmp25
tl.store(out_ptr0 + x2, tmp26, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16 % 2
x2 = xindex // 32 % 4
x3 = xindex // 128
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2 + 64 * x1 + 128 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_div_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.5
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 64), (64, 64, 1))
assert_size_stride(primals_2, (4, 1, 64), (64, 64, 1))
assert_size_stride(primals_3, (64, 64), (64, 1))
assert_size_stride(primals_4, (64, 64), (64, 1))
assert_size_stride(primals_5, (64, 64), (64, 1))
assert_size_stride(primals_6, (64, 64), (64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 2, 64), (128, 64, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_2, primals_1, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((8, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (8, 64), (64, 1), 0),
reinterpret_tensor(primals_3, (64, 64), (1, 64), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((8, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (8, 64), (64, 1), 0),
reinterpret_tensor(primals_4, (64, 64), (1, 64), 0), out=buf2)
del primals_4
buf3 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (4, 64), (64, 1), 0
), reinterpret_tensor(primals_5, (64, 64), (1, 64), 0), out=buf3)
del primals_5
buf4 = empty_strided_cuda((4, 4, 16, 2), (128, 32, 2, 1), torch.float32
)
triton_poi_fused_clone_1[grid(256, 2)](buf1, buf4, 256, 2, XBLOCK=2,
YBLOCK=64, num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((16, 1, 2), (2, 2, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 1, 16), (16, 16, 1
), 0), reinterpret_tensor(buf4, (16, 16, 2), (32, 2, 1), 0),
out=buf5)
buf6 = empty_strided_cuda((4, 4, 1, 2), (8, 2, 2, 1), torch.float32)
triton_poi_fused__softmax_sqrt_2[grid(32)](buf5, buf6, 32, XBLOCK=
32, num_warps=1, num_stages=1)
del buf5
buf7 = reinterpret_tensor(buf1, (4, 4, 2, 16), (128, 32, 16, 1), 0)
del buf1
triton_poi_fused_clone_3[grid(512)](buf2, buf7, 512, XBLOCK=128,
num_warps=4, num_stages=1)
del buf2
buf8 = empty_strided_cuda((16, 1, 16), (16, 16, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf6, (16, 1, 2), (2, 2, 1),
0), reinterpret_tensor(buf7, (16, 2, 16), (32, 16, 1), 0), out=buf8
)
buf9 = empty_strided_cuda((4, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf8, (4, 64), (64, 1), 0),
reinterpret_tensor(primals_6, (64, 64), (1, 64), 0), out=buf9)
buf10 = buf9
del buf9
triton_poi_fused_add_div_4[grid(256)](buf10, primals_2, 256, XBLOCK
=128, num_warps=4, num_stages=1)
return buf10, buf6, reinterpret_tensor(buf0, (8, 64), (64, 1), 0
), reinterpret_tensor(primals_2, (4, 64), (64, 1), 0
), buf6, reinterpret_tensor(buf8, (4, 64), (64, 1), 0
), primals_6, reinterpret_tensor(buf7, (16, 16, 2), (32, 1, 16), 0
), reinterpret_tensor(buf3, (16, 16, 1), (16, 1, 64), 0
), reinterpret_tensor(buf4, (16, 2, 16), (32, 1, 2), 0)
def activation_factory(activation_type):
if activation_type == 'RELU':
return F.relu
elif activation_type == 'TANH':
return torch.tanh
elif activation_type == 'ELU':
return nn.ELU()
else:
raise ValueError('Unknown activation_type: {}'.format(activation_type))
def attention(query, key, value, mask=None, dropout=None):
"""
Compute a Scaled Dot Product Attention.
Parameters
----------
query
size: batch, head, 1 (ego-entity), features
key
size: batch, head, entities, features
value
size: batch, head, entities, features
mask
size: batch, head, 1 (absence feature), 1 (ego-entity)
dropout
Returns
-------
The attention softmax(QK^T/sqrt(dk))V
"""
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / np.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask, -1000000000.0)
p_attn = F.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
output = torch.matmul(p_attn, value)
return output, p_attn
class BaseModule(torch.nn.Module):
"""
Base torch.nn.Module implementing basic features:
- initialization factory
- normalization parameters
"""
def __init__(self, activation_type='RELU', reset_type='XAVIER'):
super().__init__()
self.activation = activation_factory(activation_type)
self.reset_type = reset_type
def _init_weights(self, m):
if hasattr(m, 'weight'):
if self.reset_type == 'XAVIER':
torch.nn.init.xavier_uniform_(m.weight.data)
elif self.reset_type == 'ZEROS':
torch.nn.init.constant_(m.weight.data, 0.0)
else:
raise ValueError('Unknown reset type')
if hasattr(m, 'bias') and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
def reset(self):
self.apply(self._init_weights)
class EgoAttentionNew(BaseModule):
def __init__(self, feature_size=64, heads=4, dropout_factor=0):
super().__init__()
self.feature_size = feature_size
self.heads = heads
self.dropout_factor = dropout_factor
self.features_per_head = int(self.feature_size / self.heads)
self.value_all = nn.Linear(self.feature_size, self.feature_size,
bias=False)
self.key_all = nn.Linear(self.feature_size, self.feature_size, bias
=False)
self.query_ego = nn.Linear(self.feature_size, self.feature_size,
bias=False)
self.attention_combine = nn.Linear(self.feature_size, self.
feature_size, bias=False)
@classmethod
def default_config(cls):
return {}
def forward(self, input_0, input_1):
primals_3 = self.value_all.weight
primals_4 = self.key_all.weight
primals_5 = self.query_ego.weight
primals_6 = self.attention_combine.weight
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0], output[1]
|
AmiEis/highway-env
|
EgoAttention
| false
| 1,962
|
[
"MIT"
] | 0
|
7477d8234aa34447292ed92e7da547eac20f9d8e
|
https://github.com/AmiEis/highway-env/tree/7477d8234aa34447292ed92e7da547eac20f9d8e
|
TorchJaccardLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/25/c25ufneom4ll6dh7ho4wez5gfep4fqatmeaw4kaoqduccprkytrj.py
# Topologically Sorted Source Nodes: [jaccard_output, eq, jaccard_target, mul, intersection, add_1, sum_2, sum_3, union, sub, add_2, jaccard_score, loss], Original ATen: [aten.sigmoid, aten.eq, aten._to_copy, aten.mul, aten.sum, aten.add, aten.sub, aten.div, aten.rsub]
# Source node to ATen node mapping:
# add_1 => add_1
# add_2 => add_2
# eq => eq
# intersection => sum_1
# jaccard_output => sigmoid
# jaccard_score => div
# jaccard_target => convert_element_type
# loss => sub_1
# mul => mul
# sub => sub
# sum_2 => sum_2
# sum_3 => sum_3
# union => add
# Graph fragment:
# %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg1_1,), kwargs = {})
# %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%arg0_1, 1), kwargs = {})
# %convert_element_type : [num_users=2] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%eq, torch.float32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %convert_element_type), kwargs = {})
# %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-15), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sigmoid,), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%convert_element_type,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %sum_1), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 1e-15), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add_2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %div), kwargs = {})
triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0 = async_compile.triton('triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp2 = tl.load(in_ptr1 + (r0), None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = 1.0
tmp4 = tmp2 == tmp3
tmp5 = tmp4.to(tl.float32)
tmp6 = tmp1 * tmp5
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = tl.broadcast_to(tmp1, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp13 = tl.broadcast_to(tmp5, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 1e-15
tmp17 = tmp9 + tmp16
tmp18 = tmp12 + tmp15
tmp19 = tmp18 - tmp9
tmp20 = tmp19 + tmp16
tmp21 = tmp17 / tmp20
tmp22 = tmp3 - tmp21
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp21, None)
tl.store(out_ptr2 + (tl.full([1], 0, tl.int32)), tmp22, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf3 = buf0; del buf0 # reuse
buf4 = empty_strided_cuda((), (), torch.float32)
# Topologically Sorted Source Nodes: [jaccard_output, eq, jaccard_target, mul, intersection, add_1, sum_2, sum_3, union, sub, add_2, jaccard_score, loss], Original ATen: [aten.sigmoid, aten.eq, aten._to_copy, aten.mul, aten.sum, aten.add, aten.sub, aten.div, aten.rsub]
stream0 = get_raw_stream(0)
triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0.run(buf3, arg1_1, arg0_1, buf4, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf4, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0(in_out_ptr0
, in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp2 = tl.load(in_ptr1 + r0, None)
tmp1 = tl.sigmoid(tmp0)
tmp3 = 1.0
tmp4 = tmp2 == tmp3
tmp5 = tmp4.to(tl.float32)
tmp6 = tmp1 * tmp5
tmp7 = tl.broadcast_to(tmp6, [RBLOCK])
tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0))
tmp10 = tl.broadcast_to(tmp1, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp13 = tl.broadcast_to(tmp5, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 1e-15
tmp17 = tmp9 + tmp16
tmp18 = tmp12 + tmp15
tmp19 = tmp18 - tmp9
tmp20 = tmp19 + tmp16
tmp21 = tmp17 / tmp20
tmp22 = tmp3 - tmp21
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp21, None)
tl.store(out_ptr2 + tl.full([1], 0, tl.int32), tmp22, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf3 = buf0
del buf0
buf4 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused__to_copy_add_div_eq_mul_rsub_sigmoid_sub_sum_0[grid(1)
](buf3, arg1_1, arg0_1, buf4, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf4, buf3
class TorchJaccardLossNew(torch.nn.modules.Module):
def __init__(self):
super(TorchJaccardLossNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
dannyjeck-matroid/solaris
|
TorchJaccardLoss
| false
| 1,786
|
[
"Apache-2.0"
] | 0
|
463d220c1fe14f811cbbbf528a7353022538006e
|
https://github.com/dannyjeck-matroid/solaris/tree/463d220c1fe14f811cbbbf528a7353022538006e
|
ClippedLinearQuantization
|
import torch
from torch.optim.lr_scheduler import *
import torch.optim
import torch.nn as nn
import torch.utils.data
import torch.utils.model_zoo
def linear_dequantize(input, scale_factor, inplace=False):
if inplace:
input.div_(scale_factor)
return input
return input / scale_factor
def linear_quantize(input, scale_factor, inplace=False):
if inplace:
input.mul_(scale_factor).round_()
return input
return torch.round(scale_factor * input)
def asymmetric_linear_quantization_scale_factor(num_bits, saturation_min,
saturation_max):
n = 2 ** num_bits - 1
return n / (saturation_max - saturation_min)
def clamp(input, min, max, inplace=False):
if inplace:
input.clamp_(min, max)
return input
return torch.clamp(input, min, max)
class LinearQuantizeSTE(torch.autograd.Function):
@staticmethod
def forward(ctx, input, scale_factor, dequantize, inplace):
if inplace:
ctx.mark_dirty(input)
output = linear_quantize(input, scale_factor, inplace)
if dequantize:
output = linear_dequantize(output, scale_factor, inplace)
return output
@staticmethod
def backward(ctx, grad_output):
return grad_output, None, None, None
class ClippedLinearQuantization(nn.Module):
def __init__(self, num_bits, clip_val, dequantize=True, inplace=False):
super(ClippedLinearQuantization, self).__init__()
self.num_bits = num_bits
self.clip_val = clip_val
self.scale_factor = asymmetric_linear_quantization_scale_factor(
num_bits, 0, clip_val)
self.dequantize = dequantize
self.inplace = inplace
def forward(self, input):
input = clamp(input, 0, self.clip_val, self.inplace)
input = LinearQuantizeSTE.apply(input, self.scale_factor, self.
dequantize, self.inplace)
return input
def __repr__(self):
inplace_str = ', inplace' if self.inplace else ''
return '{0}(num_bits={1}, clip_val={2}{3})'.format(self.__class__.
__name__, self.num_bits, self.clip_val, inplace_str)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_bits': 4, 'clip_val': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch.optim.lr_scheduler import *
import torch.optim
import torch.nn as nn
import torch.utils.data
import torch.utils.model_zoo
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_div_mul_round_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 4.0
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tmp5 = 3.75
tmp6 = tmp4 * tmp5
tmp7 = libdevice.nearbyint(tmp6)
tmp8 = 0.26666666666666666
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + x0, tmp9, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_div_mul_round_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def linear_dequantize(input, scale_factor, inplace=False):
if inplace:
input.div_(scale_factor)
return input
return input / scale_factor
def linear_quantize(input, scale_factor, inplace=False):
if inplace:
input.mul_(scale_factor).round_()
return input
return torch.round(scale_factor * input)
def asymmetric_linear_quantization_scale_factor(num_bits, saturation_min,
saturation_max):
n = 2 ** num_bits - 1
return n / (saturation_max - saturation_min)
def clamp(input, min, max, inplace=False):
if inplace:
input.clamp_(min, max)
return input
return torch.clamp(input, min, max)
class LinearQuantizeSTE(torch.autograd.Function):
@staticmethod
def forward(ctx, input, scale_factor, dequantize, inplace):
if inplace:
ctx.mark_dirty(input)
output = linear_quantize(input, scale_factor, inplace)
if dequantize:
output = linear_dequantize(output, scale_factor, inplace)
return output
@staticmethod
def backward(ctx, grad_output):
return grad_output, None, None, None
class ClippedLinearQuantizationNew(nn.Module):
def __init__(self, num_bits, clip_val, dequantize=True, inplace=False):
super(ClippedLinearQuantizationNew, self).__init__()
self.num_bits = num_bits
self.clip_val = clip_val
self.scale_factor = asymmetric_linear_quantization_scale_factor(
num_bits, 0, clip_val)
self.dequantize = dequantize
self.inplace = inplace
def __repr__(self):
inplace_str = ', inplace' if self.inplace else ''
return '{0}(num_bits={1}, clip_val={2}{3})'.format(self.__class__.
__name__, self.num_bits, self.clip_val, inplace_str)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ChitienSun/NCTU_DLSR_final_project
|
ClippedLinearQuantization
| false
| 267
|
[
"MIT"
] | 0
|
9d647426c274afc7651ea4fe9a11f2a0a0fd1fba
|
https://github.com/ChitienSun/NCTU_DLSR_final_project/tree/9d647426c274afc7651ea4fe9a11f2a0a0fd1fba
|
RankingLoss
|
import torch
import torch.nn as nn
class RankingLoss(nn.Module):
def __init__(self):
super().__init__()
self.bce = nn.BCELoss()
def forward(self, pred_loss, target_loss):
target = (target_loss - target_loss.flip(0))[:target_loss.size(0) // 2]
target = target.detach()
ones = torch.sign(torch.clamp(target, min=0))
pred_loss = (pred_loss - pred_loss.flip(0))[:pred_loss.size(0) // 2]
pred_loss = torch.sigmoid(pred_loss)
return self.bce(pred_loss, ones)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_clamp_sigmoid_sign_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 128
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
r0 = rindex % 64
r1 = rindex // 64
tmp0 = tl.load(in_ptr0 + r2, None)
tmp1 = tl.load(in_ptr0 + (192 + r0 + -64 * r1), None)
tmp14 = tl.load(in_ptr1 + r2, None)
tmp15 = tl.load(in_ptr1 + (192 + r0 + -64 * r1), None)
tmp2 = tmp0 - tmp1
tmp3 = 0.0
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tl.full([1, 1], 0, tl.int32)
tmp6 = tmp5 < tmp4
tmp7 = tmp6.to(tl.int8)
tmp8 = tmp4 < tmp5
tmp9 = tmp8.to(tl.int8)
tmp10 = tmp7 - tmp9
tmp11 = tmp10.to(tmp4.dtype)
tmp12 = 1.0
tmp13 = tmp11 - tmp12
tmp16 = tmp14 - tmp15
tmp17 = tl.sigmoid(tmp16)
tmp18 = -tmp17
tmp19 = libdevice.log1p(tmp18)
tmp20 = -100.0
tmp21 = triton_helpers.maximum(tmp19, tmp20)
tmp22 = tmp13 * tmp21
tmp23 = tl_math.log(tmp17)
tmp24 = triton_helpers.maximum(tmp23, tmp20)
tmp25 = tmp11 * tmp24
tmp26 = tmp22 - tmp25
tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK])
tmp29 = tl.sum(tmp27, 1)[:, None]
tmp30 = 128.0
tmp31 = tmp29 / tmp30
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp31, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_clamp_sigmoid_sign_0[grid(1)](
buf1, arg0_1, arg1_1, 1, 128, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class RankingLossNew(nn.Module):
def __init__(self):
super().__init__()
self.bce = nn.BCELoss()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
KMU-AELAB/Active_Learning
|
RankingLoss
| false
| 2,444
|
[
"MIT"
] | 0
|
bc569c16b5f12b58989a8f3db59b7eb4e35cce1b
|
https://github.com/KMU-AELAB/Active_Learning/tree/bc569c16b5f12b58989a8f3db59b7eb4e35cce1b
|
PitchShift
|
import torch
from torch import nn
import torch.nn.functional as F
class PitchShift(nn.Module):
def __init__(self, shift):
super(PitchShift, self).__init__()
self.shift = shift
def forward(self, x):
if len(x.shape) == 2:
x = x.unsqueeze(0)
x = x.squeeze()
mel_size = x.shape[1]
shift_scale = (mel_size + self.shift) / mel_size
x = F.interpolate(x.unsqueeze(1), scale_factor=(shift_scale, 1.0),
align_corners=False, recompute_scale_factor=True, mode='bilinear'
).squeeze(1)
x = x[:, :mel_size]
if x.size(1) < mel_size:
pad_size = mel_size - x.size(1)
x = torch.cat([x, torch.zeros(x.size(0), pad_size, x.size(2))],
dim=1)
x = x.squeeze()
return x.unsqueeze(1)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'shift': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(
in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 8
x0 = xindex % 4
x2 = xindex // 32
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 3, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tmp13 = x0
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp14 + tmp2
tmp16 = 1.0
tmp17 = tmp15 * tmp16
tmp18 = tmp17 - tmp2
tmp19 = triton_helpers.maximum(tmp18, tmp6)
tmp20 = tmp19.to(tl.int32)
tmp21 = tmp20 + tmp9
tmp22 = triton_helpers.minimum(tmp21, tmp11)
tmp23 = tl.load(in_ptr0 + (tmp22 + 4 * tmp12 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp24 = tl.load(in_ptr0 + (tmp20 + 4 * tmp12 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp25 = tmp23 - tmp24
tmp26 = tmp20.to(tl.float32)
tmp27 = tmp19 - tmp26
tmp28 = triton_helpers.maximum(tmp27, tmp6)
tmp29 = triton_helpers.minimum(tmp28, tmp16)
tmp30 = tmp25 * tmp29
tmp31 = tmp24 + tmp30
tmp32 = tl.load(in_ptr0 + (tmp20 + 4 * tmp8 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (tmp22 + 4 * tmp8 + 16 * x2), xmask,
eviction_policy='evict_last')
tmp34 = tmp33 - tmp32
tmp35 = tmp34 * tmp29
tmp36 = tmp32 + tmp35
tmp37 = tmp31 - tmp36
tmp38 = tmp8.to(tl.float32)
tmp39 = tmp7 - tmp38
tmp40 = triton_helpers.maximum(tmp39, tmp6)
tmp41 = triton_helpers.minimum(tmp40, tmp16)
tmp42 = tmp37 * tmp41
tmp43 = tmp36 + tmp42
tl.store(in_out_ptr0 + x4, tmp43, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 8, 4), (32, 128, 4, 1), torch.float32)
buf1 = buf0
del buf0
buf2 = reinterpret_tensor(buf1, (4, 1, 8, 4), (32, 32, 4, 1), 0)
del buf1
get_raw_stream(0)
triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid
(128)](buf2, arg0_1, 128, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf2, (4, 1, 4, 4), (32, 16, 4, 1), 0),
class PitchShiftNew(nn.Module):
def __init__(self, shift):
super(PitchShiftNew, self).__init__()
self.shift = shift
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
shaun95/StarGANv2-VC
|
PitchShift
| false
| 16,402
|
[
"MIT"
] | 116
|
ed20538971a03d699351a349a3631767333baeb7
|
https://github.com/shaun95/StarGANv2-VC/tree/ed20538971a03d699351a349a3631767333baeb7
|
LayerScale_Block_CA
|
import torch
import torch.nn as nn
def drop_path(x, drop_prob: 'float'=0.0, training: 'bool'=False):
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.
device)
random_tensor.floor_()
output = x.div(keep_prob) * random_tensor
return output
class Class_Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None,
attn_drop=0.0, proj_drop=0.0):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.k = nn.Linear(dim, dim, bias=qkv_bias)
self.v = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.num_heads, C //
self.num_heads).permute(0, 2, 1, 3)
k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads
).permute(0, 2, 1, 3)
q = q * self.scale
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads
).permute(0, 2, 1, 3)
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x_cls = (attn @ v).transpose(1, 2).reshape(B, 1, C)
x_cls = self.proj(x_cls)
x_cls = self.proj_drop(x_cls)
return x_cls
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None,
act_layer=nn.GELU, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class LayerScale_Block_CA(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False,
qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn
.GELU, norm_layer=nn.LayerNorm, Attention_block=Class_Attention,
Mlp_block=Mlp, init_values=0.0001):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention_block(dim, num_heads=num_heads, qkv_bias=
qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path
) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp_block(in_features=dim, hidden_features=
mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim),
requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim),
requires_grad=True)
def forward(self, x, x_cls):
u = torch.cat((x_cls, x), dim=1)
x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u)))
x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(
x_cls)))
return x_cls
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4, 'num_heads': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 8
x0 = xindex % 4
x2 = xindex // 32
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 4 * (-4 + x1) + 16 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_mul_3(in_out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 8
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 32 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 8 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_per_fused__softmax_5(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 8
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 8 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, float('-inf'))
tmp4 = triton_helpers.max2(tmp3, 1)[:, None]
tmp5 = tmp0 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK])
tmp9 = tl.where(xmask, tmp7, 0)
tmp10 = tl.sum(tmp9, 1)[:, None]
tmp11 = tmp6 / tmp10
tl.store(out_ptr2 + (r1 + 8 * x0), tmp11, xmask)
@triton.jit
def triton_poi_fused_add_mul_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr2 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + 1)
tmp8 = tl.broadcast_to(tmp7, [XBLOCK])
tmp9 = tl.load(in_ptr2 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp14 = tl.load(in_ptr1 + 2)
tmp15 = tl.broadcast_to(tmp14, [XBLOCK])
tmp16 = tl.load(in_ptr2 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp21 = tl.load(in_ptr1 + 3)
tmp22 = tl.broadcast_to(tmp21, [XBLOCK])
tmp23 = tl.load(in_ptr2 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp10 = tmp8 * tmp9
tmp11 = tmp6 + tmp10
tmp12 = tmp5 + tmp11
tmp17 = tmp15 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = tmp12 + tmp18
tmp24 = tmp22 * tmp23
tmp25 = tmp20 + tmp24
tmp26 = tmp19 + tmp25
tmp27 = 4.0
tmp28 = tmp26 / tmp27
tmp29 = tmp5 - tmp28
tmp30 = tmp29 * tmp29
tmp31 = tmp11 - tmp28
tmp32 = tmp31 * tmp31
tmp33 = tmp30 + tmp32
tmp34 = tmp18 - tmp28
tmp35 = tmp34 * tmp34
tmp36 = tmp33 + tmp35
tmp37 = tmp25 - tmp28
tmp38 = tmp37 * tmp37
tmp39 = tmp36 + tmp38
tmp40 = tmp39 / tmp27
tl.store(out_ptr0 + x2, tmp28, xmask)
tl.store(out_ptr1 + x2, tmp40, xmask)
@triton.jit
def triton_poi_fused_add_mul_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, in_ptr6, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
x4 = xindex // 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr3 + x4, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x4, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr6 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tmp6 = tmp4 - tmp5
tmp8 = 1e-05
tmp9 = tmp7 + tmp8
tmp10 = libdevice.rsqrt(tmp9)
tmp11 = tmp6 * tmp10
tmp13 = tmp11 * tmp12
tmp15 = tmp13 + tmp14
tl.store(out_ptr0 + x3, tmp15, xmask)
@triton.jit
def triton_poi_fused_gelu_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_mul_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr4 + x3, xmask)
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tmp7 = tmp5 * tmp6
tmp8 = tmp4 + tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, 4), (4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (16, 4), (4, 1))
assert_size_stride(primals_15, (16,), (1,))
assert_size_stride(primals_16, (4, 16), (16, 1))
assert_size_stride(primals_17, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](primals_1, primals_2, buf0, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((4, 8, 1), (8, 1, 32), torch.float32)
buf2 = empty_strided_cuda((4, 8, 1), (8, 1, 32), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(32)](buf0, buf1, buf2, 32,
XBLOCK=32, num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((4, 8, 4), (32, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_2[grid(128)](buf0, buf1, buf2,
primals_4, primals_5, buf3, 128, XBLOCK=128, num_warps=4,
num_stages=1)
del buf1
del buf2
del primals_4
del primals_5
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (4, 4), (32, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf4)
buf5 = empty_strided_cuda((32, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (32, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf5)
buf6 = empty_strided_cuda((32, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (32, 4), (4, 1), 0),
reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), out=buf6)
buf7 = reinterpret_tensor(buf4, (4, 4, 1, 1), (4, 1, 16, 16), 0)
del buf4
triton_poi_fused_mul_3[grid(16)](buf7, 16, XBLOCK=16, num_warps=1,
num_stages=1)
buf8 = empty_strided_cuda((4, 4, 1, 8), (32, 8, 8, 1), torch.float32)
triton_poi_fused_clone_4[grid(16, 8)](buf5, buf8, 16, 8, XBLOCK=8,
YBLOCK=16, num_warps=4, num_stages=1)
buf9 = reinterpret_tensor(buf5, (16, 1, 8), (8, 8, 1), 0)
del buf5
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 1, 1), (1, 0, 0),
0), reinterpret_tensor(buf8, (16, 1, 8), (8, 0, 1), 0), out=buf9)
buf12 = empty_strided_cuda((4, 4, 1, 8), (32, 8, 8, 1), torch.float32)
triton_per_fused__softmax_5[grid(16)](buf9, buf12, 16, 8, XBLOCK=1,
num_warps=2, num_stages=1)
buf13 = reinterpret_tensor(buf9, (4, 4, 8, 1), (32, 8, 1, 1), 0)
del buf9
triton_poi_fused_clone_4[grid(16, 8)](buf6, buf13, 16, 8, XBLOCK=8,
YBLOCK=16, num_warps=4, num_stages=1)
del buf6
buf14 = empty_strided_cuda((16, 1, 1), (1, 1, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf12, (16, 1, 8), (8, 8, 1),
0), reinterpret_tensor(buf13, (16, 8, 1), (8, 1, 0), 0), out=buf14)
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_10, reinterpret_tensor(buf14, (4, 4),
(4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf15)
del primals_10
buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_add_mul_native_layer_norm_6[grid(16)](primals_1,
primals_3, buf15, buf16, buf17, 16, XBLOCK=16, num_warps=1,
num_stages=1)
buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_mul_native_layer_norm_7[grid(64)](primals_1,
primals_3, buf15, buf16, buf17, primals_12, primals_13, buf18,
64, XBLOCK=64, num_warps=1, num_stages=1)
del buf16
del buf17
del primals_13
buf19 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.addmm(primals_15, reinterpret_tensor(buf18, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_14, (4, 16), (1, 4), 0),
alpha=1, beta=1, out=buf19)
del primals_15
buf20 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
triton_poi_fused_gelu_8[grid(256)](buf19, buf20, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf21 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_17, reinterpret_tensor(buf20, (16, 16),
(16, 1), 0), reinterpret_tensor(primals_16, (16, 4), (1, 16), 0
), alpha=1, beta=1, out=buf21)
del primals_17
buf22 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_add_mul_9[grid(64)](primals_1, primals_3, buf15,
primals_11, buf21, buf22, 64, XBLOCK=64, num_warps=1, num_stages=1)
return (buf22, primals_1, primals_3, primals_11, primals_12, buf0,
reinterpret_tensor(buf3, (4, 4), (32, 1), 0), reinterpret_tensor(
buf3, (32, 4), (4, 1), 0), buf12, reinterpret_tensor(buf14, (4, 4),
(4, 1), 0), buf15, reinterpret_tensor(buf18, (16, 4), (4, 1), 0),
buf19, reinterpret_tensor(buf20, (16, 16), (16, 1), 0), buf21,
primals_16, primals_14, primals_9, reinterpret_tensor(buf13, (16, 1,
8), (8, 1, 1), 0), reinterpret_tensor(buf7, (16, 1, 1), (1, 1, 4),
0), reinterpret_tensor(buf8, (16, 8, 1), (8, 1, 8), 0), primals_8,
primals_7, primals_6)
def drop_path(x, drop_prob: 'float'=0.0, training: 'bool'=False):
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.
device)
random_tensor.floor_()
output = x.div(keep_prob) * random_tensor
return output
class Class_Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None,
attn_drop=0.0, proj_drop=0.0):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Linear(dim, dim, bias=qkv_bias)
self.k = nn.Linear(dim, dim, bias=qkv_bias)
self.v = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.num_heads, C //
self.num_heads).permute(0, 2, 1, 3)
k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads
).permute(0, 2, 1, 3)
q = q * self.scale
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads
).permute(0, 2, 1, 3)
attn = q @ k.transpose(-2, -1)
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x_cls = (attn @ v).transpose(1, 2).reshape(B, 1, C)
x_cls = self.proj(x_cls)
x_cls = self.proj_drop(x_cls)
return x_cls
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None,
act_layer=nn.GELU, drop=0.0):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class LayerScale_Block_CANew(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False,
qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn
.GELU, norm_layer=nn.LayerNorm, Attention_block=Class_Attention,
Mlp_block=Mlp, init_values=0.0001):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention_block(dim, num_heads=num_heads, qkv_bias=
qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path
) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp_block(in_features=dim, hidden_features=
mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.gamma_1 = nn.Parameter(init_values * torch.ones(dim),
requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones(dim),
requires_grad=True)
def forward(self, input_0, input_1):
primals_3 = self.gamma_1
primals_4 = self.gamma_2
primals_5 = self.norm1.weight
primals_10 = self.norm1.bias
primals_6 = self.attn.q.weight
primals_7 = self.attn.k.weight
primals_8 = self.attn.v.weight
primals_9 = self.attn.proj.weight
primals_11 = self.attn.proj.bias
primals_12 = self.norm2.weight
primals_13 = self.norm2.bias
primals_14 = self.mlp.fc1.weight
primals_15 = self.mlp.fc1.bias
primals_16 = self.mlp.fc2.weight
primals_17 = self.mlp.fc2.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17])
return output[0]
|
WangFeng18/deit
|
LayerScale_Block_CA
| false
| 11,970
|
[
"Apache-2.0"
] | 0
|
62a2c54faf683af8316fbec2e99f666879949cb4
|
https://github.com/WangFeng18/deit/tree/62a2c54faf683af8316fbec2e99f666879949cb4
|
dy_nconv
|
import torch
import torch.utils.data
import torch.nn as nn
class dy_nconv(nn.Module):
def __init__(self):
super(dy_nconv, self).__init__()
def forward(self, x, A):
x = torch.einsum('ncvl,nvwl->ncwl', (x, A))
return x.contiguous()
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tl.store(out_ptr0 + (x2 + 16 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch
.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 16)](arg0_1, buf0, 16, 16, XBLOCK
=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch
.float32)
triton_poi_fused_clone_0[grid(16, 16)](arg1_1, buf1, 16, 16, XBLOCK
=16, YBLOCK=16, num_warps=4, num_stages=1)
del arg1_1
buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2)
del buf0
buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_clone_1[grid(64, 4)](buf2, buf3, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
del buf2
return buf3,
class dy_nconvNew(nn.Module):
def __init__(self):
super(dy_nconvNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
kevin-xuan/Traffic-Benchmark
|
dy_nconv
| false
| 15,861
|
[
"MIT"
] | 120
|
b9f8e40b4df9b58f5ad88432dc070cbbbcdc0228
|
https://github.com/kevin-xuan/Traffic-Benchmark/tree/b9f8e40b4df9b58f5ad88432dc070cbbbcdc0228
|
QNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/6o/c6o7ainbzocsswla76yvmdsc5donraaar3dzlx2icwrueb7fc46u.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/dh/cdhj4aozvvzkw7stzrqoauyoij3petwtvi4g4weydesiaurrughd.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_3 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/oa/coaoyy2tzwhkubpw5yl7y66o2j6ncc2opezn233rb4fu2ccncu3h.py
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_5 => relu_2
# Graph fragment:
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_5,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/t3/ct3tdcx6qlvdx65jxeldoblalngufi4gct7wnoypbb646arghfyk.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_7 => relu_3
# Graph fragment:
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_7,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (64, 128), (128, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (32, 64), (64, 1))
assert_size_stride(primals_9, (32, ), (1, ))
assert_size_stride(primals_10, (4, 32), (32, 1))
assert_size_stride(primals_11, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0); del buf0 # reuse
buf12 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf12, 16384, grid=grid(16384), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf2 # reuse
buf11 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf11, 8192, grid=grid(8192), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 64), (1, 128), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 64), (1024, 256, 64, 1), 0); del buf4 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_2.run(buf5, primals_7, buf10, 4096, grid=grid(4096), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(primals_8, (64, 32), (1, 64), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 32), (512, 128, 32, 1), 0); del buf6 # reuse
buf9 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_3.run(buf7, primals_9, buf9, 2048, grid=grid(2048), stream=stream0)
del primals_9
buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, reinterpret_tensor(buf7, (64, 32), (32, 1), 0), reinterpret_tensor(primals_10, (32, 4), (1, 32), 0), alpha=1, beta=1, out=buf8)
del primals_11
return (reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(buf3, (64, 128), (128, 1), 0), reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(buf7, (64, 32), (32, 1), 0), primals_10, buf9, primals_8, buf10, primals_6, buf11, primals_4, buf12, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((256, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((32, 64), (64, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, 32), (32, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (256, 4), (4, 1))
assert_size_stride(primals_2, (256,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (128, 256), (256, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (64, 128), (128, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (32, 64), (64, 1))
assert_size_stride(primals_9, (32,), (1,))
assert_size_stride(primals_10, (4, 32), (32, 1))
assert_size_stride(primals_11, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0
)
del buf0
buf12 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1,
primals_2, buf12, 16384, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0),
reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf2
buf11 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3,
primals_5, buf11, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 64), (64, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 128), (128, 1), 0),
reinterpret_tensor(primals_6, (128, 64), (1, 128), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 64), (1024, 256, 64, 1), 0)
del buf4
buf10 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch
.bool)
triton_poi_fused_relu_threshold_backward_2[grid(4096)](buf5,
primals_7, buf10, 4096, XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((64, 32), (32, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf5, (64, 64), (64, 1), 0),
reinterpret_tensor(primals_8, (64, 32), (1, 64), 0), out=buf6)
buf7 = reinterpret_tensor(buf6, (4, 4, 4, 32), (512, 128, 32, 1), 0)
del buf6
buf9 = empty_strided_cuda((4, 4, 4, 32), (512, 128, 32, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_3[grid(2048)](buf7,
primals_9, buf9, 2048, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
buf8 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf7, (64, 32),
(32, 1), 0), reinterpret_tensor(primals_10, (32, 4), (1, 32), 0
), alpha=1, beta=1, out=buf8)
del primals_11
return reinterpret_tensor(buf8, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 256), (256, 1), 0
), reinterpret_tensor(buf3, (64, 128), (128, 1), 0
), reinterpret_tensor(buf5, (64, 64), (64, 1), 0), reinterpret_tensor(
buf7, (64, 32), (32, 1), 0
), primals_10, buf9, primals_8, buf10, primals_6, buf11, primals_4, buf12
class QNetworkNew(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
"""
super(QNetworkNew, self).__init__()
self.seed = torch.manual_seed(seed)
input_size = state_size
output_size = action_size
hidden_size = [256, 128, 64, 32]
self.fc1 = nn.Linear(input_size, hidden_size[0])
self.fc2 = nn.Linear(hidden_size[0], hidden_size[1])
self.fc3 = nn.Linear(hidden_size[1], hidden_size[2])
self.fc4 = nn.Linear(hidden_size[2], hidden_size[3])
self.logits = nn.Linear(hidden_size[3], output_size)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_10 = self.logits.weight
primals_11 = self.logits.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
bhattsachin/deep-reinforcement-learning
|
QNetwork
| false
| 1,549
|
[
"MIT"
] | 0
|
4d75b012495009bf156273e170d75caf400fa7aa
|
https://github.com/bhattsachin/deep-reinforcement-learning/tree/4d75b012495009bf156273e170d75caf400fa7aa
|
SimpleNormLayer
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/db/cdbvpwij3es3hvx6e56eufnhc2ark7ffetlr353jjxbefbpe6ws4.py
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
# Source node to ATen node mapping:
# truediv => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.25
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class SimpleNormLayerNew(nn.Module):
"""Simple normalization layer that divides the output of a
preceding layer by a specified number
Parameters
----------
normalization_strength: float
The number with which input is normalized/dived by
"""
def __init__(self, normalization_strength):
super(SimpleNormLayerNew, self).__init__()
self.normalization_strength = normalization_strength
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
bokutotu/cgnet
|
SimpleNormLayer
| false
| 1,558
|
[
"BSD-3-Clause"
] | 0
|
a35170001d969d51548dd01522b1ab93e43741b4
|
https://github.com/bokutotu/cgnet/tree/a35170001d969d51548dd01522b1ab93e43741b4
|
Scale
|
import torch
import torch.nn as nn
class Scale(nn.Module):
def __init__(self, scale=1.0):
super(Scale, self).__init__()
self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float))
def forward(self, x):
return x * self.scale
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 * tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](primals_2, primals_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
return buf0, primals_2
class ScaleNew(nn.Module):
def __init__(self, scale=1.0):
super(ScaleNew, self).__init__()
self.scale = nn.Parameter(torch.tensor(scale, dtype=torch.float))
def forward(self, input_0):
primals_1 = self.scale
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
Cynicsss/mmdetection
|
Scale
| false
| 8,966
|
[
"Apache-2.0"
] | 0
|
89e207fc8c8a7ae3663a5cda53d77b2b94cd1ec8
|
https://github.com/Cynicsss/mmdetection/tree/89e207fc8c8a7ae3663a5cda53d77b2b94cd1ec8
|
img_encoder
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class resnet_block(nn.Module):
def __init__(self, dim_in, dim_out):
super(resnet_block, self).__init__()
self.dim_in = dim_in
self.dim_out = dim_out
if self.dim_in == self.dim_out:
self.conv_1 = nn.Conv2d(self.dim_in, self.dim_out, 3, stride=1,
padding=1, bias=False)
self.bn_1 = nn.InstanceNorm2d(self.dim_out)
self.conv_2 = nn.Conv2d(self.dim_out, self.dim_out, 3, stride=1,
padding=1, bias=False)
self.bn_2 = nn.InstanceNorm2d(self.dim_out)
else:
self.conv_1 = nn.Conv2d(self.dim_in, self.dim_out, 3, stride=2,
padding=1, bias=False)
self.bn_1 = nn.InstanceNorm2d(self.dim_out)
self.conv_2 = nn.Conv2d(self.dim_out, self.dim_out, 3, stride=1,
padding=1, bias=False)
self.bn_2 = nn.InstanceNorm2d(self.dim_out)
self.conv_s = nn.Conv2d(self.dim_in, self.dim_out, 1, stride=2,
padding=0, bias=False)
self.bn_s = nn.InstanceNorm2d(self.dim_out)
def forward(self, input):
if self.dim_in == self.dim_out:
output = self.bn_1(self.conv_1(input))
output = F.leaky_relu(output, negative_slope=0.02, inplace=True)
output = self.bn_2(self.conv_2(output))
output = output + input
output = F.leaky_relu(output, negative_slope=0.02, inplace=True)
else:
output = self.bn_1(self.conv_1(input))
output = F.leaky_relu(output, negative_slope=0.02, inplace=True)
output = self.bn_2(self.conv_2(output))
input_ = self.bn_s(self.conv_s(input))
output = output + input_
output = F.leaky_relu(output, negative_slope=0.02, inplace=True)
return output
class img_encoder(nn.Module):
def __init__(self, img_ef_dim, z_dim):
super(img_encoder, self).__init__()
self.img_ef_dim = img_ef_dim
self.z_dim = z_dim
self.conv_0 = nn.Conv2d(1, self.img_ef_dim, 7, stride=2, padding=3,
bias=False)
self.bn_0 = nn.InstanceNorm2d(self.img_ef_dim)
self.res_1 = resnet_block(self.img_ef_dim, self.img_ef_dim)
self.res_2 = resnet_block(self.img_ef_dim, self.img_ef_dim)
self.res_3 = resnet_block(self.img_ef_dim, self.img_ef_dim * 2)
self.res_4 = resnet_block(self.img_ef_dim * 2, self.img_ef_dim * 2)
self.res_5 = resnet_block(self.img_ef_dim * 2, self.img_ef_dim * 4)
self.res_6 = resnet_block(self.img_ef_dim * 4, self.img_ef_dim * 4)
self.conv_9 = nn.Conv2d(self.img_ef_dim * 4, self.img_ef_dim * 4, 4,
stride=2, padding=1, bias=False)
self.bn_9 = nn.InstanceNorm2d(self.img_ef_dim * 4)
self.conv_10 = nn.Conv2d(self.img_ef_dim * 4, self.z_dim, 4, stride
=1, padding=0, bias=True)
def forward(self, view):
layer_0 = self.bn_0(self.conv_0(1 - view))
layer_0 = F.leaky_relu(layer_0, negative_slope=0.02, inplace=True)
layer_1 = self.res_1(layer_0)
layer_2 = self.res_2(layer_1)
layer_3 = self.res_3(layer_2)
layer_4 = self.res_4(layer_3)
layer_5 = self.res_5(layer_4)
layer_6 = self.res_6(layer_5)
layer_9 = self.bn_9(self.conv_9(layer_6))
layer_9 = F.leaky_relu(layer_9, negative_slope=0.02, inplace=True)
layer_10 = self.conv_10(layer_9)
layer_10 = layer_10.view(-1)
return layer_10
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {'img_ef_dim': 4, 'z_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_rsub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tl.store(out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_per_fused__native_batch_norm_legit_leaky_relu_1(in_ptr0,
out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 1024 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = tmp0 - tmp8
tmp15 = 1024.0
tmp16 = tmp13 / tmp15
tmp17 = 1e-05
tmp18 = tmp16 + tmp17
tmp19 = libdevice.rsqrt(tmp18)
tmp20 = tmp14 * tmp19
tmp21 = 0.0
tmp22 = tmp20 > tmp21
tmp23 = 0.02
tmp24 = tmp20 * tmp23
tmp25 = tl.where(tmp22, tmp20, tmp24)
tl.store(out_ptr2 + (r1 + 1024 * x0), tmp25, None)
tl.store(out_ptr3 + x0, tmp19, None)
tl.store(out_ptr0 + x0, tmp8, None)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_leaky_relu_2(in_ptr0,
in_ptr1, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 1024 * x0), None)
tmp21 = tl.load(in_ptr1 + (r1 + 1024 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 1024, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = tmp0 - tmp8
tmp15 = 1024.0
tmp16 = tmp13 / tmp15
tmp17 = 1e-05
tmp18 = tmp16 + tmp17
tmp19 = libdevice.rsqrt(tmp18)
tmp20 = tmp14 * tmp19
tmp22 = tmp20 + tmp21
tmp23 = 0.0
tmp24 = tmp22 > tmp23
tmp25 = 0.02
tmp26 = tmp22 * tmp25
tmp27 = tl.where(tmp24, tmp22, tmp26)
tl.store(out_ptr2 + (r1 + 1024 * x0), tmp27, None)
tl.store(out_ptr3 + x0, tmp19, None)
tl.store(out_ptr0 + x0, tmp8, None)
@triton.jit
def triton_per_fused__native_batch_norm_legit_leaky_relu_3(in_ptr0,
out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 256 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 256, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = tmp0 - tmp8
tmp15 = 256.0
tmp16 = tmp13 / tmp15
tmp17 = 1e-05
tmp18 = tmp16 + tmp17
tmp19 = libdevice.rsqrt(tmp18)
tmp20 = tmp14 * tmp19
tmp21 = 0.0
tmp22 = tmp20 > tmp21
tmp23 = 0.02
tmp24 = tmp20 * tmp23
tmp25 = tl.where(tmp22, tmp20, tmp24)
tl.store(out_ptr2 + (r1 + 256 * x0), tmp25, None)
tl.store(out_ptr3 + x0, tmp19, None)
tl.store(out_ptr0 + x0, tmp8, None)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_leaky_relu_4(in_out_ptr0,
in_ptr0, in_ptr1, out_ptr0, out_ptr2, out_ptr4, out_ptr5, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 256 * x0), None)
tmp14 = tl.load(in_ptr1 + (r1 + 256 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 256, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp15 = tl.broadcast_to(tmp14, [RBLOCK])
tmp17 = tl.broadcast_to(tmp15, [RBLOCK])
tmp19 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0))
tmp20 = tmp19 / tmp7
tmp21 = tmp15 - tmp20
tmp22 = tmp21 * tmp21
tmp23 = tl.broadcast_to(tmp22, [RBLOCK])
tmp25 = triton_helpers.promote_to_tensor(tl.sum(tmp23, 0))
tmp26 = tmp0 - tmp8
tmp27 = 256.0
tmp28 = tmp13 / tmp27
tmp29 = 1e-05
tmp30 = tmp28 + tmp29
tmp31 = libdevice.rsqrt(tmp30)
tmp32 = tmp26 * tmp31
tmp33 = tmp14 - tmp20
tmp34 = tmp25 / tmp27
tmp35 = tmp34 + tmp29
tmp36 = libdevice.rsqrt(tmp35)
tmp37 = tmp33 * tmp36
tmp38 = tmp32 + tmp37
tmp39 = 0.0
tmp40 = tmp38 > tmp39
tmp41 = 0.02
tmp42 = tmp38 * tmp41
tmp43 = tl.where(tmp40, tmp38, tmp42)
tl.store(in_out_ptr0 + (r1 + 256 * x0), tmp43, None)
tl.store(out_ptr4 + x0, tmp31, None)
tl.store(out_ptr5 + x0, tmp36, None)
tl.store(out_ptr0 + x0, tmp8, None)
tl.store(out_ptr2 + x0, tmp20, None)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_leaky_relu_5(in_ptr0,
in_ptr1, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 256 * x0), None)
tmp21 = tl.load(in_ptr1 + (r1 + 256 * x0), None)
tmp1 = tl.broadcast_to(tmp0, [RBLOCK])
tmp3 = tl.broadcast_to(tmp1, [RBLOCK])
tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0))
tmp6 = tl.full([1], 256, tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 / tmp7
tmp9 = tmp1 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tl.broadcast_to(tmp10, [RBLOCK])
tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0))
tmp14 = tmp0 - tmp8
tmp15 = 256.0
tmp16 = tmp13 / tmp15
tmp17 = 1e-05
tmp18 = tmp16 + tmp17
tmp19 = libdevice.rsqrt(tmp18)
tmp20 = tmp14 * tmp19
tmp22 = tmp20 + tmp21
tmp23 = 0.0
tmp24 = tmp22 > tmp23
tmp25 = 0.02
tmp26 = tmp22 * tmp25
tmp27 = tl.where(tmp24, tmp22, tmp26)
tl.store(out_ptr2 + (r1 + 256 * x0), tmp27, None)
tl.store(out_ptr3 + x0, tmp19, None)
tl.store(out_ptr0 + x0, tmp8, None)
@triton.jit
def triton_per_fused__native_batch_norm_legit_leaky_relu_6(in_ptr0,
out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 64.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp24 = 0.0
tmp25 = tmp23 > tmp24
tmp26 = 0.02
tmp27 = tmp23 * tmp26
tmp28 = tl.where(tmp25, tmp23, tmp27)
tl.store(out_ptr2 + (r1 + 64 * x0), tmp28, xmask)
tl.store(out_ptr3 + x0, tmp22, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_leaky_relu_7(in_out_ptr0,
in_ptr0, in_ptr1, out_ptr0, out_ptr2, out_ptr4, out_ptr5, xnumel,
rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp17 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tl.where(xmask, tmp18, 0)
tmp21 = tl.broadcast_to(tmp18, [XBLOCK, RBLOCK])
tmp23 = tl.where(xmask, tmp21, 0)
tmp24 = tl.sum(tmp23, 1)[:, None]
tmp25 = tmp24 / tmp9
tmp26 = tmp18 - tmp25
tmp27 = tmp26 * tmp26
tmp28 = tl.broadcast_to(tmp27, [XBLOCK, RBLOCK])
tmp30 = tl.where(xmask, tmp28, 0)
tmp31 = tl.sum(tmp30, 1)[:, None]
tmp32 = tmp0 - tmp10
tmp33 = 64.0
tmp34 = tmp16 / tmp33
tmp35 = 1e-05
tmp36 = tmp34 + tmp35
tmp37 = libdevice.rsqrt(tmp36)
tmp38 = tmp32 * tmp37
tmp39 = tmp17 - tmp25
tmp40 = tmp31 / tmp33
tmp41 = tmp40 + tmp35
tmp42 = libdevice.rsqrt(tmp41)
tmp43 = tmp39 * tmp42
tmp44 = tmp38 + tmp43
tmp45 = 0.0
tmp46 = tmp44 > tmp45
tmp47 = 0.02
tmp48 = tmp44 * tmp47
tmp49 = tl.where(tmp46, tmp44, tmp48)
tl.store(in_out_ptr0 + (r1 + 64 * x0), tmp49, xmask)
tl.store(out_ptr4 + x0, tmp37, xmask)
tl.store(out_ptr5 + x0, tmp42, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
tl.store(out_ptr2 + x0, tmp25, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_add_leaky_relu_8(in_ptr0,
in_ptr1, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr
):
xnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 64.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 + tmp24
tmp26 = 0.0
tmp27 = tmp25 > tmp26
tmp28 = 0.02
tmp29 = tmp25 * tmp28
tmp30 = tl.where(tmp27, tmp25, tmp29)
tl.store(out_ptr2 + (r1 + 64 * x0), tmp30, xmask)
tl.store(out_ptr3 + x0, tmp22, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_leaky_relu_9(in_ptr0,
out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 64
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 16.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp24 = 0.0
tmp25 = tmp23 > tmp24
tmp26 = 0.02
tmp27 = tmp23 * tmp26
tmp28 = tl.where(tmp25, tmp23, tmp27)
tl.store(out_ptr2 + (r1 + 16 * x0), tmp28, xmask)
tl.store(out_ptr3 + x0, tmp22, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused_convolution_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19) = args
args.clear()
assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_2, (4, 1, 7, 7), (49, 49, 7, 1))
assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (8, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_8, (8, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_9, (8, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_10, (8, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_11, (8, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_12, (16, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_13, (16, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_14, (16, 8, 1, 1), (8, 1, 1, 1))
assert_size_stride(primals_15, (16, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_16, (16, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_17, (16, 16, 4, 4), (256, 16, 4, 1))
assert_size_stride(primals_18, (4, 16, 4, 4), (256, 16, 4, 1))
assert_size_stride(primals_19, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 64, 64), (4096, 4096, 64, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_rsub_0[grid(16384)](primals_1, buf0, 16384, XBLOCK
=128, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(2, 2),
padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 32, 32), (4096, 1024, 32, 1))
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf6 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
triton_per_fused__native_batch_norm_legit_leaky_relu_1[grid(16)](buf1,
buf2, buf6, buf5, 16, 1024, num_warps=8, num_stages=1)
buf7 = extern_kernels.convolution(buf6, primals_3, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 32, 32), (4096, 1024, 32, 1))
buf8 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf12 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
buf11 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
triton_per_fused__native_batch_norm_legit_leaky_relu_1[grid(16)](buf7,
buf8, buf12, buf11, 16, 1024, num_warps=8, num_stages=1)
buf13 = extern_kernels.convolution(buf12, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 4, 32, 32), (4096, 1024, 32, 1))
buf14 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
buf18 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
buf17 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
triton_per_fused__native_batch_norm_legit_add_leaky_relu_2[grid(16)](
buf13, buf6, buf14, buf18, buf17, 16, 1024, num_warps=8,
num_stages=1)
buf19 = extern_kernels.convolution(buf18, primals_5, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf19, (4, 4, 32, 32), (4096, 1024, 32, 1))
buf20 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
buf24 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
buf23 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
triton_per_fused__native_batch_norm_legit_leaky_relu_1[grid(16)](buf19,
buf20, buf24, buf23, 16, 1024, num_warps=8, num_stages=1)
buf25 = extern_kernels.convolution(buf24, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf25, (4, 4, 32, 32), (4096, 1024, 32, 1))
buf26 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
buf30 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
buf29 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
triton_per_fused__native_batch_norm_legit_add_leaky_relu_2[grid(16)](
buf25, buf18, buf26, buf30, buf29, 16, 1024, num_warps=8,
num_stages=1)
buf31 = extern_kernels.convolution(buf30, primals_7, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf31, (4, 8, 16, 16), (2048, 256, 16, 1))
buf32 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.
float32)
buf36 = empty_strided_cuda((4, 8, 16, 16), (2048, 256, 16, 1),
torch.float32)
buf35 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.
float32)
triton_per_fused__native_batch_norm_legit_leaky_relu_3[grid(32)](buf31,
buf32, buf36, buf35, 32, 256, num_warps=2, num_stages=1)
buf37 = extern_kernels.convolution(buf36, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf37, (4, 8, 16, 16), (2048, 256, 16, 1))
buf42 = extern_kernels.convolution(buf30, primals_9, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf42, (4, 8, 16, 16), (2048, 256, 16, 1))
buf38 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.
float32)
buf43 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.
float32)
buf47 = empty_strided_cuda((4, 8, 16, 16), (2048, 256, 16, 1),
torch.float32)
buf48 = buf47
del buf47
buf41 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.
float32)
buf46 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.
float32)
triton_per_fused__native_batch_norm_legit_add_leaky_relu_4[grid(32)](
buf48, buf37, buf42, buf38, buf43, buf41, buf46, 32, 256,
num_warps=2, num_stages=1)
buf49 = extern_kernels.convolution(buf48, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf49, (4, 8, 16, 16), (2048, 256, 16, 1))
buf50 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.
float32)
buf54 = empty_strided_cuda((4, 8, 16, 16), (2048, 256, 16, 1),
torch.float32)
buf53 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.
float32)
triton_per_fused__native_batch_norm_legit_leaky_relu_3[grid(32)](buf49,
buf50, buf54, buf53, 32, 256, num_warps=2, num_stages=1)
buf55 = extern_kernels.convolution(buf54, primals_11, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf55, (4, 8, 16, 16), (2048, 256, 16, 1))
buf56 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.
float32)
buf60 = empty_strided_cuda((4, 8, 16, 16), (2048, 256, 16, 1),
torch.float32)
buf59 = empty_strided_cuda((1, 32, 1, 1), (32, 1, 32, 32), torch.
float32)
triton_per_fused__native_batch_norm_legit_add_leaky_relu_5[grid(32)](
buf55, buf48, buf56, buf60, buf59, 32, 256, num_warps=2,
num_stages=1)
buf61 = extern_kernels.convolution(buf60, primals_12, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf61, (4, 16, 8, 8), (1024, 64, 8, 1))
buf62 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.
float32)
buf66 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch.
float32)
buf65 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.
float32)
triton_per_fused__native_batch_norm_legit_leaky_relu_6[grid(64)](buf61,
buf62, buf66, buf65, 64, 64, XBLOCK=32, num_warps=8, num_stages=1)
buf67 = extern_kernels.convolution(buf66, primals_13, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf67, (4, 16, 8, 8), (1024, 64, 8, 1))
buf72 = extern_kernels.convolution(buf60, primals_14, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf72, (4, 16, 8, 8), (1024, 64, 8, 1))
buf68 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.
float32)
buf73 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.
float32)
buf77 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch.
float32)
buf78 = buf77
del buf77
buf71 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.
float32)
buf76 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.
float32)
triton_per_fused__native_batch_norm_legit_add_leaky_relu_7[grid(64)](
buf78, buf67, buf72, buf68, buf73, buf71, buf76, 64, 64, XBLOCK
=8, num_warps=4, num_stages=1)
buf79 = extern_kernels.convolution(buf78, primals_15, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf79, (4, 16, 8, 8), (1024, 64, 8, 1))
buf80 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.
float32)
buf84 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch.
float32)
buf83 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.
float32)
triton_per_fused__native_batch_norm_legit_leaky_relu_6[grid(64)](buf79,
buf80, buf84, buf83, 64, 64, XBLOCK=32, num_warps=8, num_stages=1)
buf85 = extern_kernels.convolution(buf84, primals_16, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf85, (4, 16, 8, 8), (1024, 64, 8, 1))
buf86 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.
float32)
buf90 = empty_strided_cuda((4, 16, 8, 8), (1024, 64, 8, 1), torch.
float32)
buf89 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.
float32)
triton_per_fused__native_batch_norm_legit_add_leaky_relu_8[grid(64)](
buf85, buf78, buf86, buf90, buf89, 64, 64, XBLOCK=32, num_warps
=8, num_stages=1)
buf91 = extern_kernels.convolution(buf90, primals_17, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf91, (4, 16, 4, 4), (256, 16, 4, 1))
buf92 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.
float32)
buf96 = empty_strided_cuda((4, 16, 4, 4), (256, 16, 4, 1), torch.
float32)
buf95 = empty_strided_cuda((1, 64, 1, 1), (64, 1, 64, 64), torch.
float32)
triton_per_fused__native_batch_norm_legit_leaky_relu_9[grid(64)](buf91,
buf92, buf96, buf95, 64, 16, XBLOCK=8, num_warps=2, num_stages=1)
buf97 = extern_kernels.convolution(buf96, primals_18, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf97, (4, 4, 1, 1), (4, 1, 1, 1))
buf98 = reinterpret_tensor(buf97, (4, 4, 1, 1), (4, 1, 16, 16), 0)
del buf97
triton_poi_fused_convolution_10[grid(16)](buf98, primals_19, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_19
return (reinterpret_tensor(buf98, (16,), (1,), 0), primals_2, primals_3,
primals_4, primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, buf0, buf1,
reinterpret_tensor(buf5, (16,), (1,), 0), buf6, buf7,
reinterpret_tensor(buf11, (16,), (1,), 0), buf12, buf13,
reinterpret_tensor(buf17, (16,), (1,), 0), buf18, buf19,
reinterpret_tensor(buf23, (16,), (1,), 0), buf24, buf25,
reinterpret_tensor(buf29, (16,), (1,), 0), buf30, buf31,
reinterpret_tensor(buf35, (32,), (1,), 0), buf36, buf37,
reinterpret_tensor(buf41, (32,), (1,), 0), buf42,
reinterpret_tensor(buf46, (32,), (1,), 0), buf48, buf49,
reinterpret_tensor(buf53, (32,), (1,), 0), buf54, buf55,
reinterpret_tensor(buf59, (32,), (1,), 0), buf60, buf61,
reinterpret_tensor(buf65, (64,), (1,), 0), buf66, buf67,
reinterpret_tensor(buf71, (64,), (1,), 0), buf72,
reinterpret_tensor(buf76, (64,), (1,), 0), buf78, buf79,
reinterpret_tensor(buf83, (64,), (1,), 0), buf84, buf85,
reinterpret_tensor(buf89, (64,), (1,), 0), buf90, buf91,
reinterpret_tensor(buf95, (64,), (1,), 0), buf96,
reinterpret_tensor(buf92, (1, 64, 1, 1), (64, 1, 1, 1), 0),
reinterpret_tensor(buf86, (1, 64, 1, 1), (64, 1, 1, 1), 0),
reinterpret_tensor(buf80, (1, 64, 1, 1), (64, 1, 1, 1), 0),
reinterpret_tensor(buf73, (1, 64, 1, 1), (64, 1, 1, 1), 0),
reinterpret_tensor(buf68, (1, 64, 1, 1), (64, 1, 1, 1), 0),
reinterpret_tensor(buf62, (1, 64, 1, 1), (64, 1, 1, 1), 0),
reinterpret_tensor(buf56, (1, 32, 1, 1), (32, 1, 1, 1), 0),
reinterpret_tensor(buf50, (1, 32, 1, 1), (32, 1, 1, 1), 0),
reinterpret_tensor(buf43, (1, 32, 1, 1), (32, 1, 1, 1), 0),
reinterpret_tensor(buf38, (1, 32, 1, 1), (32, 1, 1, 1), 0),
reinterpret_tensor(buf32, (1, 32, 1, 1), (32, 1, 1, 1), 0),
reinterpret_tensor(buf26, (1, 16, 1, 1), (16, 1, 1, 1), 0),
reinterpret_tensor(buf20, (1, 16, 1, 1), (16, 1, 1, 1), 0),
reinterpret_tensor(buf14, (1, 16, 1, 1), (16, 1, 1, 1), 0),
reinterpret_tensor(buf8, (1, 16, 1, 1), (16, 1, 1, 1), 0),
reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0))
class resnet_block(nn.Module):
def __init__(self, dim_in, dim_out):
super(resnet_block, self).__init__()
self.dim_in = dim_in
self.dim_out = dim_out
if self.dim_in == self.dim_out:
self.conv_1 = nn.Conv2d(self.dim_in, self.dim_out, 3, stride=1,
padding=1, bias=False)
self.bn_1 = nn.InstanceNorm2d(self.dim_out)
self.conv_2 = nn.Conv2d(self.dim_out, self.dim_out, 3, stride=1,
padding=1, bias=False)
self.bn_2 = nn.InstanceNorm2d(self.dim_out)
else:
self.conv_1 = nn.Conv2d(self.dim_in, self.dim_out, 3, stride=2,
padding=1, bias=False)
self.bn_1 = nn.InstanceNorm2d(self.dim_out)
self.conv_2 = nn.Conv2d(self.dim_out, self.dim_out, 3, stride=1,
padding=1, bias=False)
self.bn_2 = nn.InstanceNorm2d(self.dim_out)
self.conv_s = nn.Conv2d(self.dim_in, self.dim_out, 1, stride=2,
padding=0, bias=False)
self.bn_s = nn.InstanceNorm2d(self.dim_out)
def forward(self, input):
if self.dim_in == self.dim_out:
output = self.bn_1(self.conv_1(input))
output = F.leaky_relu(output, negative_slope=0.02, inplace=True)
output = self.bn_2(self.conv_2(output))
output = output + input
output = F.leaky_relu(output, negative_slope=0.02, inplace=True)
else:
output = self.bn_1(self.conv_1(input))
output = F.leaky_relu(output, negative_slope=0.02, inplace=True)
output = self.bn_2(self.conv_2(output))
input_ = self.bn_s(self.conv_s(input))
output = output + input_
output = F.leaky_relu(output, negative_slope=0.02, inplace=True)
return output
class img_encoderNew(nn.Module):
def __init__(self, img_ef_dim, z_dim):
super(img_encoderNew, self).__init__()
self.img_ef_dim = img_ef_dim
self.z_dim = z_dim
self.conv_0 = nn.Conv2d(1, self.img_ef_dim, 7, stride=2, padding=3,
bias=False)
self.bn_0 = nn.InstanceNorm2d(self.img_ef_dim)
self.res_1 = resnet_block(self.img_ef_dim, self.img_ef_dim)
self.res_2 = resnet_block(self.img_ef_dim, self.img_ef_dim)
self.res_3 = resnet_block(self.img_ef_dim, self.img_ef_dim * 2)
self.res_4 = resnet_block(self.img_ef_dim * 2, self.img_ef_dim * 2)
self.res_5 = resnet_block(self.img_ef_dim * 2, self.img_ef_dim * 4)
self.res_6 = resnet_block(self.img_ef_dim * 4, self.img_ef_dim * 4)
self.conv_9 = nn.Conv2d(self.img_ef_dim * 4, self.img_ef_dim * 4, 4,
stride=2, padding=1, bias=False)
self.bn_9 = nn.InstanceNorm2d(self.img_ef_dim * 4)
self.conv_10 = nn.Conv2d(self.img_ef_dim * 4, self.z_dim, 4, stride
=1, padding=0, bias=True)
def forward(self, input_0):
primals_2 = self.conv_0.weight
primals_3 = self.res_1.conv_1.weight
primals_4 = self.res_1.conv_2.weight
primals_5 = self.res_2.conv_1.weight
primals_6 = self.res_2.conv_2.weight
primals_7 = self.res_3.conv_1.weight
primals_8 = self.res_3.conv_2.weight
primals_9 = self.res_3.conv_s.weight
primals_10 = self.res_4.conv_1.weight
primals_11 = self.res_4.conv_2.weight
primals_12 = self.res_5.conv_1.weight
primals_13 = self.res_5.conv_2.weight
primals_14 = self.res_5.conv_s.weight
primals_15 = self.res_6.conv_1.weight
primals_16 = self.res_6.conv_2.weight
primals_17 = self.conv_9.weight
primals_18 = self.conv_10.weight
primals_19 = self.conv_10.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19])
return output[0]
|
czq142857/DECOR-GAN
|
img_encoder
| false
| 15,133
|
[
"MIT"
] | 55
|
79c80fc202b8af982989a3e3bb3afe85e606b71f
|
https://github.com/czq142857/DECOR-GAN/tree/79c80fc202b8af982989a3e3bb3afe85e606b71f
|
Net2
|
import torch
def square(x):
return x * x
class Net2(torch.nn.Module):
def __init__(self, act=square, output=10):
super().__init__()
self.act = act
self.conv1 = torch.nn.Conv2d(1, 8, kernel_size=5, stride=2, padding=0)
self.conv2 = torch.nn.Conv2d(8, 64, kernel_size=3, stride=2, padding=0)
self.conv3 = torch.nn.Conv2d(64, 4, kernel_size=3, stride=1, padding=0)
self.fc = torch.nn.Linear(4 * 3 * 3, output)
def forward(self, x):
x = self.conv1(x)
x = self.act(x)
x = self.conv2(x)
x = self.act(x)
x = self.conv3(x)
x = self.act(x)
x = x.view(-1, 36)
x = self.fc(x)
return x
def mid_layer(self):
return ['o1', 'o1a', 'o2', 'o2a', 'o3', 'o3a', 'o4']
def forward_analyze(self, x):
o1 = self.conv1(x)
o1a = self.act(o1)
o2 = self.conv2(o1a)
o2a = self.act(o2)
o3 = self.conv3(o2a)
o3a = self.act(o3)
o3a = x.view(-1, 36)
o4 = self.fc(o3a)
return o1, o1a, o2, o2a, o3, o3a, o4
def get_inputs():
return [torch.rand([4, 1, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_mul_0(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 28800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 900 % 8
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tmp2 * tmp2
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp3, xmask)
@triton.jit
def triton_poi_fused_convolution_mul_1(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 196 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tmp2 * tmp2
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp3, xmask)
@triton.jit
def triton_poi_fused_convolution_mul_2(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 144 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tmp2 * tmp2
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (8, 1, 5, 5), (25, 25, 5, 1))
assert_size_stride(primals_2, (8,), (1,))
assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1))
assert_size_stride(primals_4, (64, 8, 3, 3), (72, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (4, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (10, 36), (36, 1))
assert_size_stride(primals_9, (10,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 8, 30, 30), (7200, 900, 30, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 8, 30, 30), (7200, 900, 30, 1), torch
.float32)
get_raw_stream(0)
triton_poi_fused_convolution_mul_0[grid(28800)](buf1, primals_2,
buf2, 28800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 64, 14, 14), (12544, 196, 14, 1))
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1),
torch.float32)
triton_poi_fused_convolution_mul_1[grid(50176)](buf4, primals_5,
buf5, 50176, XBLOCK=512, num_warps=4, num_stages=1)
del primals_5
buf6 = extern_kernels.convolution(buf5, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 12, 12), (576, 144, 12, 1))
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch.
float32)
triton_poi_fused_convolution_mul_2[grid(2304)](buf7, primals_7,
buf8, 2304, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf9 = empty_strided_cuda((64, 10), (10, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf8, (64, 36),
(36, 1), 0), reinterpret_tensor(primals_8, (36, 10), (1, 36), 0
), alpha=1, beta=1, out=buf9)
del primals_9
return (buf9, primals_1, primals_3, primals_4, primals_6, buf1, buf2,
buf4, buf5, buf7, reinterpret_tensor(buf8, (64, 36), (36, 1), 0),
primals_8)
def square(x):
return x * x
class Net2New(torch.nn.Module):
def __init__(self, act=square, output=10):
super().__init__()
self.act = act
self.conv1 = torch.nn.Conv2d(1, 8, kernel_size=5, stride=2, padding=0)
self.conv2 = torch.nn.Conv2d(8, 64, kernel_size=3, stride=2, padding=0)
self.conv3 = torch.nn.Conv2d(64, 4, kernel_size=3, stride=1, padding=0)
self.fc = torch.nn.Linear(4 * 3 * 3, output)
def mid_layer(self):
return ['o1', 'o1a', 'o2', 'o2a', 'o3', 'o3a', 'o4']
def forward_analyze(self, x):
o1 = self.conv1(x)
o1a = self.act(o1)
o2 = self.conv2(o1a)
o2a = self.act(o2)
o3 = self.conv3(o2a)
o3a = self.act(o3)
o3a = x.view(-1, 36)
o4 = self.fc(o3a)
return o1, o1a, o2, o2a, o3, o3a, o4
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.fc.weight
primals_9 = self.fc.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
yxtj/henn
|
Net2
| false
| 11,060
|
[
"MIT"
] | 0
|
5093f3e637ba0bb3e48c4f890b3b469c3617f2c5
|
https://github.com/yxtj/henn/tree/5093f3e637ba0bb3e48c4f890b3b469c3617f2c5
|
UpsampleNet
|
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
class UpsampleNet(nn.Module):
def __init__(self, input_size, output_size, upsample_factor):
super(UpsampleNet, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.upsample_factor = upsample_factor
layer = nn.ConvTranspose1d(input_size, output_size, upsample_factor *
2, upsample_factor, padding=upsample_factor // 2)
self.layer = weight_norm(layer)
def forward(self, inputs):
outputs = self.layer(inputs)
outputs = outputs[:, :, :inputs.size(-1) * self.upsample_factor]
return outputs
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'output_size': 4, 'upsample_factor': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn.utils import weight_norm
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 32
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 32 * x0), xmask, other=0.0)
tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = libdevice.sqrt(tmp5)
tmp8 = tmp7 / tmp6
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr0 + (r1 + 32 * x0), tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 1), (1, 1, 1))
assert_size_stride(primals_2, (4, 4, 8), (32, 8, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0)
del buf0
buf2 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__weight_norm_interface_0[grid(4)](buf1, primals_2,
primals_1, buf2, 4, 32, XBLOCK=1, num_warps=2, num_stages=1)
buf3 = extern_kernels.convolution(primals_4, buf2, stride=(4,),
padding=(2,), dilation=(1,), transposed=True, output_padding=(0
,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 16), (64, 16, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_1[grid(256)](buf4, primals_3, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
return buf4, buf2, primals_1, primals_2, primals_4, buf1, buf2
class UpsampleNetNew(nn.Module):
def __init__(self, input_size, output_size, upsample_factor):
super(UpsampleNetNew, self).__init__()
self.input_size = input_size
self.output_size = output_size
self.upsample_factor = upsample_factor
layer = nn.ConvTranspose1d(input_size, output_size, upsample_factor *
2, upsample_factor, padding=upsample_factor // 2)
self.layer = weight_norm(layer)
def forward(self, input_0):
primals_3 = self.layer.bias
primals_1 = self.layer.weight_g
primals_2 = self.layer.weight_v
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
SolomidHero/EA-SVC
|
UpsampleNet
| false
| 14,434
|
[
"MIT"
] | 88
|
23a0a9d9c0e9670dd7c777d56b00883d84c23237
|
https://github.com/SolomidHero/EA-SVC/tree/23a0a9d9c0e9670dd7c777d56b00883d84c23237
|
ASP
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/3v/c3vbbnaoh2ala54xhjzwr7f44xb5tmg7hvdni6ytelrhdlekfg4j.py
# Topologically Sorted Source Nodes: [att_logits_1, softmax], Original ATen: [aten.add, aten._softmax]
# Source node to ATen node mapping:
# att_logits_1 => add
# softmax => amax, exp, sub, sum_1
# Graph fragment:
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_8, %squeeze), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_add_1 = async_compile.triton('triton_poi_fused__softmax_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tmp2 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp5 - tmp14
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp9 - tmp14
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tmp13 - tmp14
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tl.store(out_ptr0 + (x2), tmp14, xmask)
tl.store(out_ptr1 + (x2), tmp25, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ec/cecsiupxfmmb3m5bbivf5bciiq2k5ishu3qab2b2u6oieray7t5b.py
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul_1 => mul_1
# Graph fragment:
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %view_1), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = (xindex // 4)
x5 = (xindex // 4) % 64
x7 = (xindex // 16)
x8 = xindex % 256
x9 = xindex
tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x7), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + (x7), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr4 + (x8), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + (x9), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/pk/cpky4ikacz2hgolxoehy6foq57gecnbejjobg6du4jubou3tbafn.py
# Topologically Sorted Source Nodes: [mul, utter_rep, mul_2, sum_2, pow_1, sub, add_1, variance], Original ATen: [aten.mul, aten.sum, aten.pow, aten.sub, aten.add, aten.sqrt]
# Source node to ATen node mapping:
# add_1 => add_1
# mul => mul
# mul_2 => mul_2
# pow_1 => pow_1
# sub => sub_1
# sum_2 => sum_3
# utter_rep => sum_2
# variance => sqrt
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze), kwargs = {})
# %sum_2 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %view_1), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sum_3, %pow_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub_1, 1e-08), kwargs = {})
# %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%sqrt, 2), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 1.0), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%pow_2, 2.0), kwargs = {})
triton_poi_fused_add_mul_pow_sqrt_sub_sum_3 = async_compile.triton('triton_poi_fused_add_mul_pow_sqrt_sub_sum_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sqrt_sub_sum_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 24, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_pow_sqrt_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x6 = xindex % 64
x3 = (xindex // 64)
x4 = (xindex // 4) % 16
x2 = (xindex // 16) % 4
x0 = xindex % 4
x5 = (xindex // 4)
x8 = xindex
tmp0 = tl.load(in_ptr0 + (x6), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x4 + (64*x3)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + (x2 + (16*x3)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x2 + (16*x3)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (64 + x6), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (16 + x4 + (64*x3)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr2 + (16 + x4), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr3 + (4 + x2 + (16*x3)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr4 + (4 + x2 + (16*x3)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (128 + x6), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (32 + x4 + (64*x3)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr2 + (32 + x4), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr3 + (8 + x2 + (16*x3)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr4 + (8 + x2 + (16*x3)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (192 + x6), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr1 + (48 + x4 + (64*x3)), xmask, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr2 + (48 + x4), xmask, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr3 + (12 + x2 + (16*x3)), xmask, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr4 + (12 + x2 + (16*x3)), xmask, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr5 + (x6 + (256*x3)), xmask)
tmp45 = tl.load(in_ptr5 + (64 + x6 + (256*x3)), xmask)
tmp48 = tl.load(in_ptr5 + (128 + x6 + (256*x3)), xmask)
tmp51 = tl.load(in_ptr5 + (192 + x6 + (256*x3)), xmask)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = tmp0 * tmp8
tmp13 = tmp11 + tmp12
tmp15 = tmp13 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp18 = tmp16 / tmp17
tmp19 = tmp10 * tmp18
tmp20 = tmp9 + tmp19
tmp24 = tmp22 + tmp23
tmp26 = tmp24 - tmp25
tmp27 = tl_math.exp(tmp26)
tmp29 = tmp27 / tmp28
tmp30 = tmp21 * tmp29
tmp31 = tmp20 + tmp30
tmp35 = tmp33 + tmp34
tmp37 = tmp35 - tmp36
tmp38 = tl_math.exp(tmp37)
tmp40 = tmp38 / tmp39
tmp41 = tmp32 * tmp40
tmp42 = tmp31 + tmp41
tmp44 = tmp43 * tmp0
tmp46 = tmp45 * tmp10
tmp47 = tmp44 + tmp46
tmp49 = tmp48 * tmp21
tmp50 = tmp47 + tmp49
tmp52 = tmp51 * tmp32
tmp53 = tmp50 + tmp52
tmp54 = tmp42 * tmp42
tmp55 = tmp53 - tmp54
tmp56 = 1e-08
tmp57 = tmp55 + tmp56
tmp58 = libdevice.sqrt(tmp57)
tmp59 = 2.0
tmp60 = tmp58 * tmp59
tmp61 = tmp42 * tmp59
tl.store(out_ptr0 + (x0 + (8*x5)), tmp42, xmask)
tl.store(out_ptr2 + (x0 + (8*x5)), tmp58, xmask)
tl.store(out_ptr3 + (x8), tmp60, xmask)
tl.store(out_ptr4 + (x8), tmp61, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1, ), (1, ))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [feature_BxTxH], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf2, primals_5, buf14, 256, grid=grid(256), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [att_logits_1, softmax], Original ATen: [aten.add, aten._softmax]
triton_poi_fused__softmax_add_1.run(primals_8, buf4, buf5, buf6, 64, grid=grid(64), stream=stream0)
buf8 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_1], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(primals_8, buf4, buf5, buf6, buf0, buf8, 1024, grid=grid(1024), stream=stream0)
buf11 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
buf7 = reinterpret_tensor(buf11, (4, 4, 4, 4), (128, 32, 8, 1), 0) # alias
buf10 = reinterpret_tensor(buf11, (4, 4, 4, 4), (128, 32, 8, 1), 4) # alias
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, utter_rep, mul_2, sum_2, pow_1, sub, add_1, variance], Original ATen: [aten.mul, aten.sum, aten.pow, aten.sub, aten.add, aten.sqrt]
triton_poi_fused_add_mul_pow_sqrt_sub_sum_3.run(buf0, primals_8, buf4, buf5, buf6, buf8, buf7, buf10, buf12, buf13, 256, grid=grid(256), stream=stream0)
del buf5
del buf6
return (buf11, primals_8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), buf4, buf8, buf12, buf13, primals_6, buf14, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused__softmax_add_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = triton_helpers.maximum(tmp2, tmp5)
tmp9 = tmp7 + tmp8
tmp10 = triton_helpers.maximum(tmp6, tmp9)
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp10, tmp13)
tmp15 = tmp2 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp17 = tmp5 - tmp14
tmp18 = tl_math.exp(tmp17)
tmp19 = tmp16 + tmp18
tmp20 = tmp9 - tmp14
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp19 + tmp21
tmp23 = tmp13 - tmp14
tmp24 = tl_math.exp(tmp23)
tmp25 = tmp22 + tmp24
tl.store(out_ptr0 + x2, tmp14, xmask)
tl.store(out_ptr1 + x2, tmp25, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex // 4
x5 = xindex // 4 % 64
x7 = xindex // 16
x8 = xindex % 256
x9 = xindex
tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x7, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + x7, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr4 + x8, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tmp9 = tmp7 * tmp8
tl.store(out_ptr0 + x9, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_mul_pow_sqrt_sub_sum_3(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr2, out_ptr3, out_ptr4,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x6 = xindex % 64
x3 = xindex // 64
x4 = xindex // 4 % 16
x2 = xindex // 16 % 4
x0 = xindex % 4
x5 = xindex // 4
x8 = xindex
tmp0 = tl.load(in_ptr0 + x6, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x4 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr3 + (x2 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr4 + (x2 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr0 + (64 + x6), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr1 + (16 + x4 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr2 + (16 + x4), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr3 + (4 + x2 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr4 + (4 + x2 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (128 + x6), xmask, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr1 + (32 + x4 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr2 + (32 + x4), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr3 + (8 + x2 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr4 + (8 + x2 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp32 = tl.load(in_ptr0 + (192 + x6), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr1 + (48 + x4 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp34 = tl.load(in_ptr2 + (48 + x4), xmask, eviction_policy='evict_last')
tmp36 = tl.load(in_ptr3 + (12 + x2 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp39 = tl.load(in_ptr4 + (12 + x2 + 16 * x3), xmask, eviction_policy=
'evict_last')
tmp43 = tl.load(in_ptr5 + (x6 + 256 * x3), xmask)
tmp45 = tl.load(in_ptr5 + (64 + x6 + 256 * x3), xmask)
tmp48 = tl.load(in_ptr5 + (128 + x6 + 256 * x3), xmask)
tmp51 = tl.load(in_ptr5 + (192 + x6 + 256 * x3), xmask)
tmp3 = tmp1 + tmp2
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tmp9 = tmp0 * tmp8
tmp13 = tmp11 + tmp12
tmp15 = tmp13 - tmp14
tmp16 = tl_math.exp(tmp15)
tmp18 = tmp16 / tmp17
tmp19 = tmp10 * tmp18
tmp20 = tmp9 + tmp19
tmp24 = tmp22 + tmp23
tmp26 = tmp24 - tmp25
tmp27 = tl_math.exp(tmp26)
tmp29 = tmp27 / tmp28
tmp30 = tmp21 * tmp29
tmp31 = tmp20 + tmp30
tmp35 = tmp33 + tmp34
tmp37 = tmp35 - tmp36
tmp38 = tl_math.exp(tmp37)
tmp40 = tmp38 / tmp39
tmp41 = tmp32 * tmp40
tmp42 = tmp31 + tmp41
tmp44 = tmp43 * tmp0
tmp46 = tmp45 * tmp10
tmp47 = tmp44 + tmp46
tmp49 = tmp48 * tmp21
tmp50 = tmp47 + tmp49
tmp52 = tmp51 * tmp32
tmp53 = tmp50 + tmp52
tmp54 = tmp42 * tmp42
tmp55 = tmp53 - tmp54
tmp56 = 1e-08
tmp57 = tmp55 + tmp56
tmp58 = libdevice.sqrt(tmp57)
tmp59 = 2.0
tmp60 = tmp58 * tmp59
tmp61 = tmp42 * tmp59
tl.store(out_ptr0 + (x0 + 8 * x5), tmp42, xmask)
tl.store(out_ptr2 + (x0 + 8 * x5), tmp58, xmask)
tl.store(out_ptr3 + x8, tmp60, xmask)
tl.store(out_ptr4 + x8, tmp61, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (1, 4), (4, 1))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (4, 4), (1, 4
), 0), out=buf1)
buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(256)](buf2,
primals_5, buf14, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf2, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_7
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_add_1[grid(64)](primals_8, buf4, buf5,
buf6, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf8 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_mul_2[grid(1024)](primals_8, buf4, buf5, buf6,
buf0, buf8, 1024, XBLOCK=256, num_warps=4, num_stages=1)
buf11 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32
)
buf7 = reinterpret_tensor(buf11, (4, 4, 4, 4), (128, 32, 8, 1), 0)
buf10 = reinterpret_tensor(buf11, (4, 4, 4, 4), (128, 32, 8, 1), 4)
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_pow_sqrt_sub_sum_3[grid(256)](buf0,
primals_8, buf4, buf5, buf6, buf8, buf7, buf10, buf12, buf13,
256, XBLOCK=128, num_warps=4, num_stages=1)
del buf5
del buf6
return buf11, primals_8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf0, reinterpret_tensor(buf2, (64, 4), (4, 1), 0
), buf4, buf8, buf12, buf13, primals_6, buf14, primals_4
class AttentivePooling(nn.Module):
"""
Implementation of Attentive Pooling
"""
def __init__(self, input_dim, **kwargs):
super(AttentivePooling, self).__init__()
self.W_a = nn.Linear(input_dim, input_dim)
self.W = nn.Linear(input_dim, 1)
self.act_fn = nn.ReLU()
self.softmax = nn.functional.softmax
def forward(self, batch_rep, att_mask):
"""
input:
batch_rep : size (B, T, H), B: batch size, T: sequence length, H: Hidden dimension
attention_weight:
att_w : size (B, T, 1)
return:
utter_rep: size (B, H)
"""
att_logits = self.W(self.act_fn(self.W_a(batch_rep))).squeeze(-1)
att_logits = att_mask + att_logits
att_w = self.softmax(att_logits, dim=-1).unsqueeze(-1)
utter_rep = torch.sum(batch_rep * att_w, dim=1)
return utter_rep, att_w
class ASPNew(nn.Module):
""" Attentive Statistic Pooling module incoporate attention mask"""
def __init__(self, out_dim, input_dim):
super(ASPNew, self).__init__()
self.linear = nn.Linear(input_dim, out_dim)
self.ap_layer = AttentivePooling(out_dim)
def forward(self, input_0, input_1):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_4 = self.ap_layer.W_a.weight
primals_5 = self.ap_layer.W_a.bias
primals_6 = self.ap_layer.W.weight
primals_7 = self.ap_layer.W.bias
primals_3 = input_0
primals_8 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
czlwang/s3prl
|
ASP
| false
| 12,278
|
[
"Apache-2.0"
] | 0
|
81d4bb8d051cee20fa87c083b8478999e1766172
|
https://github.com/czlwang/s3prl/tree/81d4bb8d051cee20fa87c083b8478999e1766172
|
MeanPooling
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/27/c2756icidjudaxmpsh36ivcfkl6rhdm5jig5tqksj7oj2mzvteah.py
# Topologically Sorted Source Nodes: [entity_states, sum_1], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# entity_states => mul
# sum_1 => sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {})
triton_poi_fused_mul_sum_0 = async_compile.triton('triton_poi_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x4 = (xindex // 16)
x3 = (xindex // 64)
x5 = xindex % 16
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x4)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x5 + (64*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x4)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (16 + x5 + (64*x3)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (8 + x0 + (16*x4)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x5 + (64*x3)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (12 + x0 + (16*x4)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (48 + x5 + (64*x3)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + (x6), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/pt/cpt72ffbbpdwl7vayxxwlty7szkcpc6kgz6kcvijm543s4mcblrc.py
# Topologically Sorted Source Nodes: [entity_states, sum_1, mean_pooled], Original ATen: [aten.mul, aten.sum, aten.div]
# Source node to ATen node mapping:
# entity_states => mul
# mean_pooled => div
# sum_1 => sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %unsqueeze_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %unsqueeze_2), kwargs = {})
triton_poi_fused_div_mul_sum_1 = async_compile.triton('triton_poi_fused_div_mul_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_mul_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex % 256
x0 = xindex % 16
x5 = (xindex // 64)
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (16*x5)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 / tmp1
tl.store(out_ptr0 + (x6), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [entity_states, sum_1], Original ATen: [aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sum_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [entity_states, sum_1, mean_pooled], Original ATen: [aten.mul, aten.sum, aten.div]
triton_poi_fused_div_mul_sum_1.run(buf0, arg2_1, buf1, 1024, grid=grid(1024), stream=stream0)
del arg2_1
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x4 = xindex // 16
x3 = xindex // 64
x5 = xindex % 16
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x4), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + (x5 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x4), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr1 + (16 + x5 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr0 + (8 + x0 + 16 * x4), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x5 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr0 + (12 + x0 + 16 * x4), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr1 + (48 + x5 + 64 * x3), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x6, tmp14, xmask)
@triton.jit
def triton_poi_fused_div_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex % 256
x0 = xindex % 16
x5 = xindex // 64
x6 = xindex
tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x5), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 / tmp1
tl.store(out_ptr0 + x6, tmp2, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sum_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1),
torch.float32)
triton_poi_fused_div_mul_sum_1[grid(1024)](buf0, arg2_1, buf1, 1024,
XBLOCK=128, num_warps=4, num_stages=1)
del arg2_1
del buf0
return buf1,
class MeanPoolingNew(nn.Module):
def __init__(self):
super(MeanPoolingNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
jennybae1024/DFGN-pytorch
|
MeanPooling
| false
| 15,683
|
[
"MIT"
] | 191
|
056d9317f772cd10bdd215bfafdbac5cbd330026
|
https://github.com/jennybae1024/DFGN-pytorch/tree/056d9317f772cd10bdd215bfafdbac5cbd330026
|
WeightedSmoothL1Loss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/xg/cxgg32ubkdfznwtvtyivfhfswp2zdg3yjej2sv2qkuy5ptz2xsmt.py
# Topologically Sorted Source Nodes: [l1, mask], Original ATen: [aten.smooth_l1_loss, aten.lt]
# Source node to ATen node mapping:
# l1 => abs_1, div, lt, mul, pow_1, sub, sub_1, where
# mask => lt_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=3] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%abs_1, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, 0.5), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, 1.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {})
# %lt_1 : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%arg0_1, 4), kwargs = {})
triton_poi_fused_lt_smooth_l1_loss_0 = async_compile.triton('triton_poi_fused_lt_smooth_l1_loss_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_lt_smooth_l1_loss_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_lt_smooth_l1_loss_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = tmp3 * tmp3
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tmp9 = tmp8 * tmp4
tmp10 = tmp3 - tmp7
tmp11 = tl.where(tmp5, tmp9, tmp10)
tmp12 = 4.0
tmp13 = tmp1 < tmp12
tl.store(out_ptr0 + (x0), tmp11, xmask)
tl.store(out_ptr1 + (x0), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [l1, mask], Original ATen: [aten.smooth_l1_loss, aten.lt]
stream0 = get_raw_stream(0)
triton_poi_fused_lt_smooth_l1_loss_0.run(arg1_1, arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_lt_smooth_l1_loss_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = tmp3 * tmp3
tmp7 = 0.5
tmp8 = tmp6 * tmp7
tmp9 = tmp8 * tmp4
tmp10 = tmp3 - tmp7
tmp11 = tl.where(tmp5, tmp9, tmp10)
tmp12 = 4.0
tmp13 = tmp1 < tmp12
tl.store(out_ptr0 + x0, tmp11, xmask)
tl.store(out_ptr1 + x0, tmp13, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_lt_smooth_l1_loss_0[grid(256)](arg1_1, arg0_1,
buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0, buf1
class WeightedSmoothL1LossNew(nn.SmoothL1Loss):
def __init__(self, threshold, initial_weight, apply_below_threshold=True):
super().__init__(reduction='none')
self.threshold = threshold
self.apply_below_threshold = apply_below_threshold
self.weight = initial_weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
ciubecca/3dunet-cavity
|
WeightedSmoothL1Loss
| false
| 1,711
|
[
"MIT"
] | 0
|
cfcc827773b18a95d221ab86c1afc5e2f7c30ecb
|
https://github.com/ciubecca/3dunet-cavity/tree/cfcc827773b18a95d221ab86c1afc5e2f7c30ecb
|
BertAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# attention_scores => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/fh/cfhydrwaejluqurspx2dvattjq4qiiexqog4gfsdmfob43r5rnk5.py
# Topologically Sorted Source Nodes: [attention_scores_1, attention_scores_2, attention_probs], Original ATen: [aten.div, aten.add, aten._softmax]
# Source node to ATen node mapping:
# attention_probs => amax, exp, sub, sum_1
# attention_scores_1 => div
# attention_scores_2 => add
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_8), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_add_div_1 = async_compile.triton('triton_poi_fused__softmax_add_div_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_div_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + (4*x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp5 * tmp1
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.maximum(tmp4, tmp8)
tmp11 = tmp10 * tmp1
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 * tmp1
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp8 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp18 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tl.store(out_ptr0 + (x2), tmp19, xmask)
tl.store(out_ptr1 + (x2), tmp30, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/g6/cg65jkqmchbdahuikqawep5p32pz7fmy6cfvgzohspjy5l4iqhrs.py
# Topologically Sorted Source Nodes: [attention_scores_1, attention_scores_2, attention_probs], Original ATen: [aten.div, aten.add, aten._softmax]
# Source node to ATen node mapping:
# attention_probs => amax, div_1, exp, sub
# attention_scores_1 => div
# attention_scores_2 => add
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_11, 1.0), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%div, %primals_8), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_add_div_2 = async_compile.triton('triton_poi_fused__softmax_add_div_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_add_div_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x5 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp3 = tl.load(in_ptr0 + (x4), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x5), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + (x5), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + (x3), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/xt/cxtkkmujo4ytg6ycpz5lk5livtstr63pg5nsf5ijewjbtrfrqx6k.py
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# context_layer_1 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_6,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_2, buf3, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, primals_5, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf1 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [attention_scores_1, attention_scores_2, attention_probs], Original ATen: [aten.div, aten.add, aten._softmax]
triton_poi_fused__softmax_add_div_1.run(buf5, primals_8, buf6, buf7, 64, grid=grid(64), stream=stream0)
buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [attention_scores_1, attention_scores_2, attention_probs], Original ATen: [aten.div, aten.add, aten._softmax]
triton_poi_fused__softmax_add_div_2.run(buf8, primals_8, buf6, buf7, 256, grid=grid(256), stream=stream0)
del primals_8
buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_7, buf9, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_7
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [context_layer], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10)
buf11 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf6 # reuse
# Topologically Sorted Source Nodes: [context_layer_1], Original ATen: [aten.clone]
triton_poi_fused_clone_3.run(buf10, buf11, 16, 4, grid=grid(16, 4), stream=stream0)
buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [hidden_states], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(buf11, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_10
return (reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf8, reinterpret_tensor(buf11, (16, 4), (4, 1), 0), primals_9, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import torch.utils.data
import torch.nn as nn
import torch.nn
import torch as torch
import torch.sparse
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_add_div_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp15 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp5 * tmp1
tmp8 = tmp6 + tmp7
tmp9 = triton_helpers.maximum(tmp4, tmp8)
tmp11 = tmp10 * tmp1
tmp13 = tmp11 + tmp12
tmp14 = triton_helpers.maximum(tmp9, tmp13)
tmp16 = tmp15 * tmp1
tmp18 = tmp16 + tmp17
tmp19 = triton_helpers.maximum(tmp14, tmp18)
tmp20 = tmp4 - tmp19
tmp21 = tl_math.exp(tmp20)
tmp22 = tmp8 - tmp19
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp19
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp24 + tmp26
tmp28 = tmp18 - tmp19
tmp29 = tl_math.exp(tmp28)
tmp30 = tmp27 + tmp29
tl.store(out_ptr0 + x2, tmp19, xmask)
tl.store(out_ptr1 + x2, tmp30, xmask)
@triton.jit
def triton_poi_fused__softmax_add_div_2(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x4 = xindex % 64
x5 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp3 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr2 + x5, xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 - tmp5
tmp7 = tl_math.exp(tmp6)
tmp9 = tmp7 / tmp8
tl.store(in_out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 64), 0)
del buf1
buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused__softmax_add_div_1[grid(64)](buf5, primals_8, buf6,
buf7, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_add_div_2[grid(256)](buf8, primals_8,
buf6, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1)
del primals_8
buf9 = reinterpret_tensor(buf7, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf7
triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_7, buf9, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_7
buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 0), 0), out=buf10)
buf11 = reinterpret_tensor(buf6, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf6
triton_poi_fused_clone_3[grid(16, 4)](buf10, buf11, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0)
del buf10
extern_kernels.addmm(primals_10, reinterpret_tensor(buf11, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf12)
del primals_10
return reinterpret_tensor(buf12, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), buf8, reinterpret_tensor(buf11, (16, 4), (4, 1), 0
), primals_9, reinterpret_tensor(buf9, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.
num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.softmax = nn.Softmax(dim=-1)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def transpose_key_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 3, 1)
def forward(self, hidden_states, attention_mask):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_key_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
attention_scores = torch.matmul(query_layer, key_layer)
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
attention_scores = attention_scores + attention_mask
attention_probs = self.softmax(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dense.bert_output_layer = True
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class BertAttentionNew(nn.Module):
def __init__(self, config):
super(BertAttentionNew, self).__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_0, input_1):
primals_1 = self.self.query.weight
primals_2 = self.self.query.bias
primals_4 = self.self.key.weight
primals_5 = self.self.key.bias
primals_6 = self.self.value.weight
primals_7 = self.self.value.bias
primals_9 = self.output.dense.weight
primals_10 = self.output.dense.bias
primals_3 = input_0
primals_8 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
|
Sengxian/cogdl
|
BertAttention
| false
| 4,734
|
[
"MIT"
] | 0
|
b0a855feef6a883bcc0f7df421fc6092ec18abde
|
https://github.com/Sengxian/cogdl/tree/b0a855feef6a883bcc0f7df421fc6092ec18abde
|
Unit1D
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/pp/cpp5x5payhrywhwewuumbp2cdp3avjx66rulbvn772jmsgu3nf4d.py
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => convolution
# x_2 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4), (16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_threshold_backward_0.run(buf1, primals_3, buf2, 64, grid=grid(64), stream=stream0)
del primals_3
return (buf1, primals_1, primals_2, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_0(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4), (16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_convolution_relu_threshold_backward_0[grid(64)](buf1,
primals_3, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
return buf1, primals_1, primals_2, buf2
class Unit1DNew(nn.Module):
def __init__(self, in_channels, output_channels, kernel_shape=1, stride
=1, padding='same', activation_fn=F.relu, use_bias=True):
super(Unit1DNew, self).__init__()
self.conv1d = nn.Conv1d(in_channels, output_channels, kernel_shape,
stride, padding=0, bias=use_bias)
self._activation_fn = activation_fn
self._padding = padding
self._stride = stride
self._kernel_shape = kernel_shape
def compute_pad(self, t):
if t % self._stride == 0:
return max(self._kernel_shape - self._stride, 0)
else:
return max(self._kernel_shape - t % self._stride, 0)
def forward(self, input_0):
primals_2 = self.conv1d.weight
primals_3 = self.conv1d.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Cogito2012/OpenTAL
|
Unit1D
| false
| 7,900
|
[
"BSD-3-Clause"
] | 16
|
a7ab938a52b3fb82163eb1ba5403888359eb7e6a
|
https://github.com/Cogito2012/OpenTAL/tree/a7ab938a52b3fb82163eb1ba5403888359eb7e6a
|
ContentLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/o7/co7nx32obozl3r7skczzquklnf2etk44ctsp7n6kcssfzvfkdsds.py
# Topologically Sorted Source Nodes: [sub, pow_1, sum_1, loss], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mul]
# Source node to ATen node mapping:
# loss => mul
# pow_1 => pow_1
# sub => sub
# sum_1 => sum_1
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%pow_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, %sum_1), kwargs = {})
triton_per_fused_mul_pow_sub_sum_0 = async_compile.triton('triton_per_fused_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': True, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mul_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp7 = tl.load(in_ptr2 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp8 = tmp7 * tmp6
tl.store(out_ptr1 + (tl.broadcast_to(r0, [RBLOCK])), tmp8, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub, pow_1, sum_1, loss], Original ATen: [aten.sub, aten.pow, aten.sum, aten.mul]
stream0 = get_raw_stream(0)
triton_per_fused_mul_pow_sub_sum_0.run(arg0_1, arg1_1, arg2_1, buf1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mul_pow_sub_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp7 = tl.load(in_ptr2 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp8 = tmp7 * tmp6
tl.store(out_ptr1 + tl.broadcast_to(r0, [RBLOCK]), tmp8, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_mul_pow_sub_sum_0[grid(1)](arg0_1, arg1_1, arg2_1,
buf1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
return buf1,
class ContentLossNew(nn.Module):
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
Kuga23/Deep-Learning
|
ContentLoss
| false
| 2,483
|
[
"MIT"
] | 0
|
86980338208c702b6bfcbcfffdb18498e389a56b
|
https://github.com/Kuga23/Deep-Learning/tree/86980338208c702b6bfcbcfffdb18498e389a56b
|
CosineSimilarity_custom
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class CosineSimilarity_custom(nn.Module):
def __init__(self, dim: 'int'=1, eps: 'float'=1e-08):
super(CosineSimilarity_custom, self).__init__()
self.dim = dim
self.eps = eps
def forward(self, x1, x2):
return 1 - F.cosine_similarity(x1, x2, self.dim, self.eps)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp16 = tl.load(in_ptr1 + x3, xmask)
tmp17 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp22 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp25 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-08
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tmp18 = tmp17 * tmp17
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = libdevice.sqrt(tmp27)
tmp29 = triton_helpers.maximum(tmp28, tmp13)
tmp30 = tmp16 / tmp29
tmp31 = tmp15 * tmp30
tl.store(out_ptr0 + x3, tmp31, xmask)
@triton.jit
def triton_poi_fused_rsub_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 1.0
tmp8 = tmp7 - tmp6
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0[grid(256)](
arg1_1, arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_rsub_sum_1[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf0
return buf1,
class CosineSimilarity_customNew(nn.Module):
def __init__(self, dim: 'int'=1, eps: 'float'=1e-08):
super(CosineSimilarity_customNew, self).__init__()
self.dim = dim
self.eps = eps
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
Lhx94As/PHO-LID
|
CosineSimilarity_custom
| false
| 5,518
|
[
"MIT"
] | 1
|
44843b25b977dd6e0b77b520dbe3f2ff1ea633cd
|
https://github.com/Lhx94As/PHO-LID/tree/44843b25b977dd6e0b77b520dbe3f2ff1ea633cd
|
UpsampleConv2d
|
from torch.nn import Module
import math
import torch
from torchvision.datasets import *
import torch.nn.functional as F
from torch.nn import Parameter
from torch.nn.modules.utils import _pair
from torchvision.transforms import *
class UpsampleConv2d(Module):
"""
To avoid the checkerboard artifacts of standard Fractionally-strided Convolution,
we adapt an integer stride convolution but producing a :math:`2\\times 2` outputs for
each convolutional window.
.. image:: _static/img/upconv.png
:width: 50%
:align: center
Reference:
Hang Zhang and Kristin Dana. "Multi-style Generative Network for Real-time Transfer."
*arXiv preprint arXiv:1703.06953 (2017)*
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
output_padding (int or tuple, optional): Zero-padding added to one side of the output.
Default: 0
groups (int, optional): Number of blocked connections from input channels to output
channels. Default: 1
bias (bool, optional): If True, adds a learnable bias to the output. Default: True
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
scale_factor (int): scaling factor for upsampling convolution. Default: 1
Shape:
- Input: :math:`(N, C_{in}, H_{in}, W_{in})`
- Output: :math:`(N, C_{out}, H_{out}, W_{out})` where
:math:`H_{out} = scale * (H_{in} - 1) * stride[0] - 2 * padding[0] + kernel\\_size[0] + output\\_padding[0]`
:math:`W_{out} = scale * (W_{in} - 1) * stride[1] - 2 * padding[1] + kernel\\_size[1] + output\\_padding[1]`
Attributes:
weight (Tensor): the learnable weights of the module of shape
(in_channels, scale * scale * out_channels, kernel_size[0], kernel_size[1])
bias (Tensor): the learnable bias of the module of shape (scale * scale * out_channels)
Examples:
>>> # With square kernels and equal stride
>>> m = nn.UpsampleCov2d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.UpsampleCov2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>> input = autograd.Variable(torch.randn(20, 16, 50, 100))
>>> output = m(input)
>>> # exact output size can be also specified as an argument
>>> input = autograd.Variable(torch.randn(1, 16, 12, 12))
>>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1)
>>> upsample = nn.UpsampleCov2d(16, 16, 3, stride=2, padding=1)
>>> h = downsample(input)
>>> h.size()
torch.Size([1, 16, 6, 6])
>>> output = upsample(h, output_size=input.size())
>>> output.size()
torch.Size([1, 16, 12, 12])
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, scale_factor=1, bias=True):
super(UpsampleConv2d, self).__init__()
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.scale_factor = scale_factor
self.weight = Parameter(torch.Tensor(out_channels * scale_factor *
scale_factor, in_channels // groups, *kernel_size))
if bias:
self.bias = Parameter(torch.Tensor(out_channels * scale_factor *
scale_factor))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
n = self.in_channels
for k in self.kernel_size:
n *= k
stdv = 1.0 / math.sqrt(n)
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input):
out = F.conv2d(input, self.weight, self.bias, self.stride, self.
padding, self.dilation, self.groups)
return F.pixel_shuffle(out, self.scale_factor)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
import math
from torchvision.datasets import *
from torch.nn import Parameter
from torch.nn.modules.utils import _pair
from torchvision.transforms import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 16, 16), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16)](buf1, primals_2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
return reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0
), primals_1, primals_3
class UpsampleConv2dNew(Module):
"""
To avoid the checkerboard artifacts of standard Fractionally-strided Convolution,
we adapt an integer stride convolution but producing a :math:`2\\times 2` outputs for
each convolutional window.
.. image:: _static/img/upconv.png
:width: 50%
:align: center
Reference:
Hang Zhang and Kristin Dana. "Multi-style Generative Network for Real-time Transfer."
*arXiv preprint arXiv:1703.06953 (2017)*
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the convolution
kernel_size (int or tuple): Size of the convolving kernel
stride (int or tuple, optional): Stride of the convolution. Default: 1
padding (int or tuple, optional): Zero-padding added to both sides of the input. Default: 0
output_padding (int or tuple, optional): Zero-padding added to one side of the output.
Default: 0
groups (int, optional): Number of blocked connections from input channels to output
channels. Default: 1
bias (bool, optional): If True, adds a learnable bias to the output. Default: True
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
scale_factor (int): scaling factor for upsampling convolution. Default: 1
Shape:
- Input: :math:`(N, C_{in}, H_{in}, W_{in})`
- Output: :math:`(N, C_{out}, H_{out}, W_{out})` where
:math:`H_{out} = scale * (H_{in} - 1) * stride[0] - 2 * padding[0] + kernel\\_size[0] + output\\_padding[0]`
:math:`W_{out} = scale * (W_{in} - 1) * stride[1] - 2 * padding[1] + kernel\\_size[1] + output\\_padding[1]`
Attributes:
weight (Tensor): the learnable weights of the module of shape
(in_channels, scale * scale * out_channels, kernel_size[0], kernel_size[1])
bias (Tensor): the learnable bias of the module of shape (scale * scale * out_channels)
Examples:
>>> # With square kernels and equal stride
>>> m = nn.UpsampleCov2d(16, 33, 3, stride=2)
>>> # non-square kernels and unequal stride and with padding
>>> m = nn.UpsampleCov2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
>>> input = autograd.Variable(torch.randn(20, 16, 50, 100))
>>> output = m(input)
>>> # exact output size can be also specified as an argument
>>> input = autograd.Variable(torch.randn(1, 16, 12, 12))
>>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1)
>>> upsample = nn.UpsampleCov2d(16, 16, 3, stride=2, padding=1)
>>> h = downsample(input)
>>> h.size()
torch.Size([1, 16, 6, 6])
>>> output = upsample(h, output_size=input.size())
>>> output.size()
torch.Size([1, 16, 12, 12])
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, scale_factor=1, bias=True):
super(UpsampleConv2dNew, self).__init__()
kernel_size = _pair(kernel_size)
stride = _pair(stride)
padding = _pair(padding)
dilation = _pair(dilation)
if in_channels % groups != 0:
raise ValueError('in_channels must be divisible by groups')
if out_channels % groups != 0:
raise ValueError('out_channels must be divisible by groups')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.scale_factor = scale_factor
self.weight = Parameter(torch.Tensor(out_channels * scale_factor *
scale_factor, in_channels // groups, *kernel_size))
if bias:
self.bias = Parameter(torch.Tensor(out_channels * scale_factor *
scale_factor))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
n = self.in_channels
for k in self.kernel_size:
n *= k
stdv = 1.0 / math.sqrt(n)
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
JJavierga/PyTorch-Encoding
|
UpsampleConv2d
| false
| 9,465
|
[
"MIT"
] | 0
|
207254b2a60276a31ffa24b76ae84df27c6ebf94
|
https://github.com/JJavierga/PyTorch-Encoding/tree/207254b2a60276a31ffa24b76ae84df27c6ebf94
|
Fp32GroupNorm
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/h2/ch2lsz6hw2mrwlabzld2ng7mvrd4dcaaxn3uswoa4fludl7amn3v.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_group_norm]
# Source node to ATen node mapping:
# output => add, add_1, mul_1, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %unsqueeze_5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %unsqueeze_2), kwargs = {})
triton_per_fused_native_group_norm_0 = async_compile.triton('triton_per_fused_native_group_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_native_group_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_native_group_norm_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + (r3), None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + (r3), None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 64.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tl.store(out_ptr2 + (r1 + (64*x0)), tmp27, xmask)
tl.store(out_ptr3 + (x0), tmp22, xmask)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.native_group_norm]
stream0 = get_raw_stream(0)
triton_per_fused_native_group_norm_0.run(primals_1, primals_2, primals_3, buf0, buf3, buf4, 4, 64, grid=grid(4), stream=stream0)
del primals_2
del primals_3
return (buf3, primals_1, reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0), reinterpret_tensor(buf4, (4, 1, 1), (1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.utils.data
import torch.onnx.operators
import torch.optim
import torch.optim.lr_scheduler
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_native_group_norm_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
r3 = rindex // 16
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp24 = tl.load(in_ptr1 + r3, None, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr2 + r3, None, eviction_policy='evict_last')
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tl.where(xmask, tmp1, 0)
tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp8 = tl.full([XBLOCK, 1], 64, tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tmp17 = tmp0 - tmp10
tmp18 = 64.0
tmp19 = tmp16 / tmp18
tmp20 = 1e-05
tmp21 = tmp19 + tmp20
tmp22 = libdevice.rsqrt(tmp21)
tmp23 = tmp17 * tmp22
tmp25 = tmp23 * tmp24
tmp27 = tmp25 + tmp26
tl.store(out_ptr2 + (r1 + 64 * x0), tmp27, xmask)
tl.store(out_ptr3 + x0, tmp22, xmask)
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
get_raw_stream(0)
triton_per_fused_native_group_norm_0[grid(4)](primals_1, primals_2,
primals_3, buf0, buf3, buf4, 4, 64, XBLOCK=1, num_warps=2,
num_stages=1)
del primals_2
del primals_3
return buf3, primals_1, reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0
), reinterpret_tensor(buf4, (4, 1, 1), (1, 1, 1), 0)
class Fp32GroupNormNew(nn.GroupNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
GT-SALT/FormalityStyleTransfer
|
Fp32GroupNorm
| false
| 17,335
|
[
"MIT"
] | 8
|
a86d287d0c48238f7cd39f6f34b465b0b7ccb2f4
|
https://github.com/GT-SALT/FormalityStyleTransfer/tree/a86d287d0c48238f7cd39f6f34b465b0b7ccb2f4
|
GCN
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/be/cbej2f3myglhqo2dienhyo4fp7tbscq32k7imbgc2psgl6gaxxhi.py
# Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu]
# Source node to ATen node mapping:
# add => add
# x => relu
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_1, %primals_4), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add,), kwargs = {})
triton_poi_fused_add_relu_0 = async_compile.triton('triton_poi_fused_add_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/ul/culvxc5xcnacfjypzxghwcyc2445sqsz25ci4rib6axjxs3fv3so.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_default, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_default, %amax), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/yr/cyr6fatjcqc5np3quy6arljtkkff4qjmueyb5b4pk5xvkxgrzuvd.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [support], Original ATen: [aten.mm]
extern_kernels.mm(primals_1, primals_2, out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.mm]
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [add, x], Original ATen: [aten.add, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_add_relu_0.run(buf2, primals_4, 16, grid=grid(16), stream=stream0)
del primals_4
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [support_1], Original ATen: [aten.mm]
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1, out=buf4)
del primals_6
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf4, buf5, 16, grid=grid(16), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf5, buf6, 16, grid=grid(16), stream=stream0)
del buf5
return (buf6, buf2, buf6, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn import Module
import math
from torch import nn
from torch.nn.parameter import Parameter
from torch.nn.modules.module import Module
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_1, primals_2, out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, buf0, out=buf1)
buf2 = buf1
del buf1
get_raw_stream(0)
triton_poi_fused_add_relu_0[grid(16)](buf2, primals_4, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_4
buf3 = buf0
del buf0
extern_kernels.mm(buf2, primals_5, out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, primals_3, buf3, alpha=1, beta=1,
out=buf4)
del primals_6
buf5 = buf3
del buf3
triton_poi_fused__log_softmax_1[grid(16)](buf4, buf5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__log_softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf5
return buf6, buf2, buf6, reinterpret_tensor(primals_3, (4, 4), (1, 4), 0
), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0
), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0)
class GraphConvolution(Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""
def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
def forward(self, input, adj, ismlp=False):
if len(input.shape) == 3:
B = input.shape[0]
N = input.shape[1]
support = torch.matmul(input, self.weight)
if ismlp:
return support if self.bias is None else support + self.bias
support = support.transpose(0, 1).reshape(N, B * self.out_features)
output = torch.spmm(adj, support)
output = output.reshape(N, B, self.out_features).transpose(0, 1)
else:
support = torch.mm(input, self.weight)
if ismlp:
return support if self.bias is None else support + self.bias
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output
def __repr__(self):
return self.__class__.__name__ + ' (' + str(self.in_features
) + ' -> ' + str(self.out_features) + ')'
class GCNNew(nn.Module):
def __init__(self, nfeat, nhid, nclass, dropout):
super(GCNNew, self).__init__()
self.gc1 = GraphConvolution(nfeat, nhid)
self.gc2 = GraphConvolution(nhid, nclass)
self.dropout = dropout
def forward(self, input_0, input_1):
primals_1 = self.gc1.weight
primals_4 = self.gc1.bias
primals_2 = self.gc2.weight
primals_6 = self.gc2.bias
primals_3 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
hongfz16/Garment4D
|
GCN
| false
| 15,539
|
[
"MIT"
] | 89
|
9317dc262f3d35eb9e6cd6a7bfbb29f04560ca35
|
https://github.com/hongfz16/Garment4D/tree/9317dc262f3d35eb9e6cd6a7bfbb29f04560ca35
|
HighLightLayer
|
import torch
import torch.nn.parallel
import torch.nn as nn
import torch.utils.data
import torch.backends.cudnn
def mask_logits(inputs, mask, mask_value=-1e+30):
mask = mask.type(torch.float32)
return inputs + (1.0 - mask) * mask_value
class Conv1D(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size=1, stride=1, padding=0,
bias=True):
super(Conv1D, self).__init__()
self.conv1d = nn.Conv1d(in_channels=in_dim, out_channels=out_dim,
kernel_size=kernel_size, padding=padding, stride=stride, bias=bias)
def forward(self, x):
x = x.transpose(1, 2)
x = self.conv1d(x)
return x.transpose(1, 2)
class HighLightLayer(nn.Module):
def __init__(self, dim):
super(HighLightLayer, self).__init__()
self.conv1d = Conv1D(in_dim=dim, out_dim=1, kernel_size=1, stride=1,
padding=0, bias=True)
def forward(self, x, mask):
logits = self.conv1d(x)
logits = logits.squeeze(2)
logits = mask_logits(logits, mask)
scores = nn.Sigmoid()(logits)
return scores
@staticmethod
def compute_loss(scores, labels, mask, epsilon=1e-12):
labels = labels.type(torch.float32)
weights = torch.where(labels == 0.0, labels + 1.0, 2.0 * labels)
loss_per_location = nn.BCELoss(reduction='none')(scores, labels)
loss_per_location = loss_per_location * weights
mask = mask.type(torch.float32)
loss = torch.sum(loss_per_location * mask) / (torch.sum(mask) + epsilon
)
return loss
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn.parallel
import torch.nn as nn
import torch.utils.data
import torch.backends.cudnn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_mul_rsub_sigmoid_1(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr1 + x0, xmask)
tmp3 = tmp0 + tmp2
tmp5 = 1.0
tmp6 = tmp5 - tmp4
tmp7 = -1e+30
tmp8 = tmp6 * tmp7
tmp9 = tmp3 + tmp8
tmp10 = tl.sigmoid(tmp9)
tl.store(in_out_ptr0 + x0, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 4), (4, 4, 1))
del buf0
buf2 = reinterpret_tensor(buf1, (4, 4), (4, 1), 0)
del buf1
triton_poi_fused_add_mul_rsub_sigmoid_1[grid(16)](buf2, primals_3,
primals_4, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
del primals_4
return buf2, primals_2, reinterpret_tensor(primals_1, (4, 4, 4), (16, 1,
4), 0), buf2
def mask_logits(inputs, mask, mask_value=-1e+30):
mask = mask.type(torch.float32)
return inputs + (1.0 - mask) * mask_value
class Conv1D(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size=1, stride=1, padding=0,
bias=True):
super(Conv1D, self).__init__()
self.conv1d = nn.Conv1d(in_channels=in_dim, out_channels=out_dim,
kernel_size=kernel_size, padding=padding, stride=stride, bias=bias)
def forward(self, x):
x = x.transpose(1, 2)
x = self.conv1d(x)
return x.transpose(1, 2)
class HighLightLayerNew(nn.Module):
def __init__(self, dim):
super(HighLightLayerNew, self).__init__()
self.conv1d = Conv1D(in_dim=dim, out_dim=1, kernel_size=1, stride=1,
padding=0, bias=True)
@staticmethod
def compute_loss(scores, labels, mask, epsilon=1e-12):
labels = labels.type(torch.float32)
weights = torch.where(labels == 0.0, labels + 1.0, 2.0 * labels)
loss_per_location = nn.BCELoss(reduction='none')(scores, labels)
loss_per_location = loss_per_location * weights
mask = mask.type(torch.float32)
loss = torch.sum(loss_per_location * mask) / (torch.sum(mask) + epsilon
)
return loss
def forward(self, input_0, input_1):
primals_2 = self.conv1d.conv1d.weight
primals_3 = self.conv1d.conv1d.bias
primals_1 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
EGO4D/episodic-memory
|
HighLightLayer
| false
| 8,084
|
[
"MIT"
] | 27
|
2a3464882cd4f665c358c1b05a6397339e33c2e1
|
https://github.com/EGO4D/episodic-memory/tree/2a3464882cd4f665c358c1b05a6397339e33c2e1
|
DQNFeatureNetwork
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/yg/cygigdediun32xqpnn2rvwqivcwityjlhmhcxprrpqarzdrxjcrc.py
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
# Source node to ATen node mapping:
# truediv => div
# Graph fragment:
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, 255.0), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 331776
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = 0.00392156862745098
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/x3/cx3zumgw77e3igayg4xhlhbpdfk2ntbgunplp6t4wmspo7thr3v3.py
# Topologically Sorted Source Nodes: [conv2d, h], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# h => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%div, %primals_2, %primals_3, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 156800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 1225) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/oj/cojqknocmn4drzmdartfcdsvk3jhz65nil4x2gpmirq4cuh6g76u.py
# Topologically Sorted Source Nodes: [conv2d_1, h_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# h_1 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/75/c75ridkuvyesgf2ta27mnfilxkoj3q67qxicwr54tipezlr33wm2.py
# Topologically Sorted Source Nodes: [conv2d_2, h_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# h_2 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 196) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/us/cusah6qluldczk3fkqzo35txkcch23rpo7jnuiz562sl6427v3a2.py
# Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# h_3 => relu_3
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_4 = async_compile.triton('triton_poi_fused_relu_threshold_backward_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 144, 144), (82944, 20736, 144, 1))
assert_size_stride(primals_2, (32, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_3, (32, ), (1, ))
assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (512, 3136), (3136, 1))
assert_size_stride(primals_9, (512, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 144, 144), (82944, 20736, 144, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(primals_1, buf0, 331776, grid=grid(331776), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 32, 35, 35), (39200, 1225, 35, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv2d, h], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 156800, grid=grid(156800), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 64, 16, 16), (16384, 256, 16, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, h_1], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf4, primals_5, 65536, grid=grid(65536), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 64, 14, 14), (12544, 196, 14, 1))
buf6 = buf5; del buf5 # reuse
buf10 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_2, h_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_3.run(buf6, primals_7, buf10, 50176, grid=grid(50176), stream=stream0)
del primals_7
buf7 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf6, (16, 3136), (3136, 1), 0), reinterpret_tensor(primals_8, (3136, 512), (1, 3136), 0), out=buf7)
buf8 = buf7; del buf7 # reuse
buf9 = empty_strided_cuda((16, 512), (512, 1), torch.bool)
# Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_4.run(buf8, primals_9, buf9, 8192, grid=grid(8192), stream=stream0)
del primals_9
return (buf8, primals_2, primals_4, primals_6, buf0, buf2, buf4, reinterpret_tensor(buf6, (16, 3136), (3136, 1), 0), buf9, primals_8, buf10, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 144, 144), (82944, 20736, 144, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((512, 3136), (3136, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = 0.00392156862745098
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 156800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 1225 % 32
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_3(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 196 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_4(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 512
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 144, 144), (82944, 20736, 144, 1))
assert_size_stride(primals_2, (32, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_3, (32,), (1,))
assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (512, 3136), (3136, 1))
assert_size_stride(primals_9, (512,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 144, 144), (82944, 20736, 144, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(331776)](primals_1, buf0, 331776,
XBLOCK=1024, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(4, 4),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 32, 35, 35), (39200, 1225, 35, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(156800)](buf2, primals_3,
156800, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 64, 16, 16), (16384, 256, 16, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_relu_2[grid(65536)](buf4, primals_5,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_5
buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf5, (4, 64, 14, 14), (12544, 196, 14, 1))
buf6 = buf5
del buf5
buf10 = empty_strided_cuda((4, 64, 14, 14), (12544, 196, 14, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_3[grid(50176)](
buf6, primals_7, buf10, 50176, XBLOCK=512, num_warps=4,
num_stages=1)
del primals_7
buf7 = empty_strided_cuda((16, 512), (512, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf6, (16, 3136), (3136, 1), 0
), reinterpret_tensor(primals_8, (3136, 512), (1, 3136), 0),
out=buf7)
buf8 = buf7
del buf7
buf9 = empty_strided_cuda((16, 512), (512, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_4[grid(8192)](buf8,
primals_9, buf9, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_9
return (buf8, primals_2, primals_4, primals_6, buf0, buf2, buf4,
reinterpret_tensor(buf6, (16, 3136), (3136, 1), 0), buf9, primals_8,
buf10)
class DQNFeatureNetworkNew(nn.Module):
def __init__(self, input_shape, output_shape, **kwargs):
super().__init__()
n_input = input_shape[0]
self._h1 = nn.Conv2d(n_input, 32, kernel_size=8, stride=4)
self._h2 = nn.Conv2d(32, 64, kernel_size=4, stride=2)
self._h3 = nn.Conv2d(64, 64, kernel_size=3, stride=1)
self._h4 = nn.Linear(3136, 512)
nn.init.xavier_uniform_(self._h1.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h2.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h3.weight, gain=nn.init.
calculate_gain('relu'))
nn.init.xavier_uniform_(self._h4.weight, gain=nn.init.
calculate_gain('relu'))
def forward(self, input_0):
primals_2 = self._h1.weight
primals_3 = self._h1.bias
primals_4 = self._h2.weight
primals_5 = self._h2.bias
primals_6 = self._h3.weight
primals_7 = self._h3.bias
primals_8 = self._h4.weight
primals_9 = self._h4.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
jacarvalho/mushroom-rl-benchmark
|
DQNFeatureNetwork
| false
| 12,553
|
[
"MIT"
] | 0
|
5bc2e9b1a12be33827d6edcd5c5ad49571e11275
|
https://github.com/jacarvalho/mushroom-rl-benchmark/tree/5bc2e9b1a12be33827d6edcd5c5ad49571e11275
|
ArcFaceLinear
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/zk/czk5xfokmwnuegxn53eciq25366p2is3a6lxx47tlosf3q225vha.py
# Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div]
# Source node to ATen node mapping:
# normalize => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, %expand), kwargs = {})
triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + (x2), tmp15, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [normalize], Original ATen: [aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_div_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [cosine], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1)
del buf0
return (reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch.nn import Module
import math
import torch.distributed
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp4 = tmp3 * tmp3
tmp5 = tmp2 + tmp4
tmp7 = tmp6 * tmp6
tmp8 = tmp5 + tmp7
tmp10 = tmp9 * tmp9
tmp11 = tmp8 + tmp10
tmp12 = libdevice.sqrt(tmp11)
tmp13 = 1e-12
tmp14 = triton_helpers.maximum(tmp12, tmp13)
tmp15 = tmp0 / tmp14
tl.store(out_ptr0 + x2, tmp15, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_0[grid(16)](primals_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(buf0, (4, 4), (1, 4), 0), out=buf1)
del buf0
return reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0
), primals_1, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0)
class ArcFaceLinearNew(Module):
def __init__(self, embedding_size, num_classes):
super(ArcFaceLinearNew, self).__init__()
self.weight = torch.nn.Parameter(data=torch.FloatTensor(num_classes,
embedding_size), requires_grad=True)
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
def forward(self, input_0):
primals_1 = self.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
smivv/kaggle-bengali
|
ArcFaceLinear
| false
| 4,361
|
[
"Apache-2.0"
] | 0
|
ab6a2153b657b4f4210551f7f4a674920d66a272
|
https://github.com/smivv/kaggle-bengali/tree/ab6a2153b657b4f4210551f7f4a674920d66a272
|
SineLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ej/cejzhnnynxtkiot2qt7feea4bkwhxo5g2qmtwe2jbyvjefkkzt6m.py
# Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin]
# Source node to ATen node mapping:
# mul => mul
# sin => sin
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 30), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul,), kwargs = {})
triton_poi_fused_mul_sin_0 = async_compile.triton('triton_poi_fused_mul_sin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 30.0
tmp2 = tmp0 * tmp1
tmp3 = tl_math.sin(tmp2)
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sin], Original ATen: [aten.mul, aten.sin]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sin_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0)
return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sin_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 30.0
tmp2 = tmp0 * tmp1
tmp3 = tl_math.sin(tmp2)
tl.store(out_ptr0 + x0, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sin_0[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0
class SineLayerNew(nn.Module):
def __init__(self, in_features: 'int', out_features: 'int', omega_0:
'float'=30, is_first: 'bool'=False) ->None:
"""Sine activation function layer with omega_0 scaling.
Args:
in_features (int): Number of input features.
out_features (int): Number of output features.
omega_0 (float, optional): Scaling factor of the Sine function. Defaults to 30.
is_first (bool, optional): Defaults to False.
"""
super().__init__()
self.omega_0 = omega_0
self.is_first = is_first
self.in_features = in_features
self.linear = nn.Linear(in_features, out_features)
self.init_weights()
def init_weights(self) ->None:
"""Initialization of the weigths."""
with torch.no_grad():
if self.is_first:
self.linear.weight.uniform_(-1 / self.in_features, 1 / self
.in_features)
else:
self.linear.weight.uniform_(-np.sqrt(6 / self.in_features) /
self.omega_0, np.sqrt(6 / self.in_features) / self.omega_0)
def forward(self, input_0):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Jose-Bastos/DeePyMoD
|
SineLayer
| false
| 2,424
|
[
"MIT"
] | 0
|
c043f9314990c9dd67d8f897cb14e107758f326d
|
https://github.com/Jose-Bastos/DeePyMoD/tree/c043f9314990c9dd67d8f897cb14e107758f326d
|
FCUDown
|
import torch
import torch.nn as nn
from functools import partial
class FCUDown(nn.Module):
""" CNN feature maps -> Transformer patch embeddings
"""
def __init__(self, inplanes, outplanes, dw_stride, act_layer=nn.GELU,
norm_layer=partial(nn.LayerNorm, eps=1e-06)):
super(FCUDown, self).__init__()
self.dw_stride = dw_stride
self.conv_project = nn.Conv2d(inplanes, outplanes, kernel_size=1,
stride=1, padding=0)
self.sample_pooling = nn.AvgPool2d(kernel_size=dw_stride, stride=
dw_stride)
self.ln = norm_layer(outplanes)
self.act = act_layer()
def forward(self, x, x_t):
x = self.conv_project(x)
x = self.sample_pooling(x).flatten(2).transpose(1, 2)
x = self.ln(x)
x = self.act(x)
x = torch.cat([x_t[:, 0][:, None, :], x], dim=1)
return x
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'inplanes': 4, 'outplanes': 4, 'dw_stride': 1}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from functools import partial
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_avg_pool2d_convolution_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp2, xmask)
tl.store(out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-06
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x2, tmp8, xmask)
tl.store(out_ptr1 + x2, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
x1 = xindex // 4 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr2 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4 % 5
x0 = xindex % 4
x2 = xindex // 20
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x2), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 5, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x0 + 16 * x2 + (-1 + x1)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = 0.5
tmp11 = tmp9 * tmp10
tmp12 = 0.7071067811865476
tmp13 = tmp9 * tmp12
tmp14 = libdevice.erf(tmp13)
tmp15 = 1.0
tmp16 = tmp14 + tmp15
tmp17 = tmp11 * tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp6, tmp17, tmp18)
tmp20 = tl.where(tmp4, tmp5, tmp19)
tl.store(out_ptr0 + x3, tmp20, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1,
4, 4, 4), (64, 16, 4, 1), 0), primals_1, stride=(1, 1), padding
=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0,
0), groups=1, bias=None)
assert_size_stride(buf0, (1, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_avg_pool2d_convolution_0[grid(64)](buf1, primals_2,
buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_2
buf3 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(16)](buf2, buf3, buf4, 16,
XBLOCK=16, num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((4, 4, 4), (16, 1, 4), torch.float32)
triton_poi_fused_native_layer_norm_2[grid(64)](buf2, buf3, buf4,
primals_4, primals_5, buf5, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf3
del buf4
buf6 = empty_strided_cuda((4, 5, 4), (20, 4, 1), torch.float32)
triton_poi_fused_cat_3[grid(80)](primals_6, buf5, buf6, 80, XBLOCK=
128, num_warps=4, num_stages=1)
del buf5
del primals_6
return buf6, primals_1, primals_4, primals_5, reinterpret_tensor(primals_3,
(1, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf1, (4, 4, 4
), (16, 4, 1), 0), buf2
class FCUDownNew(nn.Module):
""" CNN feature maps -> Transformer patch embeddings
"""
def __init__(self, inplanes, outplanes, dw_stride, act_layer=nn.GELU,
norm_layer=partial(nn.LayerNorm, eps=1e-06)):
super(FCUDownNew, self).__init__()
self.dw_stride = dw_stride
self.conv_project = nn.Conv2d(inplanes, outplanes, kernel_size=1,
stride=1, padding=0)
self.sample_pooling = nn.AvgPool2d(kernel_size=dw_stride, stride=
dw_stride)
self.ln = norm_layer(outplanes)
self.act = act_layer()
def forward(self, input_0, input_1):
primals_1 = self.conv_project.weight
primals_2 = self.conv_project.bias
primals_4 = self.ln.weight
primals_5 = self.ln.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
Curli-quan/fewshot-select
|
FCUDown
| false
| 17,229
|
[
"Apache-2.0"
] | 7
|
34f8ce5069ed1fbd01c1fa73a3ef264c98dadafe
|
https://github.com/Curli-quan/fewshot-select/tree/34f8ce5069ed1fbd01c1fa73a3ef264c98dadafe
|
ln
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/bm/cbmvwkhgioz63mnhrh3onxemouh4axyclce6ay7mypmzm62glj7h.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/gn/cgn3tpasui6fv3xxba47jzqip7bgipyrz4akedry64e2fx5k4rvd.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# x => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, ), (1, ))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0)
del buf0
del buf1
del primals_1
del primals_2
return (buf2, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0,
buf1, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0,
buf1, primals_1, primals_2, buf2, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf0
del buf1
del primals_1
del primals_2
return buf2, primals_3
class lnNew(nn.Module):
"""
Layer Normalization
"""
def __init__(self, input):
super(lnNew, self).__init__()
self.ln = nn.LayerNorm(input.size()[1:])
def forward(self, input_0):
primals_1 = self.ln.weight
primals_2 = self.ln.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
ZAKAUDD/-GEU-Net
|
ln
| false
| 18,201
|
[
"MIT"
] | 8
|
5251d329afb80c74328e72fd2fc21ff691ef3353
|
https://github.com/ZAKAUDD/-GEU-Net/tree/5251d329afb80c74328e72fd2fc21ff691ef3353
|
MultiHeadAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ue/cueewzxuy4vxtpvu3vvsk7dj77iejxhffcljrvuqynhlke7j7x72.py
# Topologically Sorted Source Nodes: [truediv, attn], Original ATen: [aten.div, aten.clone]
# Source node to ATen node mapping:
# attn => clone
# truediv => div
# Graph fragment:
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute_3, 2.0), kwargs = {})
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_div_0 = async_compile.triton('triton_poi_fused_clone_div_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x4), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ri/cricgdtr5c24l63g746gjtdd45qor3pkzmi7qmyygyd24ejrijb7.py
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# attn => clone_1
# Graph fragment:
# %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = (yindex // 16)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/tt/cttmvktt3m2x2nl56afa7l3abaxt7wlehowakdzngkhgs35f3n7u.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_11, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_11, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div_1, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/6b/c6busvilz5nn36jjet3bmw7cqddirh4sgalamjr3fsrp3sbsacfi.py
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# output => clone_3
# Graph fragment:
# %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4) % 4
x2 = (xindex // 16) % 4
x3 = (xindex // 64)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask)
tl.store(out_ptr0 + (x4), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/s7/cs7p2dyxlesdvuyx4owztmqg5sapsarlgzaivin7okeoe6lxygw7.py
# Topologically Sorted Source Nodes: [q_5], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# q_5 => var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_19, [2]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_native_layer_norm_5 = async_compile.triton('triton_poi_fused_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/r7/cr7rb6culc7hicmne2a4ips5pg6g22yb6ww46h6efrp4i2of5v4k.py
# Topologically Sorted Source Nodes: [q_5], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# q_5 => add_1, add_2, mul, mul_1, rsqrt, sub_1
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_19, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_8), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_9), kwargs = {})
triton_poi_fused_native_layer_norm_6 = async_compile.triton('triton_poi_fused_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (16, 4), (4, 1))
assert_size_stride(primals_5, (16, 4), (4, 1))
assert_size_stride(primals_6, (16, 4), (4, 1))
assert_size_stride(primals_7, (4, 16), (16, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf0)
del primals_4
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv, attn], Original ATen: [aten.div, aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_div_0.run(buf0, buf3, 256, grid=grid(256), stream=stream0)
buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone]
triton_poi_fused_clone_1.run(buf1, buf4, 64, 4, grid=grid(64, 4), stream=stream0)
buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf6, buf7, 256, grid=grid(256), stream=stream0)
buf8 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf2, buf8, 256, grid=grid(256), stream=stream0)
buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf9, buf10, 256, grid=grid(256), stream=stream0)
del buf9
buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf10, (16, 16), (16, 1), 0), reinterpret_tensor(primals_7, (16, 4), (1, 16), 0), out=buf11)
buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [q_5], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_5.run(buf11, primals_1, buf12, buf13, 16, grid=grid(16), stream=stream0)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [q_5], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_6.run(buf11, primals_1, buf12, buf13, primals_8, primals_9, buf14, 64, grid=grid(64), stream=stream0)
del buf12
del buf13
del primals_9
return (buf14, buf7, primals_1, primals_8, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0), buf11, primals_7, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
from torch import matmul
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x4, tmp2, xmask)
@triton.jit
def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-06
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (16, 4), (4, 1))
assert_size_stride(primals_5, (16, 4), (4, 1))
assert_size_stride(primals_6, (16, 4), (4, 1))
assert_size_stride(primals_7, (4, 16), (16, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf0)
del primals_4
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 16), (1, 4), 0), out=buf1)
del primals_5
buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_6, (4, 16), (1, 4), 0), out=buf2)
del primals_6
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_div_0[grid(256)](buf0, buf3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
triton_poi_fused_clone_1[grid(64, 4)](buf1, buf4, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf8 = buf6
del buf6
triton_poi_fused_clone_4[grid(256)](buf2, buf8, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_4[grid(256)](buf9, buf10, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf9
buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf10, (16, 16), (16, 1), 0),
reinterpret_tensor(primals_7, (16, 4), (1, 16), 0), out=buf11)
buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_native_layer_norm_5[grid(16)](buf11, primals_1,
buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_6[grid(64)](buf11, primals_1,
buf12, buf13, primals_8, primals_9, buf14, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf12
del buf13
del primals_9
return buf14, buf7, primals_1, primals_8, reinterpret_tensor(primals_2,
(16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0
), buf11, primals_7, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0)
class ScaledDotProductAttention(nn.Module):
""" Scaled Dot-Product Attention """
def __init__(self, temperature, attn_dropout=0.1):
super().__init__()
self.temperature = temperature
self.dropout = nn.Dropout(attn_dropout, inplace=False)
self.softmax = nn.Softmax(dim=-1)
def forward(self, q, k, v, mask=None):
attn = matmul(q / self.temperature, k.transpose(2, 3))
if mask is not None:
attn = attn.masked_fill(mask == 0, -1000000000.0)
attn = self.dropout(self.softmax(attn))
output = matmul(attn, v)
return output, attn
class MultiHeadAttentionNew(nn.Module):
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
super().__init__()
self.d_v = d_v
self.d_k = d_k
self.n_head = n_head
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
self.dropout = nn.Dropout(dropout, inplace=True)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-06)
def forward(self, input_0, input_1, input_2):
primals_4 = self.w_qs.weight
primals_5 = self.w_ks.weight
primals_6 = self.w_vs.weight
primals_7 = self.fc.weight
primals_8 = self.layer_norm.weight
primals_9 = self.layer_norm.bias
primals_1 = input_0
primals_2 = input_1
primals_3 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1]
|
superMC5657/BiLSTMTransformer
|
MultiHeadAttention
| false
| 13,008
|
[
"MIT"
] | 0
|
43aa7bb4d8831a898c79ea89fcb1d3f5e09d564a
|
https://github.com/superMC5657/BiLSTMTransformer/tree/43aa7bb4d8831a898c79ea89fcb1d3f5e09d564a
|
FClipTest
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/cj/ccjkqdh6joaeebw6q6ggmziytclal35hw7nzz7xfz4flvsyy6z4v.py
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
# Source node to ATen node mapping:
# clamp => clamp_max, clamp_min
# Graph fragment:
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0.6920666406817362), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.044775393513254), kwargs = {})
triton_poi_fused_clamp_0 = async_compile.triton('triton_poi_fused_clamp_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.6920666406817362
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 1.044775393513254
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.6920666406817362
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp3 = 1.044775393513254
tmp4 = triton_helpers.minimum(tmp2, tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class FClipTestNew(nn.Module):
"""
Test for nn.functional types
"""
def __init__(self):
self.low = np.random.uniform(-1, 1)
self.high = np.random.uniform(1, 2)
super(FClipTestNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
dawnclaude/onnx2keras
|
FClipTest
| false
| 15,127
|
[
"MIT"
] | 115
|
3d2a47c0a228b91fd434232274e216e491da36e3
|
https://github.com/dawnclaude/onnx2keras/tree/3d2a47c0a228b91fd434232274e216e491da36e3
|
AttentionUnit
|
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn import init
class AttentionUnit(nn.Module):
def __init__(self, sDim, xDim, attDim):
super(AttentionUnit, self).__init__()
self.sDim = sDim
self.xDim = xDim
self.attDim = attDim
self.sEmbed = nn.Linear(sDim, attDim)
self.xEmbed = nn.Linear(xDim, attDim)
self.wEmbed = nn.Linear(attDim, 1)
def init_weights(self):
init.normal_(self.sEmbed.weight, std=0.01)
init.constant_(self.sEmbed.bias, 0)
init.normal_(self.xEmbed.weight, std=0.01)
init.constant_(self.xEmbed.bias, 0)
init.normal_(self.wEmbed.weight, std=0.01)
init.constant_(self.wEmbed.bias, 0)
def forward(self, x, sPrev):
batch_size, T, _ = x.size()
x = x.view(-1, self.xDim)
xProj = self.xEmbed(x)
xProj = xProj.view(batch_size, T, -1)
sPrev = sPrev.squeeze(0)
sProj = self.sEmbed(sPrev)
sProj = torch.unsqueeze(sProj, 1)
sProj = sProj.expand(batch_size, T, self.attDim)
sumTanh = torch.tanh(sProj + xProj)
sumTanh = sumTanh.view(-1, self.attDim)
vProj = self.wEmbed(sumTanh)
vProj = vProj.view(batch_size, T)
alpha = F.softmax(vProj, dim=1)
return alpha
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'sDim': 4, 'xDim': 4, 'attDim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_tanh_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_out_ptr0 + x3, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp7 = libdevice.tanh(tmp6)
tl.store(in_out_ptr0 + x3, tmp7, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (1, 4), (4, 1))
assert_size_stride(primals_8, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_4, reinterpret_tensor(primals_5, (4, 4),
(1, 4), 0), out=buf1)
del primals_5
buf2 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_tanh_0[grid(64)](buf2, buf1, primals_6,
primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
del primals_6
buf4 = reinterpret_tensor(buf1, (16, 1), (1, 1), 0)
del buf1
extern_kernels.addmm(primals_8, reinterpret_tensor(buf2, (16, 4), (
4, 1), 0), reinterpret_tensor(primals_7, (4, 1), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del primals_8
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf4, buf5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0)
del buf4
triton_poi_fused__softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf5
return buf6, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), primals_4, buf2, buf6, primals_7
class AttentionUnitNew(nn.Module):
def __init__(self, sDim, xDim, attDim):
super(AttentionUnitNew, self).__init__()
self.sDim = sDim
self.xDim = xDim
self.attDim = attDim
self.sEmbed = nn.Linear(sDim, attDim)
self.xEmbed = nn.Linear(xDim, attDim)
self.wEmbed = nn.Linear(attDim, 1)
def init_weights(self):
init.normal_(self.sEmbed.weight, std=0.01)
init.constant_(self.sEmbed.bias, 0)
init.normal_(self.xEmbed.weight, std=0.01)
init.constant_(self.xEmbed.bias, 0)
init.normal_(self.wEmbed.weight, std=0.01)
init.constant_(self.wEmbed.bias, 0)
def forward(self, input_0, input_1):
primals_2 = self.sEmbed.weight
primals_3 = self.sEmbed.bias
primals_4 = self.xEmbed.weight
primals_6 = self.xEmbed.bias
primals_7 = self.wEmbed.weight
primals_8 = self.wEmbed.bias
primals_1 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
DimplesL/aster.pytorch
|
AttentionUnit
| false
| 11,363
|
[
"MIT"
] | 0
|
c28f3438e0e398958fa54a804db83c819fb3d9b3
|
https://github.com/DimplesL/aster.pytorch/tree/c28f3438e0e398958fa54a804db83c819fb3d9b3
|
MaxPool
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/ud/cude6zl4nio2ly5l3l5cwlmxkoqtt4qkekbvrzk6nz7rpwc6ypf3.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x => getitem
# Graph fragment:
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 3) % 3
x0 = xindex % 3
x2 = (xindex // 9)
x4 = xindex
tmp0 = (-1) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=float("-inf"))
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + ((-4) + x0 + (4*x1) + (16*x2)), tmp16 & xmask, other=float("-inf"))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + ((-3) + x0 + (4*x1) + (16*x2)), tmp23 & xmask, other=float("-inf"))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp5 & tmp29
tmp31 = tl.load(in_ptr0 + ((-2) + x0 + (4*x1) + (16*x2)), tmp30 & xmask, other=float("-inf"))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = x1
tmp34 = tmp33 >= tmp1
tmp35 = tmp33 < tmp3
tmp36 = tmp34 & tmp35
tmp37 = tmp36 & tmp9
tmp38 = tl.load(in_ptr0 + ((-1) + x0 + (4*x1) + (16*x2)), tmp37 & xmask, other=float("-inf"))
tmp39 = triton_helpers.maximum(tmp38, tmp32)
tmp40 = tmp36 & tmp15
tmp41 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp40 & xmask, other=float("-inf"))
tmp42 = triton_helpers.maximum(tmp41, tmp39)
tmp43 = tmp36 & tmp22
tmp44 = tl.load(in_ptr0 + (1 + x0 + (4*x1) + (16*x2)), tmp43 & xmask, other=float("-inf"))
tmp45 = triton_helpers.maximum(tmp44, tmp42)
tmp46 = tmp36 & tmp29
tmp47 = tl.load(in_ptr0 + (2 + x0 + (4*x1) + (16*x2)), tmp46 & xmask, other=float("-inf"))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = 1 + x1
tmp50 = tmp49 >= tmp1
tmp51 = tmp49 < tmp3
tmp52 = tmp50 & tmp51
tmp53 = tmp52 & tmp9
tmp54 = tl.load(in_ptr0 + (3 + x0 + (4*x1) + (16*x2)), tmp53 & xmask, other=float("-inf"))
tmp55 = triton_helpers.maximum(tmp54, tmp48)
tmp56 = tmp52 & tmp15
tmp57 = tl.load(in_ptr0 + (4 + x0 + (4*x1) + (16*x2)), tmp56 & xmask, other=float("-inf"))
tmp58 = triton_helpers.maximum(tmp57, tmp55)
tmp59 = tmp52 & tmp22
tmp60 = tl.load(in_ptr0 + (5 + x0 + (4*x1) + (16*x2)), tmp59 & xmask, other=float("-inf"))
tmp61 = triton_helpers.maximum(tmp60, tmp58)
tmp62 = tmp52 & tmp29
tmp63 = tl.load(in_ptr0 + (6 + x0 + (4*x1) + (16*x2)), tmp62 & xmask, other=float("-inf"))
tmp64 = triton_helpers.maximum(tmp63, tmp61)
tmp65 = 2 + x1
tmp66 = tmp65 >= tmp1
tmp67 = tmp65 < tmp3
tmp68 = tmp66 & tmp67
tmp69 = tmp68 & tmp9
tmp70 = tl.load(in_ptr0 + (7 + x0 + (4*x1) + (16*x2)), tmp69 & xmask, other=float("-inf"))
tmp71 = triton_helpers.maximum(tmp70, tmp64)
tmp72 = tmp68 & tmp15
tmp73 = tl.load(in_ptr0 + (8 + x0 + (4*x1) + (16*x2)), tmp72 & xmask, other=float("-inf"))
tmp74 = triton_helpers.maximum(tmp73, tmp71)
tmp75 = tmp68 & tmp22
tmp76 = tl.load(in_ptr0 + (9 + x0 + (4*x1) + (16*x2)), tmp75 & xmask, other=float("-inf"))
tmp77 = triton_helpers.maximum(tmp76, tmp74)
tmp78 = tmp68 & tmp29
tmp79 = tl.load(in_ptr0 + (10 + x0 + (4*x1) + (16*x2)), tmp78 & xmask, other=float("-inf"))
tmp80 = triton_helpers.maximum(tmp79, tmp77)
tl.store(out_ptr0 + (x4), tmp80, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(arg0_1, buf0, 144, grid=grid(144), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 3 % 3
x0 = xindex % 3
x2 = xindex // 9
x4 = xindex
tmp0 = -1 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask,
other=float('-inf'))
tmp12 = x0
tmp13 = tmp12 >= tmp1
tmp14 = tmp12 < tmp3
tmp15 = tmp13 & tmp14
tmp16 = tmp5 & tmp15
tmp17 = tl.load(in_ptr0 + (-4 + x0 + 4 * x1 + 16 * x2), tmp16 & xmask,
other=float('-inf'))
tmp18 = triton_helpers.maximum(tmp17, tmp11)
tmp19 = 1 + x0
tmp20 = tmp19 >= tmp1
tmp21 = tmp19 < tmp3
tmp22 = tmp20 & tmp21
tmp23 = tmp5 & tmp22
tmp24 = tl.load(in_ptr0 + (-3 + x0 + 4 * x1 + 16 * x2), tmp23 & xmask,
other=float('-inf'))
tmp25 = triton_helpers.maximum(tmp24, tmp18)
tmp26 = 2 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp3
tmp29 = tmp27 & tmp28
tmp30 = tmp5 & tmp29
tmp31 = tl.load(in_ptr0 + (-2 + x0 + 4 * x1 + 16 * x2), tmp30 & xmask,
other=float('-inf'))
tmp32 = triton_helpers.maximum(tmp31, tmp25)
tmp33 = x1
tmp34 = tmp33 >= tmp1
tmp35 = tmp33 < tmp3
tmp36 = tmp34 & tmp35
tmp37 = tmp36 & tmp9
tmp38 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1 + 16 * x2), tmp37 & xmask,
other=float('-inf'))
tmp39 = triton_helpers.maximum(tmp38, tmp32)
tmp40 = tmp36 & tmp15
tmp41 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp40 & xmask, other
=float('-inf'))
tmp42 = triton_helpers.maximum(tmp41, tmp39)
tmp43 = tmp36 & tmp22
tmp44 = tl.load(in_ptr0 + (1 + x0 + 4 * x1 + 16 * x2), tmp43 & xmask,
other=float('-inf'))
tmp45 = triton_helpers.maximum(tmp44, tmp42)
tmp46 = tmp36 & tmp29
tmp47 = tl.load(in_ptr0 + (2 + x0 + 4 * x1 + 16 * x2), tmp46 & xmask,
other=float('-inf'))
tmp48 = triton_helpers.maximum(tmp47, tmp45)
tmp49 = 1 + x1
tmp50 = tmp49 >= tmp1
tmp51 = tmp49 < tmp3
tmp52 = tmp50 & tmp51
tmp53 = tmp52 & tmp9
tmp54 = tl.load(in_ptr0 + (3 + x0 + 4 * x1 + 16 * x2), tmp53 & xmask,
other=float('-inf'))
tmp55 = triton_helpers.maximum(tmp54, tmp48)
tmp56 = tmp52 & tmp15
tmp57 = tl.load(in_ptr0 + (4 + x0 + 4 * x1 + 16 * x2), tmp56 & xmask,
other=float('-inf'))
tmp58 = triton_helpers.maximum(tmp57, tmp55)
tmp59 = tmp52 & tmp22
tmp60 = tl.load(in_ptr0 + (5 + x0 + 4 * x1 + 16 * x2), tmp59 & xmask,
other=float('-inf'))
tmp61 = triton_helpers.maximum(tmp60, tmp58)
tmp62 = tmp52 & tmp29
tmp63 = tl.load(in_ptr0 + (6 + x0 + 4 * x1 + 16 * x2), tmp62 & xmask,
other=float('-inf'))
tmp64 = triton_helpers.maximum(tmp63, tmp61)
tmp65 = 2 + x1
tmp66 = tmp65 >= tmp1
tmp67 = tmp65 < tmp3
tmp68 = tmp66 & tmp67
tmp69 = tmp68 & tmp9
tmp70 = tl.load(in_ptr0 + (7 + x0 + 4 * x1 + 16 * x2), tmp69 & xmask,
other=float('-inf'))
tmp71 = triton_helpers.maximum(tmp70, tmp64)
tmp72 = tmp68 & tmp15
tmp73 = tl.load(in_ptr0 + (8 + x0 + 4 * x1 + 16 * x2), tmp72 & xmask,
other=float('-inf'))
tmp74 = triton_helpers.maximum(tmp73, tmp71)
tmp75 = tmp68 & tmp22
tmp76 = tl.load(in_ptr0 + (9 + x0 + 4 * x1 + 16 * x2), tmp75 & xmask,
other=float('-inf'))
tmp77 = triton_helpers.maximum(tmp76, tmp74)
tmp78 = tmp68 & tmp29
tmp79 = tl.load(in_ptr0 + (10 + x0 + 4 * x1 + 16 * x2), tmp78 & xmask,
other=float('-inf'))
tmp80 = triton_helpers.maximum(tmp79, tmp77)
tl.store(out_ptr0 + x4, tmp80, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(144)](arg0_1, buf0,
144, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class MaxPoolNew(nn.Module):
def __init__(self, kernel_size, stride=1, padding=1, zero_pad=False):
super(MaxPoolNew, self).__init__()
self.is_zero_padded = zero_pad
self.zero_pad = nn.ZeroPad2d((1, 0, 1, 0))
self.pool = nn.MaxPool2d(kernel_size, stride=stride, padding=padding)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
mruberry/pnas_torch
|
MaxPool
| false
| 12,803
|
[
"BSD-3-Clause"
] | 0
|
e6471f900f28698fe0ebca158fec059337acee2c
|
https://github.com/mruberry/pnas_torch/tree/e6471f900f28698fe0ebca158fec059337acee2c
|
UPChannelRPN
|
import torch
import torch.nn as nn
import torch.nn.functional as F
def xcorr_fast(x, kernel):
"""group conv2d to calculate cross correlation, fast version
"""
batch = kernel.size()[0]
pk = kernel.view(-1, x.size()[1], kernel.size()[2], kernel.size()[3])
px = x.view(1, -1, x.size()[2], x.size()[3])
po = F.conv2d(px, pk, groups=batch)
po = po.view(batch, -1, po.size()[2], po.size()[3])
return po
class RPN(nn.Module):
def __init__(self):
super(RPN, self).__init__()
def forward(self, z_f, x_f):
raise NotImplementedError
class UPChannelRPN(RPN):
def __init__(self, anchor_num=5, feature_in=256):
super(UPChannelRPN, self).__init__()
cls_output = 2 * anchor_num
loc_output = 4 * anchor_num
self.template_cls_conv = nn.Conv2d(feature_in, feature_in *
cls_output, kernel_size=3)
self.template_loc_conv = nn.Conv2d(feature_in, feature_in *
loc_output, kernel_size=3)
self.search_cls_conv = nn.Conv2d(feature_in, feature_in, kernel_size=3)
self.search_loc_conv = nn.Conv2d(feature_in, feature_in, kernel_size=3)
self.loc_adjust = nn.Conv2d(loc_output, loc_output, kernel_size=1)
def forward(self, z_f, x_f):
cls_kernel = self.template_cls_conv(z_f)
loc_kernel = self.template_loc_conv(z_f)
cls_feature = self.search_cls_conv(x_f)
loc_feature = self.search_loc_conv(x_f)
cls = xcorr_fast(cls_feature, cls_kernel)
loc = self.loc_adjust(xcorr_fast(loc_feature, loc_kernel))
return cls, loc
def get_inputs():
return [torch.rand([4, 256, 64, 64]), torch.rand([4, 256, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_view_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x1 = xindex // 3844 % 2560
tmp0 = tl.load(in_out_ptr0 + x4, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x4, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 3844 % 256
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_view_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x4 = xindex
x1 = xindex // 3844 % 5120
tmp0 = tl.load(in_out_ptr0 + x4, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x4, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 20
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12
) = args
args.clear()
assert_size_stride(primals_1, (2560, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_2, (2560,), (1,))
assert_size_stride(primals_3, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_4, (5120, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_5, (5120,), (1,))
assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_7, (256,), (1,))
assert_size_stride(primals_8, (4, 256, 64, 64), (1048576, 4096, 64, 1))
assert_size_stride(primals_9, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_10, (256,), (1,))
assert_size_stride(primals_11, (20, 20, 1, 1), (20, 1, 1, 1))
assert_size_stride(primals_12, (20,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 2560, 62, 62), (9840640, 3844, 62, 1))
buf1 = extern_kernels.convolution(primals_3, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 5120, 62, 62), (19681280, 3844, 62, 1))
buf2 = extern_kernels.convolution(primals_8, primals_6, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 256, 62, 62), (984064, 3844, 62, 1))
buf3 = extern_kernels.convolution(primals_8, primals_9, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 256, 62, 62), (984064, 3844, 62, 1))
buf4 = buf0
del buf0
buf5 = reinterpret_tensor(buf4, (40, 256, 62, 62), (984064, 3844,
62, 1), 0)
del buf4
get_raw_stream(0)
triton_poi_fused_convolution_view_0[grid(39362560)](buf5, primals_2,
39362560, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf6 = buf2
del buf2
triton_poi_fused_convolution_1[grid(3936256)](buf6, primals_7,
3936256, XBLOCK=512, num_warps=8, num_stages=1)
del primals_7
buf7 = extern_kernels.convolution(reinterpret_tensor(buf6, (1, 1024,
62, 62), (0, 3844, 62, 1), 0), buf5, stride=(1, 1), padding=(0,
0), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf7, (1, 40, 1, 1), (40, 1, 1, 1))
buf8 = buf1
del buf1
buf9 = reinterpret_tensor(buf8, (80, 256, 62, 62), (984064, 3844,
62, 1), 0)
del buf8
triton_poi_fused_convolution_view_2[grid(78725120)](buf9, primals_5,
78725120, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf10 = buf3
del buf3
triton_poi_fused_convolution_1[grid(3936256)](buf10, primals_10,
3936256, XBLOCK=512, num_warps=8, num_stages=1)
del primals_10
buf11 = extern_kernels.convolution(reinterpret_tensor(buf10, (1,
1024, 62, 62), (0, 3844, 62, 1), 0), buf9, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf11, (1, 80, 1, 1), (80, 1, 1, 1))
buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (4, 20,
1, 1), (20, 1, 1, 1), 0), primals_11, stride=(1, 1), padding=(0,
0), dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf12, (4, 20, 1, 1), (20, 1, 1, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_3[grid(80)](buf13, primals_12, 80,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_12
return (reinterpret_tensor(buf7, (4, 10, 1, 1), (10, 1, 1, 1), 0),
buf13, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_9, primals_11, buf5, reinterpret_tensor(buf6, (1, 1024, 62,
62), (3936256, 3844, 62, 1), 0), buf9, reinterpret_tensor(buf10, (1,
1024, 62, 62), (3936256, 3844, 62, 1), 0), reinterpret_tensor(buf11,
(4, 20, 1, 1), (20, 1, 1, 1), 0))
def xcorr_fast(x, kernel):
"""group conv2d to calculate cross correlation, fast version
"""
batch = kernel.size()[0]
pk = kernel.view(-1, x.size()[1], kernel.size()[2], kernel.size()[3])
px = x.view(1, -1, x.size()[2], x.size()[3])
po = F.conv2d(px, pk, groups=batch)
po = po.view(batch, -1, po.size()[2], po.size()[3])
return po
class RPN(nn.Module):
def __init__(self):
super(RPN, self).__init__()
def forward(self, z_f, x_f):
raise NotImplementedError
class UPChannelRPNNew(RPN):
def __init__(self, anchor_num=5, feature_in=256):
super(UPChannelRPNNew, self).__init__()
cls_output = 2 * anchor_num
loc_output = 4 * anchor_num
self.template_cls_conv = nn.Conv2d(feature_in, feature_in *
cls_output, kernel_size=3)
self.template_loc_conv = nn.Conv2d(feature_in, feature_in *
loc_output, kernel_size=3)
self.search_cls_conv = nn.Conv2d(feature_in, feature_in, kernel_size=3)
self.search_loc_conv = nn.Conv2d(feature_in, feature_in, kernel_size=3)
self.loc_adjust = nn.Conv2d(loc_output, loc_output, kernel_size=1)
def forward(self, input_0, input_1):
primals_1 = self.template_cls_conv.weight
primals_2 = self.template_cls_conv.bias
primals_4 = self.template_loc_conv.weight
primals_5 = self.template_loc_conv.bias
primals_6 = self.search_cls_conv.weight
primals_7 = self.search_cls_conv.bias
primals_9 = self.search_loc_conv.weight
primals_10 = self.search_loc_conv.bias
primals_11 = self.loc_adjust.weight
primals_12 = self.loc_adjust.bias
primals_3 = input_0
primals_8 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12])
return output[0], output[1]
|
LSH9832/MyPythonModules
|
UPChannelRPN
| false
| 918
|
[
"MIT"
] | 0
|
442566a0fbd6ebe2bc20b6914686a1e2663d10c0
|
https://github.com/LSH9832/MyPythonModules/tree/442566a0fbd6ebe2bc20b6914686a1e2663d10c0
|
SpatialGroupEnhance
|
import torch
from torch import nn
from torch.nn import init
class SpatialGroupEnhance(nn.Module):
def __init__(self, groups):
super().__init__()
self.groups = groups
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1))
self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1))
self.sig = nn.Sigmoid()
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
b, c, h, w = x.shape
x = x.view(b * self.groups, -1, h, w)
xn = x * self.avg_pool(x)
xn = xn.sum(dim=1, keepdim=True)
t = xn.view(b * self.groups, -1)
t = t - t.mean(dim=1, keepdim=True)
std = t.std(dim=1, keepdim=True) + 1e-05
t = t / std
t = t.view(b, self.groups, h, w)
t = t * self.weight + self.bias
t = t.view(b * self.groups, 1, h, w)
x = x * self.sig(t)
x = x.view(b, c, h, w)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'groups': 1}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1(in_out_ptr0,
in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + r1 + 64 * x0), xmask, other=0.0)
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), xmask, other=0.0)
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (48 + r1 + 64 * x0), xmask, other=0.0)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp44 = tl.load(in_ptr2 + 0)
tmp45 = tl.broadcast_to(tmp44, [XBLOCK, RBLOCK])
tmp47 = tl.load(in_ptr3 + 0)
tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK])
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = 16.0
tmp20 = tmp18 / tmp19
tmp21 = tmp14 - tmp20
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tl.where(xmask, tmp22, 0)
tmp25 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK])
tmp27 = tl.where(xmask, tmp25, 0)
tmp28 = tl.sum(tmp27, 1)[:, None]
tmp29 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp30 = tmp29.to(tl.float32)
tmp31 = tmp28 / tmp30
tmp32 = tmp22 - tmp31
tmp33 = tmp32 * tmp32
tmp34 = tl.broadcast_to(tmp33, [XBLOCK, RBLOCK])
tmp36 = tl.where(xmask, tmp34, 0)
tmp37 = tl.sum(tmp36, 1)[:, None]
tmp38 = 15.0
tmp39 = tmp37 / tmp38
tmp40 = libdevice.sqrt(tmp39)
tmp41 = 1e-05
tmp42 = tmp40 + tmp41
tmp43 = tmp21 / tmp42
tmp46 = tmp43 * tmp45
tmp49 = tmp46 + tmp48
tmp50 = tl.sigmoid(tmp49)
tl.store(out_ptr0 + (r1 + 16 * x0), tmp14, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp20, xmask)
tl.debug_barrier()
tl.store(in_out_ptr1 + x0, tmp42, xmask)
tl.store(out_ptr1 + (r1 + 16 * x0), tmp50, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_3, (1, 1, 1, 1), (1, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0)
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1,
num_warps=2, num_stages=1)
buf2 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf4 = reinterpret_tensor(buf3, (4, 1), (1, 1), 0)
del buf3
buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf8 = reinterpret_tensor(buf6, (4, 1), (1, 1), 0)
del buf6
buf9 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32)
triton_per_fused_add_mean_mul_sigmoid_std_sub_sum_1[grid(4)](buf4,
buf8, primals_1, buf1, primals_2, primals_3, buf2, buf9, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del buf2
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_2[grid(256)](primals_1, buf9,
buf10, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf9
return buf10, primals_1, primals_2, primals_3, buf1, buf4, buf8
class SpatialGroupEnhanceNew(nn.Module):
def __init__(self, groups):
super().__init__()
self.groups = groups
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.weight = nn.Parameter(torch.zeros(1, groups, 1, 1))
self.bias = nn.Parameter(torch.zeros(1, groups, 1, 1))
self.sig = nn.Sigmoid()
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Nitin-Mane/External-Attention-pytorch
|
SpatialGroupEnhance
| false
| 14,109
|
[
"MIT"
] | 4,466
|
1ceda306c41063af11c956334747763444a4d83f
|
https://github.com/Nitin-Mane/External-Attention-pytorch/tree/1ceda306c41063af11c956334747763444a4d83f
|
WSConv2d
|
import torch
import torch.nn as nn
import torch.utils.data
class WSConv2d(nn.Module):
"""
Weight scaled Conv2d (Equalized Learning Rate)
Note that input is multiplied rather than changing weights
this will have the same result.
Inspired by:
https://github.com/nvnbny/progressive_growing_of_gans/blob/master/modelUtils.py
"""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, gain=2):
super(WSConv2d, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding)
self.scale = (gain / self.conv.weight[0].numel()) ** 0.5
nn.init.normal_(self.conv.weight)
nn.init.zeros_(self.conv.bias)
def forward(self, x):
return self.conv(x * self.scale)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.23570226039551584
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(256)](primals_1, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(256)](buf2, primals_3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return buf2, primals_2, buf0
class WSConv2dNew(nn.Module):
"""
Weight scaled Conv2d (Equalized Learning Rate)
Note that input is multiplied rather than changing weights
this will have the same result.
Inspired by:
https://github.com/nvnbny/progressive_growing_of_gans/blob/master/modelUtils.py
"""
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1,
padding=1, gain=2):
super(WSConv2dNew, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding)
self.scale = (gain / self.conv.weight[0].numel()) ** 0.5
nn.init.normal_(self.conv.weight)
nn.init.zeros_(self.conv.bias)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
SongsLearning/Machine-Learning-Collection
|
WSConv2d
| false
| 1,087
|
[
"MIT"
] | 0
|
a8dff83969f67d37f70a89db06b851057d2da539
|
https://github.com/SongsLearning/Machine-Learning-Collection/tree/a8dff83969f67d37f70a89db06b851057d2da539
|
Upsample
|
import torch
import torch.nn.functional as F
import torch.nn as nn
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f'unsupported dimensions: {dims}')
class Upsample(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3,
padding=1)
def forward(self, x):
assert x.shape[1] == self.channels
if self.dims == 3:
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] *
2), mode='nearest')
else:
x = F.interpolate(x, scale_factor=2, mode='nearest')
if self.use_conv:
x = self.conv(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channels': 4, 'use_conv': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 8, 8), (256, 64, 8, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(1024)](buf2, primals_3, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return buf2, primals_2, buf0
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f'unsupported dimensions: {dims}')
class UpsampleNew(nn.Module):
"""
An upsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
upsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
if use_conv:
self.conv = conv_nd(dims, self.channels, self.out_channels, 3,
padding=1)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
ZGCTroy/guided-diffusion
|
Upsample
| false
| 1,290
|
[
"MIT"
] | 0
|
af987bb2b65db2875148a5466df79736ea5ae6a1
|
https://github.com/ZGCTroy/guided-diffusion/tree/af987bb2b65db2875148a5466df79736ea5ae6a1
|
AttentionLayer
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import *
class AttentionLayer(nn.Module):
def __init__(self, hidden_dim_en, hidden_dim_de, projected_size):
super(AttentionLayer, self).__init__()
self.linear1 = nn.Linear(hidden_dim_en, projected_size)
self.linear2 = nn.Linear(hidden_dim_de, projected_size)
self.linear3 = nn.Linear(projected_size, 1, False)
def forward(self, out_e, h):
"""
out_e: batch_size * num_frames * en_hidden_dim
h : batch_size * de_hidden_dim
"""
assert out_e.size(0) == h.size(0)
batch_size, num_frames, _ = out_e.size()
hidden_dim = h.size(1)
h_att = h.unsqueeze(1).expand(batch_size, num_frames, hidden_dim)
x = F.tanh(F.dropout(self.linear1(out_e)) + F.dropout(self.linear2(
h_att)))
x = F.dropout(self.linear3(x))
a = F.softmax(x.squeeze(2))
return a
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'hidden_dim_en': 4, 'hidden_dim_de': 4, 'projected_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
from torch.autograd import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(primals_1, (16,
4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_3
del primals_4
buf1 = torch.ops.aten.native_dropout.default(reinterpret_tensor(
buf0, (4, 4, 4), (16, 4, 1), 0), 0.5, True)
buf2 = buf1[0]
buf3 = buf1[1]
del buf1
buf4 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64)](primals_2, buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_2
buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf4, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf5)
del primals_5
buf6 = reinterpret_tensor(buf5, (4, 4, 4), (16, 4, 1), 0)
del buf5
triton_poi_fused_add_1[grid(64)](buf6, primals_6, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_6
buf7 = torch.ops.aten.native_dropout.default(buf6, 0.5, True)
del buf6
buf8 = buf7[0]
buf9 = buf7[1]
del buf7
buf10 = buf2
del buf2
triton_poi_fused_add_tanh_2[grid(64)](buf10, buf8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf8
buf11 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf10, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 1), (1, 4), 0), out=buf11)
buf12 = torch.ops.aten.native_dropout.default(reinterpret_tensor(
buf11, (4, 4, 1), (4, 1, 1), 0), 0.5, True)
buf13 = buf12[0]
buf14 = buf12[1]
del buf12
buf15 = reinterpret_tensor(buf11, (4, 4), (4, 1), 0)
del buf11
triton_poi_fused__softmax_3[grid(16)](buf13, buf15, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf16 = reinterpret_tensor(buf13, (4, 4), (4, 1), 0)
del buf13
triton_poi_fused__softmax_4[grid(16)](buf15, buf16, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf15
return buf16, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), buf3, reinterpret_tensor(buf4, (16, 4), (4, 1), 0
), buf9, buf10, buf14, buf16, primals_7
class AttentionLayerNew(nn.Module):
def __init__(self, hidden_dim_en, hidden_dim_de, projected_size):
super(AttentionLayerNew, self).__init__()
self.linear1 = nn.Linear(hidden_dim_en, projected_size)
self.linear2 = nn.Linear(hidden_dim_de, projected_size)
self.linear3 = nn.Linear(projected_size, 1, False)
def forward(self, input_0, input_1):
primals_2 = self.linear1.weight
primals_4 = self.linear1.bias
primals_3 = self.linear2.weight
primals_6 = self.linear2.bias
primals_7 = self.linear3.weight
primals_1 = input_0
primals_5 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
littlekobe/AREL-for-Visual-Storytelling
|
AttentionLayer
| false
| 15,921
|
[
"MIT"
] | 82
|
7df46be67a2de22a763bad25c70066b702a6afba
|
https://github.com/littlekobe/AREL-for-Visual-Storytelling/tree/7df46be67a2de22a763bad25c70066b702a6afba
|
BinaryTreeGRULayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/zn/czn6cztle4peyy4pa7mkag53s34sjkn6wpenptu6ttfuvhgzzrup.py
# Topologically Sorted Source Nodes: [hlr_cat1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# hlr_cat1 => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], -1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/fu/cfuap46xznmklpoyxewe65i4nvgtdvmh2cedt5xuwh5uxgno4jdp.py
# Topologically Sorted Source Nodes: [hlr_cat2], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# hlr_cat2 => cat_1
# Graph fragment:
# %cat_1 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%mul, %mul_1], -1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (8 + (12*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr2 + (8 + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp5 * tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp4, tmp10, tmp11)
tmp13 = tmp0 >= tmp3
tmp14 = tl.full([1], 8, tl.int64)
tmp15 = tmp0 < tmp14
tmp16 = tl.load(in_ptr3 + ((4*x1) + ((-4) + x0)), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tl.load(in_ptr1 + (8 + (12*x1) + ((-4) + x0)), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr2 + (8 + ((-4) + x0)), tmp13 & xmask, eviction_policy='evict_last', other=0.0)
tmp19 = tmp17 + tmp18
tmp20 = tl.sigmoid(tmp19)
tmp21 = tmp16 * tmp20
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp13, tmp21, tmp22)
tmp24 = tl.where(tmp4, tmp12, tmp23)
tl.store(out_ptr0 + (x2), tmp24, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/i5/ci5m4wnvnhq6lvljfkslyjmmudwpbh7glu7rgguitmrppqegl4ej.py
# Topologically Sorted Source Nodes: [add, sigmoid_2, mul_2, tanh, sigmoid_3, mul_3, h], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.sigmoid_backward]
# Source node to ATen node mapping:
# add => add
# h => add_1
# mul_2 => mul_2
# mul_3 => mul_3
# sigmoid_2 => sigmoid_2
# sigmoid_3 => sigmoid_3
# tanh => tanh
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %primals_2), kwargs = {})
# %sigmoid_2 : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %sigmoid_2), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {})
# %sigmoid_3 : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%tanh, %sigmoid_3), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid_2), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid_2, %sub_2), kwargs = {})
triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_2 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: '*fp32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (12*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + (x2), xmask)
tmp5 = tl.load(in_ptr3 + (x2), xmask)
tmp7 = tl.load(in_ptr0 + (4 + x0 + (12*x1)), xmask)
tmp8 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x2), xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp6 = tmp4 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tl.sigmoid(tmp9)
tmp11 = tmp6 * tmp10
tmp13 = libdevice.tanh(tmp12)
tmp14 = tmp13 * tmp3
tmp15 = tmp11 + tmp14
tmp16 = 1.0
tmp17 = tmp16 - tmp10
tmp18 = tmp10 * tmp17
tl.store(out_ptr0 + (x2), tmp3, xmask)
tl.store(out_ptr1 + (x2), tmp15, xmask)
tl.store(out_ptr2 + (x2), tmp18, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/he/cheb4inetygbwaibnbcalgen4lm5wmxz6rfd5c4lh7koj56at3k7.py
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid, aten.sigmoid_backward]
# Source node to ATen node mapping:
# sigmoid => sigmoid
# Graph fragment:
# %sigmoid : [num_users=4] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_2,), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub_3), kwargs = {})
triton_poi_fused_sigmoid_sigmoid_backward_3 = async_compile.triton('triton_poi_fused_sigmoid_sigmoid_backward_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_sigmoid_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_sigmoid_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (8 + x0 + (12*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = 1.0
tmp5 = tmp4 - tmp3
tmp6 = tmp3 * tmp5
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (12, 8), (8, 1))
assert_size_stride(primals_4, (12, ), (1, ))
assert_size_stride(primals_5, (4, 8), (8, 1))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [hlr_cat1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 512, grid=grid(512), stream=stream0)
buf1 = empty_strided_cuda((64, 12), (12, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(primals_3, (8, 12), (1, 8), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [hlr_cat2], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(primals_1, buf1, primals_4, primals_2, buf2, 512, grid=grid(512), stream=stream0)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_hat], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_6, reinterpret_tensor(buf2, (64, 8), (8, 1), 0), reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, sigmoid_2, mul_2, tanh, sigmoid_3, mul_3, h], Original ATen: [aten.add, aten.sigmoid, aten.mul, aten.tanh, aten.sigmoid_backward]
triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_2.run(buf1, primals_4, primals_1, primals_2, buf3, buf4, buf5, buf6, 256, grid=grid(256), stream=stream0)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid, aten.sigmoid_backward]
triton_poi_fused_sigmoid_sigmoid_backward_3.run(buf1, primals_4, buf7, 256, grid=grid(256), stream=stream0)
del buf1
del primals_4
return (buf5, primals_1, primals_2, reinterpret_tensor(buf0, (64, 8), (8, 1), 0), reinterpret_tensor(buf2, (64, 8), (8, 1), 0), buf3, buf4, buf6, primals_5, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((12, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 8), (8, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tl.load(in_ptr1 + (8 + 12 * x1 + x0), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp7 = tl.load(in_ptr2 + (8 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp8 = tmp6 + tmp7
tmp9 = tl.sigmoid(tmp8)
tmp10 = tmp5 * tmp9
tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype)
tmp12 = tl.where(tmp4, tmp10, tmp11)
tmp13 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp16 = tl.load(in_ptr3 + (4 * x1 + (-4 + x0)), tmp13 & xmask,
eviction_policy='evict_last', other=0.0)
tmp17 = tl.load(in_ptr1 + (8 + 12 * x1 + (-4 + x0)), tmp13 & xmask,
eviction_policy='evict_last', other=0.0)
tmp18 = tl.load(in_ptr2 + (8 + (-4 + x0)), tmp13 & xmask,
eviction_policy='evict_last', other=0.0)
tmp19 = tmp17 + tmp18
tmp20 = tl.sigmoid(tmp19)
tmp21 = tmp16 * tmp20
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp13, tmp21, tmp22)
tmp24 = tl.where(tmp4, tmp12, tmp23)
tl.store(out_ptr0 + x2, tmp24, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_2(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, out_ptr1, out_ptr2,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 12 * x1), xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr2 + x2, xmask)
tmp5 = tl.load(in_ptr3 + x2, xmask)
tmp7 = tl.load(in_ptr0 + (4 + x0 + 12 * x1), xmask)
tmp8 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x2, xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp6 = tmp4 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tl.sigmoid(tmp9)
tmp11 = tmp6 * tmp10
tmp13 = libdevice.tanh(tmp12)
tmp14 = tmp13 * tmp3
tmp15 = tmp11 + tmp14
tmp16 = 1.0
tmp17 = tmp16 - tmp10
tmp18 = tmp10 * tmp17
tl.store(out_ptr0 + x2, tmp3, xmask)
tl.store(out_ptr1 + x2, tmp15, xmask)
tl.store(out_ptr2 + x2, tmp18, xmask)
@triton.jit
def triton_poi_fused_sigmoid_sigmoid_backward_3(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (8 + x0 + 12 * x1), xmask)
tmp1 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = 1.0
tmp5 = tmp4 - tmp3
tmp6 = tmp3 * tmp5
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (12, 8), (8, 1))
assert_size_stride(primals_4, (12,), (1,))
assert_size_stride(primals_5, (4, 8), (8, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_1, primals_2, buf0, 512,
XBLOCK=256, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((64, 12), (12, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (64, 8), (8, 1), 0),
reinterpret_tensor(primals_3, (8, 12), (1, 8), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32)
triton_poi_fused_cat_1[grid(512)](primals_1, buf1, primals_4,
primals_2, buf2, 512, XBLOCK=128, num_warps=4, num_stages=1)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(buf2, (64, 8), (
8, 1), 0), reinterpret_tensor(primals_5, (8, 4), (1, 8), 0),
alpha=1, beta=1, out=buf3)
del primals_6
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_sigmoid_backward_tanh_2[grid(256)](
buf1, primals_4, primals_1, primals_2, buf3, buf4, buf5, buf6,
256, XBLOCK=128, num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_sigmoid_sigmoid_backward_3[grid(256)](buf1,
primals_4, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf1
del primals_4
return buf5, primals_1, primals_2, reinterpret_tensor(buf0, (64, 8), (8,
1), 0), reinterpret_tensor(buf2, (64, 8), (8, 1), 0
), buf3, buf4, buf6, primals_5, buf7
class BinaryTreeGRULayerNew(nn.Module):
def __init__(self, hidden_dim):
super(BinaryTreeGRULayerNew, self).__init__()
self.fc1 = nn.Linear(in_features=2 * hidden_dim, out_features=3 *
hidden_dim)
self.fc2 = nn.Linear(in_features=2 * hidden_dim, out_features=
hidden_dim)
def forward(self, input_0, input_1):
primals_3 = self.fc1.weight
primals_4 = self.fc1.bias
primals_5 = self.fc2.weight
primals_6 = self.fc2.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
NanoGDA/gda-extraction
|
BinaryTreeGRULayer
| false
| 17,747
|
[
"MIT"
] | 4
|
9dfedc54dab10ee4e90d8af622bcaf97e6dc2422
|
https://github.com/NanoGDA/gda-extraction/tree/9dfedc54dab10ee4e90d8af622bcaf97e6dc2422
|
FocalL2Loss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/wk/cwkf64p2awlt4uhkbzwctplgk7lo7cwoikrsk4av6eqcge5xdaff.py
# Topologically Sorted Source Nodes: [sub_4, pow_1, ge, sub, sub_1, sub_2, st, sub_3, factor, mul, loss, mean], Original ATen: [aten.sub, aten.pow, aten.ge, aten.rsub, aten.where, aten.abs, aten.mul, aten.mean]
# Source node to ATen node mapping:
# factor => abs_1
# ge => ge
# loss => mul_1
# mean => mean
# mul => mul
# pow_1 => pow_1
# st => where
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sub_3 => sub_3
# sub_4 => sub_4
# Graph fragment:
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_4, 2), kwargs = {})
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%arg1_1, 0.01), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 0.1), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_1, 0.02), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%ge, %sub, %sub_2), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1.0, %where), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %abs_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %arg2_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mul_1, [3]), kwargs = {})
triton_poi_fused_abs_ge_mean_mul_pow_rsub_sub_where_0 = async_compile.triton('triton_poi_fused_abs_ge_mean_mul_pow_rsub_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_ge_mean_mul_pow_rsub_sub_where_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_ge_mean_mul_pow_rsub_sub_where_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp45 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp48 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp49 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp60 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 0.01
tmp5 = tmp1 >= tmp4
tmp6 = 0.1
tmp7 = tmp0 - tmp6
tmp8 = 1.0
tmp9 = tmp8 - tmp0
tmp10 = 0.02
tmp11 = tmp9 - tmp10
tmp12 = tl.where(tmp5, tmp7, tmp11)
tmp13 = tmp8 - tmp12
tmp14 = tl_math.abs(tmp13)
tmp15 = tmp3 * tmp14
tmp17 = tmp15 * tmp16
tmp20 = tmp18 - tmp19
tmp21 = tmp20 * tmp20
tmp22 = tmp19 >= tmp4
tmp23 = tmp18 - tmp6
tmp24 = tmp8 - tmp18
tmp25 = tmp24 - tmp10
tmp26 = tl.where(tmp22, tmp23, tmp25)
tmp27 = tmp8 - tmp26
tmp28 = tl_math.abs(tmp27)
tmp29 = tmp21 * tmp28
tmp31 = tmp29 * tmp30
tmp32 = tmp17 + tmp31
tmp35 = tmp33 - tmp34
tmp36 = tmp35 * tmp35
tmp37 = tmp34 >= tmp4
tmp38 = tmp33 - tmp6
tmp39 = tmp8 - tmp33
tmp40 = tmp39 - tmp10
tmp41 = tl.where(tmp37, tmp38, tmp40)
tmp42 = tmp8 - tmp41
tmp43 = tl_math.abs(tmp42)
tmp44 = tmp36 * tmp43
tmp46 = tmp44 * tmp45
tmp47 = tmp32 + tmp46
tmp50 = tmp48 - tmp49
tmp51 = tmp50 * tmp50
tmp52 = tmp49 >= tmp4
tmp53 = tmp48 - tmp6
tmp54 = tmp8 - tmp48
tmp55 = tmp54 - tmp10
tmp56 = tl.where(tmp52, tmp53, tmp55)
tmp57 = tmp8 - tmp56
tmp58 = tl_math.abs(tmp57)
tmp59 = tmp51 * tmp58
tmp61 = tmp59 * tmp60
tmp62 = tmp47 + tmp61
tmp63 = 4.0
tmp64 = tmp62 / tmp63
tl.store(out_ptr0 + (x0), tmp64, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/52/c523pn66wra4rfjkrgcnorjvvivoimaibk37xqhluh2ynu4fjzq7.py
# Topologically Sorted Source Nodes: [mean_1, loss_1], Original ATen: [aten.mean]
# Source node to ATen node mapping:
# loss_1 => mean_2
# mean_1 => mean_1
# Graph fragment:
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [2]), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean_1, [1]), kwargs = {})
triton_poi_fused_mean_1 = async_compile.triton('triton_poi_fused_mean_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mean_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (16*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (16*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (16*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (16*x0)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (4 + (16*x0)), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr0 + (5 + (16*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (6 + (16*x0)), xmask, eviction_policy='evict_last')
tmp14 = tl.load(in_ptr0 + (7 + (16*x0)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (8 + (16*x0)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (9 + (16*x0)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (10 + (16*x0)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (11 + (16*x0)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (12 + (16*x0)), xmask, eviction_policy='evict_last')
tmp28 = tl.load(in_ptr0 + (13 + (16*x0)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr0 + (14 + (16*x0)), xmask, eviction_policy='evict_last')
tmp32 = tl.load(in_ptr0 + (15 + (16*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 / tmp7
tmp17 = tmp8 + tmp16
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 / tmp7
tmp26 = tmp17 + tmp25
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 / tmp7
tmp35 = tmp26 + tmp34
tmp36 = tmp35 / tmp7
tl.store(out_ptr0 + (x0), tmp36, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sub_4, pow_1, ge, sub, sub_1, sub_2, st, sub_3, factor, mul, loss, mean], Original ATen: [aten.sub, aten.pow, aten.ge, aten.rsub, aten.where, aten.abs, aten.mul, aten.mean]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_ge_mean_mul_pow_rsub_sub_where_0.run(arg0_1, arg1_1, arg2_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
del arg2_1
buf1 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [mean_1, loss_1], Original ATen: [aten.mean]
triton_poi_fused_mean_1.run(buf0, buf1, 4, grid=grid(4), stream=stream0)
del buf0
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.utils.data
import torch.nn.parallel
import torch.optim
import torch.utils.data.distributed
import torch.multiprocessing
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_abs_ge_mean_mul_pow_rsub_sub_where_0(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp19 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp30 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp33 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp34 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp45 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp48 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp49 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp60 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 0.01
tmp5 = tmp1 >= tmp4
tmp6 = 0.1
tmp7 = tmp0 - tmp6
tmp8 = 1.0
tmp9 = tmp8 - tmp0
tmp10 = 0.02
tmp11 = tmp9 - tmp10
tmp12 = tl.where(tmp5, tmp7, tmp11)
tmp13 = tmp8 - tmp12
tmp14 = tl_math.abs(tmp13)
tmp15 = tmp3 * tmp14
tmp17 = tmp15 * tmp16
tmp20 = tmp18 - tmp19
tmp21 = tmp20 * tmp20
tmp22 = tmp19 >= tmp4
tmp23 = tmp18 - tmp6
tmp24 = tmp8 - tmp18
tmp25 = tmp24 - tmp10
tmp26 = tl.where(tmp22, tmp23, tmp25)
tmp27 = tmp8 - tmp26
tmp28 = tl_math.abs(tmp27)
tmp29 = tmp21 * tmp28
tmp31 = tmp29 * tmp30
tmp32 = tmp17 + tmp31
tmp35 = tmp33 - tmp34
tmp36 = tmp35 * tmp35
tmp37 = tmp34 >= tmp4
tmp38 = tmp33 - tmp6
tmp39 = tmp8 - tmp33
tmp40 = tmp39 - tmp10
tmp41 = tl.where(tmp37, tmp38, tmp40)
tmp42 = tmp8 - tmp41
tmp43 = tl_math.abs(tmp42)
tmp44 = tmp36 * tmp43
tmp46 = tmp44 * tmp45
tmp47 = tmp32 + tmp46
tmp50 = tmp48 - tmp49
tmp51 = tmp50 * tmp50
tmp52 = tmp49 >= tmp4
tmp53 = tmp48 - tmp6
tmp54 = tmp8 - tmp48
tmp55 = tmp54 - tmp10
tmp56 = tl.where(tmp52, tmp53, tmp55)
tmp57 = tmp8 - tmp56
tmp58 = tl_math.abs(tmp57)
tmp59 = tmp51 * tmp58
tmp61 = tmp59 * tmp60
tmp62 = tmp47 + tmp61
tmp63 = 4.0
tmp64 = tmp62 / tmp63
tl.store(out_ptr0 + x0, tmp64, xmask)
@triton.jit
def triton_poi_fused_mean_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 16 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tl.load(in_ptr0 + (2 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp5 = tl.load(in_ptr0 + (3 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp9 = tl.load(in_ptr0 + (4 + 16 * x0), xmask, eviction_policy='evict_last'
)
tmp10 = tl.load(in_ptr0 + (5 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr0 + (6 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp14 = tl.load(in_ptr0 + (7 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp18 = tl.load(in_ptr0 + (8 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp19 = tl.load(in_ptr0 + (9 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp21 = tl.load(in_ptr0 + (10 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp23 = tl.load(in_ptr0 + (11 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp27 = tl.load(in_ptr0 + (12 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp28 = tl.load(in_ptr0 + (13 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp30 = tl.load(in_ptr0 + (14 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp32 = tl.load(in_ptr0 + (15 + 16 * x0), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp11 = tmp9 + tmp10
tmp13 = tmp11 + tmp12
tmp15 = tmp13 + tmp14
tmp16 = tmp15 / tmp7
tmp17 = tmp8 + tmp16
tmp20 = tmp18 + tmp19
tmp22 = tmp20 + tmp21
tmp24 = tmp22 + tmp23
tmp25 = tmp24 / tmp7
tmp26 = tmp17 + tmp25
tmp29 = tmp27 + tmp28
tmp31 = tmp29 + tmp30
tmp33 = tmp31 + tmp32
tmp34 = tmp33 / tmp7
tmp35 = tmp26 + tmp34
tmp36 = tmp35 / tmp7
tl.store(out_ptr0 + x0, tmp36, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_abs_ge_mean_mul_pow_rsub_sub_where_0[grid(64)](arg0_1,
arg1_1, arg2_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
triton_poi_fused_mean_1[grid(4)](buf0, buf1, 4, XBLOCK=4, num_warps
=1, num_stages=1)
del buf0
return buf1,
class FocalL2LossNew(nn.Module):
"""
Compute focal l2 loss between predict and groundtruth
:param thre: the threshold to distinguish between the foreground
heatmap pixels and the background heatmap pixels
:param alpha beta: compensation factors to reduce the punishment of easy
samples (both easy foreground pixels and easy background pixels)
"""
def __init__(self, thre=0.01, alpha=0.1, beta=0.02):
super().__init__()
self.thre = thre
self.alpha = alpha
self.beta = beta
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
ducongju/Scale-sensitive-Heatmap
|
FocalL2Loss
| false
| 1,868
|
[
"MIT"
] | 0
|
4016610ba96a6a6645895bbf4bcdb3ff4690a2d8
|
https://github.com/ducongju/Scale-sensitive-Heatmap/tree/4016610ba96a6a6645895bbf4bcdb3ff4690a2d8
|
GeneratorBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/wi/cwiyl3lwwtancorrifw77xt3aqb4lermdintht45zvkj3bg54nbl.py
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, 0.5), kwargs = {})
triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/wz/cwznwckxjekzcxlkjcgq2jhezeju57iivq5nhdjaezb3fvcxcau2.py
# Topologically Sorted Source Nodes: [weights_1, pow_1, sum_1, add, sigma_inv, weights_2], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
# Source node to ATen node mapping:
# add => add
# pow_1 => pow_1
# sigma_inv => rsqrt
# sum_1 => sum_1
# weights_1 => mul_2
# weights_2 => mul_3
# Graph fragment:
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_3, %unsqueeze_2), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%mul_2, 2), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [2, 3, 4], True), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-08), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %rsqrt), kwargs = {})
triton_per_fused_add_mul_pow_rsqrt_sum_1 = async_compile.triton('triton_per_fused_add_mul_pow_rsqrt_sum_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 64],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mul_pow_rsqrt_sum_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = (rindex // 9)
x1 = (xindex // 4)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + (36*x0)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + (4*x1)), rmask & xmask, eviction_policy='evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (r5 + (36*x4)), tmp13, rmask & xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/mk/cmk6aftvifk5vtxtg2lvcslfabqnrroho76zhtuahfdwmzysuwiw.py
# Topologically Sorted Source Nodes: [mul_4, x_3, add_2, x_4], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# add_2 => add_2
# mul_4 => mul_4
# x_3 => add_1
# x_4 => gt, mul_5, where
# Graph fragment:
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_6, %select), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %mul_4), kwargs = {})
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %unsqueeze_9), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_2, 0), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %add_2, %mul_5), kwargs = {})
# %gt_5 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where, 0), kwargs = {})
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2 = async_compile.triton('triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tmp13 = tmp12 > tmp8
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
tl.store(out_ptr0 + (x4), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/cy/ccy6r6r4kfbnktjfnh5b72535yhbr4r6gtvhdjage2wywifwywz3.py
# Topologically Sorted Source Nodes: [mul_9, x_8, add_5, x_9], Original ATen: [aten.mul, aten.add, aten.leaky_relu]
# Source node to ATen node mapping:
# add_5 => add_5
# mul_9 => mul_10
# x_8 => add_4
# x_9 => gt_1, mul_11, where_1
# Graph fragment:
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_16, %select_1), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_6, %mul_10), kwargs = {})
# %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %unsqueeze_19), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_5, 0), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_5, 0.2), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %add_5, %mul_11), kwargs = {})
triton_poi_fused_add_leaky_relu_mul_3 = async_compile.triton('triton_poi_fused_add_leaky_relu_mul_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_mul_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tl.store(in_out_ptr0 + (x4), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/tx/ctxhwgwusrrp4juzika66nlcnovoipxygsfsg3yjbj3mt4mcuato.py
# Topologically Sorted Source Nodes: [weights_9], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# weights_9 => mul_14
# Graph fragment:
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze_23, %unsqueeze_22), kwargs = {})
triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = (xindex // 12)
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x3), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x4), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/q6/cq6266xbhcci7slv2fgafadqumjuzj6rlg3czend3eybumfoaegp.py
# Topologically Sorted Source Nodes: [add_6, rgb], Original ATen: [aten.add, aten.leaky_relu, aten.leaky_relu_backward]
# Source node to ATen node mapping:
# add_6 => add_6
# rgb => gt_2, mul_15, where_2
# Graph fragment:
# %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_10, %unsqueeze_26), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%add_6, 0), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_6, 0.2), kwargs = {})
# %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %add_6, %mul_15), kwargs = {})
# %gt_3 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%where_2, 0), kwargs = {})
triton_poi_fused_add_leaky_relu_leaky_relu_backward_5 = async_compile.triton('triton_poi_fused_add_leaky_relu_leaky_relu_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_leaky_relu_leaky_relu_backward_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_5(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 3
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + (x3), tmp7, xmask)
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (1, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_12, (1, ), (1, ))
assert_size_stride(primals_13, (4, ), (1, ))
assert_size_stride(primals_14, (4, 4), (4, 1))
assert_size_stride(primals_15, (4, ), (1, ))
assert_size_stride(primals_16, (3, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_17, (3, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_0.run(primals_2, buf0, 16, grid=grid(16), stream=stream0)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [s], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_3, primals_4, reinterpret_tensor(buf0, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0); del buf0 # reuse
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0); del buf2 # reuse
buf4 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights_1, pow_1, sum_1, add, sigma_inv, weights_2], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_1.run(buf3, primals_6, buf1, buf4, 16, 36, grid=grid(16), stream=stream0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf5 = extern_kernels.convolution(reinterpret_tensor(primals_5, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf5, (1, 16, 4, 4), (256, 16, 4, 1))
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_5], Original ATen: [aten.mul]
triton_poi_fused_mul_0.run(primals_9, buf6, 16, grid=grid(16), stream=stream0)
del primals_9
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [s_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, primals_4, reinterpret_tensor(buf6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_10
buf8 = reinterpret_tensor(buf6, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0); del buf6 # reuse
buf9 = reinterpret_tensor(buf8, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0); del buf8 # reuse
buf10 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights_5, pow_2, sum_2, add_3, sigma_inv_1, weights_6], Original ATen: [aten.mul, aten.pow, aten.sum, aten.add, aten.rsqrt]
triton_per_fused_add_mul_pow_rsqrt_sum_1.run(buf9, primals_11, buf7, buf10, 16, 36, grid=grid(16), stream=stream0)
buf11 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse
buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [mul_4, x_3, add_2, x_4], Original ATen: [aten.mul, aten.add, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2.run(buf11, primals_7, primals_1, primals_8, buf20, 256, grid=grid(256), stream=stream0)
del primals_7
del primals_8
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (1, 16, 4, 4), (0, 16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf12, (1, 16, 4, 4), (256, 16, 4, 1))
buf13 = reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf12 # reuse
# Topologically Sorted Source Nodes: [mul_9, x_8, add_5, x_9], Original ATen: [aten.mul, aten.add, aten.leaky_relu]
triton_poi_fused_add_leaky_relu_mul_3.run(buf13, primals_12, primals_1, primals_13, 256, grid=grid(256), stream=stream0)
del primals_12
del primals_13
buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul_10], Original ATen: [aten.mul]
triton_poi_fused_mul_0.run(primals_14, buf14, 16, grid=grid(16), stream=stream0)
del primals_14
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [style], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_15, primals_4, reinterpret_tensor(buf14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del buf14
del primals_15
buf16 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [weights_9], Original ATen: [aten.mul]
triton_poi_fused_mul_4.run(primals_16, buf15, buf16, 48, grid=grid(48), stream=stream0)
# Topologically Sorted Source Nodes: [x_11], Original ATen: [aten.convolution]
buf17 = extern_kernels.convolution(reinterpret_tensor(buf13, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf16, (12, 4, 1, 1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf17, (1, 12, 4, 4), (192, 16, 4, 1))
buf18 = reinterpret_tensor(buf17, (4, 3, 4, 4), (48, 16, 4, 1), 0); del buf17 # reuse
buf19 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [add_6, rgb], Original ATen: [aten.add, aten.leaky_relu, aten.leaky_relu_backward]
triton_poi_fused_add_leaky_relu_leaky_relu_backward_5.run(buf18, primals_17, buf19, 192, grid=grid(192), stream=stream0)
del primals_17
return (buf13, buf18, primals_4, primals_6, primals_11, primals_16, reinterpret_tensor(primals_1, (4, ), (1, ), 0), buf1, buf3, reinterpret_tensor(primals_5, (1, 16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0), reinterpret_tensor(primals_1, (4, ), (1, ), 4), buf7, buf9, reinterpret_tensor(buf10, (16, 4, 3, 3), (36, 9, 3, 1), 0), reinterpret_tensor(buf11, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf13, buf15, reinterpret_tensor(buf16, (12, 4, 1, 1), (4, 1, 1, 1), 0), buf19, buf20, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((3, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import math
import numpy as np
from torch import nn
import torch.nn.functional as F
import torch.utils.data
import torch.nn.functional
from typing import List
from typing import Optional
import torch.autograd
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_per_fused_add_mul_pow_rsqrt_sum_1(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
rnumel = 36
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
rmask = rindex < rnumel
r5 = rindex
x0 = xindex % 4
r3 = rindex // 9
x1 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (r5 + 36 * x0), rmask & xmask, eviction_policy
='evict_last', other=0.0)
tmp3 = tl.load(in_ptr1 + (r3 + 4 * x1), rmask & xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 0.16666666666666666
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tmp5 = tmp4 * tmp4
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.where(rmask & xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = 1e-08
tmp11 = tmp9 + tmp10
tmp12 = libdevice.rsqrt(tmp11)
tmp13 = tmp4 * tmp12
tl.debug_barrier()
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + (r5 + 36 * x4), tmp13, rmask & xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tmp13 = tmp12 > tmp8
tl.store(in_out_ptr0 + x4, tmp12, xmask)
tl.store(out_ptr0 + x4, tmp13, xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_mul_3(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 4
x2 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last')
tmp4 = tmp2 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 0.0
tmp9 = tmp7 > tmp8
tmp10 = 0.2
tmp11 = tmp7 * tmp10
tmp12 = tl.where(tmp9, tmp7, tmp11)
tl.store(in_out_ptr0 + x4, tmp12, xmask)
@triton.jit
def triton_poi_fused_mul_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex % 12
x0 = xindex % 4
x2 = xindex // 12
x4 = xindex
tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + x4, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_leaky_relu_leaky_relu_backward_5(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 3
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.2
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tmp8 = tmp7 > tmp3
tl.store(in_out_ptr0 + x3, tmp7, xmask)
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_6, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_12, (1,), (1,))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (4, 4), (4, 1))
assert_size_stride(primals_15, (4,), (1,))
assert_size_stride(primals_16, (3, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_17, (3,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_0[grid(16)](primals_2, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_2
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, primals_4, reinterpret_tensor(buf0,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_3
buf2 = reinterpret_tensor(buf0, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0)
del buf0
buf3 = reinterpret_tensor(buf2, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0)
del buf2
buf4 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_1[grid(16)](buf3, primals_6,
buf1, buf4, 16, 36, XBLOCK=8, num_warps=4, num_stages=1)
buf5 = extern_kernels.convolution(reinterpret_tensor(primals_5, (1,
16, 4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4,
3, 3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1),
dilation=(1, 1), transposed=False, output_padding=(0, 0),
groups=4, bias=None)
assert_size_stride(buf5, (1, 16, 4, 4), (256, 16, 4, 1))
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_0[grid(16)](primals_9, buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_9
buf7 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_10, primals_4, reinterpret_tensor(buf6,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf7)
del primals_10
buf8 = reinterpret_tensor(buf6, (4, 4, 1, 1, 1), (4, 1, 16, 16, 16), 0)
del buf6
buf9 = reinterpret_tensor(buf8, (4, 4, 1, 1, 1), (4, 1, 1, 1, 1), 0)
del buf8
buf10 = empty_strided_cuda((4, 4, 4, 3, 3), (144, 36, 9, 3, 1),
torch.float32)
triton_per_fused_add_mul_pow_rsqrt_sum_1[grid(16)](buf9, primals_11,
buf7, buf10, 16, 36, XBLOCK=8, num_warps=4, num_stages=1)
buf11 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf5
buf20 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_leaky_relu_leaky_relu_backward_mul_2[grid(256)](
buf11, primals_7, primals_1, primals_8, buf20, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_7
del primals_8
buf12 = extern_kernels.convolution(reinterpret_tensor(buf11, (1, 16,
4, 4), (0, 16, 4, 1), 0), reinterpret_tensor(buf10, (16, 4, 3,
3), (36, 9, 3, 1), 0), stride=(1, 1), padding=(1, 1), dilation=
(1, 1), transposed=False, output_padding=(0, 0), groups=4, bias
=None)
assert_size_stride(buf12, (1, 16, 4, 4), (256, 16, 4, 1))
buf13 = reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf12
triton_poi_fused_add_leaky_relu_mul_3[grid(256)](buf13, primals_12,
primals_1, primals_13, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_12
del primals_13
buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_mul_0[grid(16)](primals_14, buf14, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_14
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_15, primals_4, reinterpret_tensor(
buf14, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del buf14
del primals_15
buf16 = empty_strided_cuda((4, 3, 4, 1, 1), (12, 4, 1, 1, 1), torch
.float32)
triton_poi_fused_mul_4[grid(48)](primals_16, buf15, buf16, 48,
XBLOCK=64, num_warps=1, num_stages=1)
buf17 = extern_kernels.convolution(reinterpret_tensor(buf13, (1, 16,
4, 4), (256, 16, 4, 1), 0), reinterpret_tensor(buf16, (12, 4, 1,
1), (4, 1, 0, 0), 0), stride=(1, 1), padding=(0, 0), dilation=(
1, 1), transposed=False, output_padding=(0, 0), groups=4, bias=None
)
assert_size_stride(buf17, (1, 12, 4, 4), (192, 16, 4, 1))
buf18 = reinterpret_tensor(buf17, (4, 3, 4, 4), (48, 16, 4, 1), 0)
del buf17
buf19 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.bool)
triton_poi_fused_add_leaky_relu_leaky_relu_backward_5[grid(192)](buf18,
primals_17, buf19, 192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_17
return (buf13, buf18, primals_4, primals_6, primals_11, primals_16,
reinterpret_tensor(primals_1, (4,), (1,), 0), buf1, buf3,
reinterpret_tensor(primals_5, (1, 16, 4, 4), (256, 16, 4, 1), 0),
reinterpret_tensor(buf4, (16, 4, 3, 3), (36, 9, 3, 1), 0),
reinterpret_tensor(primals_1, (4,), (1,), 4), buf7, buf9,
reinterpret_tensor(buf10, (16, 4, 3, 3), (36, 9, 3, 1), 0),
reinterpret_tensor(buf11, (1, 16, 4, 4), (256, 16, 4, 1), 0), buf13,
buf15, reinterpret_tensor(buf16, (12, 4, 1, 1), (4, 1, 1, 1), 0),
buf19, buf20)
class EqualizedWeight(nn.Module):
"""
<a id="equalized_weight"></a>
## Learning-rate Equalized Weights Parameter
This is based on equalized learning rate introduced in the Progressive GAN paper.
Instead of initializing weights at $\\mathcal{N}(0,c)$ they initialize weights
to $\\mathcal{N}(0, 1)$ and then multiply them by $c$ when using it.
$$w_i = c \\hat{w}_i$$
The gradients on stored parameters $\\hat{w}$ get multiplied by $c$ but this doesn't have
an affect since optimizers such as Adam normalize them by a running mean of the squared gradients.
The optimizer updates on $\\hat{w}$ are proportionate to the learning rate $\\lambda$.
But the effective weights $w$ get updated proportionately to $c \\lambda$.
Without equalized learning rate, the effective weights will get updated proportionately to just $\\lambda$.
So we are effectively scaling the learning rate by $c$ for these weight parameters.
"""
def __init__(self, shape: 'List[int]'):
"""
* `shape` is the shape of the weight parameter
"""
super().__init__()
self.c = 1 / math.sqrt(np.prod(shape[1:]))
self.weight = nn.Parameter(torch.randn(shape))
def forward(self):
return self.weight * self.c
class EqualizedLinear(nn.Module):
"""
<a id="equalized_linear"></a>
## Learning-rate Equalized Linear Layer
This uses [learning-rate equalized weights]($equalized_weights) for a linear layer.
"""
def __init__(self, in_features: 'int', out_features: 'int', bias:
'float'=0.0):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `bias` is the bias initialization constant
"""
super().__init__()
self.weight = EqualizedWeight([out_features, in_features])
self.bias = nn.Parameter(torch.ones(out_features) * bias)
def forward(self, x: 'torch.Tensor'):
return F.linear(x, self.weight(), bias=self.bias)
class Conv2dWeightModulate(nn.Module):
"""
### Convolution with Weight Modulation and Demodulation
This layer scales the convolution weights by the style vector and demodulates by normalizing it.
"""
def __init__(self, in_features: 'int', out_features: 'int', kernel_size:
'int', demodulate: 'float'=True, eps: 'float'=1e-08):
"""
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
* `kernel_size` is the size of the convolution kernel
* `demodulate` is flag whether to normalize weights by its standard deviation
* `eps` is the $\\epsilon$ for normalizing
"""
super().__init__()
self.out_features = out_features
self.demodulate = demodulate
self.padding = (kernel_size - 1) // 2
self.weight = EqualizedWeight([out_features, in_features,
kernel_size, kernel_size])
self.eps = eps
def forward(self, x: 'torch.Tensor', s: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `s` is style based scaling tensor of shape `[batch_size, in_features]`
"""
b, _, h, w = x.shape
s = s[:, None, :, None, None]
weights = self.weight()[None, :, :, :, :]
weights = weights * s
if self.demodulate:
sigma_inv = torch.rsqrt((weights ** 2).sum(dim=(2, 3, 4),
keepdim=True) + self.eps)
weights = weights * sigma_inv
x = x.reshape(1, -1, h, w)
_, _, *ws = weights.shape
weights = weights.reshape(b * self.out_features, *ws)
x = F.conv2d(x, weights, padding=self.padding, groups=b)
return x.reshape(-1, self.out_features, h, w)
class StyleBlock(nn.Module):
"""
<a id="style_block"></a>
### Style Block

*<small>$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is single channel).</small>*
Style block has a weight modulation convolution layer.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, in_features, bias=1.0)
self.conv = Conv2dWeightModulate(in_features, out_features,
kernel_size=3)
self.scale_noise = nn.Parameter(torch.zeros(1))
self.bias = nn.Parameter(torch.zeros(out_features))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor', noise:
'Optional[torch.Tensor]'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
* `noise` is a tensor of shape `[batch_size, 1, height, width]`
"""
s = self.to_style(w)
x = self.conv(x, s)
if noise is not None:
x = x + self.scale_noise[None, :, None, None] * noise
return self.activation(x + self.bias[None, :, None, None])
class ToRGB(nn.Module):
"""
<a id="to_rgb"></a>
### To RGB

*<small>$A$ denotes a linear layer.</small>*
Generates an RGB image from a feature map using $1 imes 1$ convolution.
"""
def __init__(self, d_latent: 'int', features: 'int'):
"""
* `d_latent` is the dimensionality of $w$
* `features` is the number of features in the feature map
"""
super().__init__()
self.to_style = EqualizedLinear(d_latent, features, bias=1.0)
self.conv = Conv2dWeightModulate(features, 3, kernel_size=1,
demodulate=False)
self.bias = nn.Parameter(torch.zeros(3))
self.activation = nn.LeakyReLU(0.2, True)
def forward(self, x: 'torch.Tensor', w: 'torch.Tensor'):
"""
* `x` is the input feature map of shape `[batch_size, in_features, height, width]`
* `w` is $w$ with shape `[batch_size, d_latent]`
"""
style = self.to_style(w)
x = self.conv(x, style)
return self.activation(x + self.bias[None, :, None, None])
class GeneratorBlockNew(nn.Module):
"""
<a id="generator_block"></a>
### Generator Block

*<small>$A$ denotes a linear layer.
$B$ denotes a broadcast and scaling operation (noise is a single channel).
[*toRGB*](#to_rgb) also has a style modulation which is not shown in the diagram to keep it simple.</small>*
The generator block consists of two [style blocks](#style_block) ($3 imes 3$ convolutions with style modulation)
and an RGB output.
"""
def __init__(self, d_latent: 'int', in_features: 'int', out_features: 'int'
):
"""
* `d_latent` is the dimensionality of $w$
* `in_features` is the number of features in the input feature map
* `out_features` is the number of features in the output feature map
"""
super().__init__()
self.style_block1 = StyleBlock(d_latent, in_features, out_features)
self.style_block2 = StyleBlock(d_latent, out_features, out_features)
self.to_rgb = ToRGB(d_latent, out_features)
def forward(self, input_0, input_1, input_2):
primals_7 = self.style_block1.scale_noise
primals_3 = self.style_block1.bias
primals_8 = self.style_block1.to_style.bias
primals_1 = self.style_block1.to_style.weight.weight
primals_6 = self.style_block1.conv.weight.weight
primals_12 = self.style_block2.scale_noise
primals_10 = self.style_block2.bias
primals_13 = self.style_block2.to_style.bias
primals_2 = self.style_block2.to_style.weight.weight
primals_11 = self.style_block2.conv.weight.weight
primals_17 = self.to_rgb.bias
primals_15 = self.to_rgb.to_style.bias
primals_4 = self.to_rgb.to_style.weight.weight
primals_16 = self.to_rgb.conv.weight.weight
primals_5 = input_0
primals_9 = input_1
primals_14 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17])
return output[0], output[1]
|
Hadryan/nn
|
GeneratorBlock
| false
| 9,412
|
[
"MIT"
] | 0
|
b10e3dea2c7e1f6569bfdf8e1a48f8d48b5a645d
|
https://github.com/Hadryan/nn/tree/b10e3dea2c7e1f6569bfdf8e1a48f8d48b5a645d
|
enhance_net_nopool
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/sj/csj6uus7z5hpvi77pvgp63jx4bne5i65mpzpsuvveo3mzfov6ycm.py
# Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/t6/ct6prd5ums7vtosvwfpighaetfimfezndu4oevt5kcynqsnxc2wi.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%relu_2, %relu_3], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 64
x0 = xindex % 4096
x2 = (xindex // 262144)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (131072*x2)), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 64, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (4096*((-32) + x1)) + (131072*x2)), tmp6, other=0.0)
tmp10 = tl.load(in_ptr2 + ((-32) + x1), tmp6, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp6, tmp13, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/yp/cyphcwvvchm4no2jwafz2sl7yqmy3phu4bgtem7ff4sjc3tplvma.py
# Topologically Sorted Source Nodes: [conv2d_6, x_r], Original ATen: [aten.convolution, aten.tanh]
# Source node to ATen node mapping:
# conv2d_6 => convolution_6
# x_r => tanh
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_2, %primals_14, %primals_15, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%convolution_6,), kwargs = {})
triton_poi_fused_convolution_tanh_2 = async_compile.triton('triton_poi_fused_convolution_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 393216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 24
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x3), tmp3, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/sx/csxqlkvlklm3rcvi6gcbvrem5mnw6ihywc24rzf5fd25cgiwlhwo.py
# Topologically Sorted Source Nodes: [pow_1, sub, mul, x, pow_2, sub_1, mul_1, x_1, pow_3, sub_2, mul_2, x_2, pow_4, sub_3, mul_3, enhance_image_1, pow_5, sub_4, mul_4, x_3, pow_6, sub_5, mul_5, x_4, pow_7, sub_6, mul_6, x_5, pow_8, sub_7, mul_7, enhance_image], Original ATen: [aten.pow, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# enhance_image => add_7
# enhance_image_1 => add_3
# mul => mul
# mul_1 => mul_1
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# mul_6 => mul_6
# mul_7 => mul_7
# pow_1 => pow_1
# pow_2 => pow_2
# pow_3 => pow_3
# pow_4 => pow_4
# pow_5 => pow_5
# pow_6 => pow_6
# pow_7 => pow_7
# pow_8 => pow_8
# sub => sub
# sub_1 => sub_1
# sub_2 => sub_2
# sub_3 => sub_3
# sub_4 => sub_4
# sub_5 => sub_5
# sub_6 => sub_6
# sub_7 => sub_7
# x => add
# x_1 => add_1
# x_2 => add_2
# x_3 => add_4
# x_4 => add_5
# x_5 => add_6
# Graph fragment:
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_3, 2), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_1, %primals_3), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %sub), kwargs = {})
# %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %mul), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_2, %add), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_1, %sub_1), kwargs = {})
# %add_1 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_1), kwargs = {})
# %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_1, 2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_3, %add_1), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_2, %sub_2), kwargs = {})
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_2), kwargs = {})
# %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_2, 2), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_4, %add_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_3, %sub_3), kwargs = {})
# %add_3 : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_3), kwargs = {})
# %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_3, 2), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_5, %add_3), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_4, %sub_4), kwargs = {})
# %add_4 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %mul_4), kwargs = {})
# %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_4, 2), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_6, %add_4), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_5, %sub_5), kwargs = {})
# %add_5 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_5), kwargs = {})
# %pow_7 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_5, 2), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_7, %add_5), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_6, %sub_6), kwargs = {})
# %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %mul_6), kwargs = {})
# %pow_8 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_6, 2), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_8, %add_6), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem_7, %sub_7), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %mul_7), kwargs = {})
triton_poi_fused_add_mul_pow_sub_3 = async_compile.triton('triton_poi_fused_add_mul_pow_sub_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_pow_sub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_pow_sub_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 49152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 12288
x1 = (xindex // 12288)
tmp0 = tl.load(in_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr1 + (x0 + (98304*x1)), None)
tmp6 = tl.load(in_ptr1 + (12288 + x0 + (98304*x1)), None)
tmp11 = tl.load(in_ptr1 + (24576 + x0 + (98304*x1)), None)
tmp16 = tl.load(in_ptr1 + (36864 + x0 + (98304*x1)), None)
tmp21 = tl.load(in_ptr1 + (49152 + x0 + (98304*x1)), None)
tmp26 = tl.load(in_ptr1 + (61440 + x0 + (98304*x1)), None)
tmp31 = tl.load(in_ptr1 + (73728 + x0 + (98304*x1)), None)
tmp36 = tl.load(in_ptr1 + (86016 + x0 + (98304*x1)), None)
tmp2 = tmp0 * tmp0
tmp3 = tmp2 - tmp0
tmp4 = tmp1 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 * tmp5
tmp8 = tmp7 - tmp5
tmp9 = tmp6 * tmp8
tmp10 = tmp5 + tmp9
tmp12 = tmp10 * tmp10
tmp13 = tmp12 - tmp10
tmp14 = tmp11 * tmp13
tmp15 = tmp10 + tmp14
tmp17 = tmp15 * tmp15
tmp18 = tmp17 - tmp15
tmp19 = tmp16 * tmp18
tmp20 = tmp15 + tmp19
tmp22 = tmp20 * tmp20
tmp23 = tmp22 - tmp20
tmp24 = tmp21 * tmp23
tmp25 = tmp20 + tmp24
tmp27 = tmp25 * tmp25
tmp28 = tmp27 - tmp25
tmp29 = tmp26 * tmp28
tmp30 = tmp25 + tmp29
tmp32 = tmp30 * tmp30
tmp33 = tmp32 - tmp30
tmp34 = tmp31 * tmp33
tmp35 = tmp30 + tmp34
tmp37 = tmp35 * tmp35
tmp38 = tmp37 - tmp35
tmp39 = tmp36 * tmp38
tmp40 = tmp35 + tmp39
tl.store(out_ptr0 + (x2), tmp5, None)
tl.store(out_ptr1 + (x2), tmp20, None)
tl.store(out_ptr2 + (x2), tmp40, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/f5/cf56smsnozdiyvduisumbn2faxpuykoxh3gcmofog4sqc7fsjpmw.py
# Topologically Sorted Source Nodes: [r], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# r => cat_3
# Graph fragment:
# %cat_3 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1, %getitem_2, %getitem_3, %getitem_4, %getitem_5, %getitem_6, %getitem_7], 1), kwargs = {})
triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 393216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 24
x0 = xindex % 4096
x2 = (xindex // 98304)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x1) + (98304*x2)), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 6, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (12288 + x0 + (4096*((-3) + x1)) + (98304*x2)), tmp9, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 9, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (24576 + x0 + (4096*((-6) + x1)) + (98304*x2)), tmp14, other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 12, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr0 + (36864 + x0 + (4096*((-9) + x1)) + (98304*x2)), tmp19, other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 15, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tmp21 & tmp23
tmp25 = tl.load(in_ptr0 + (49152 + x0 + (4096*((-12) + x1)) + (98304*x2)), tmp24, other=0.0)
tmp26 = tmp0 >= tmp22
tmp27 = tl.full([1], 18, tl.int64)
tmp28 = tmp0 < tmp27
tmp29 = tmp26 & tmp28
tmp30 = tl.load(in_ptr0 + (61440 + x0 + (4096*((-15) + x1)) + (98304*x2)), tmp29, other=0.0)
tmp31 = tmp0 >= tmp27
tmp32 = tl.full([1], 21, tl.int64)
tmp33 = tmp0 < tmp32
tmp34 = tmp31 & tmp33
tmp35 = tl.load(in_ptr0 + (73728 + x0 + (4096*((-18) + x1)) + (98304*x2)), tmp34, other=0.0)
tmp36 = tmp0 >= tmp32
tmp37 = tl.full([1], 24, tl.int64)
tmp38 = tmp0 < tmp37
tmp39 = tl.load(in_ptr0 + (86016 + x0 + (4096*((-21) + x1)) + (98304*x2)), tmp36, other=0.0)
tmp40 = tl.where(tmp34, tmp35, tmp39)
tmp41 = tl.where(tmp29, tmp30, tmp40)
tmp42 = tl.where(tmp24, tmp25, tmp41)
tmp43 = tl.where(tmp19, tmp20, tmp42)
tmp44 = tl.where(tmp14, tmp15, tmp43)
tmp45 = tl.where(tmp9, tmp10, tmp44)
tmp46 = tl.where(tmp4, tmp5, tmp45)
tl.store(out_ptr0 + (x3), tmp46, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/sv/csvoew5qi7m2gpjv4jicykul4c5j2ofkaxvtrolqipjc4qrnj3rj.py
# Topologically Sorted Source Nodes: [conv2d_5, x6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d_5 => convolution_5
# x6 => relu_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat_1, %primals_12, %primals_13, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_5 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_5, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 32
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args
args.clear()
assert_size_stride(primals_1, (32, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (32, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (32, ), (1, ))
assert_size_stride(primals_6, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (32, ), (1, ))
assert_size_stride(primals_8, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_9, (32, ), (1, ))
assert_size_stride(primals_10, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (32, ), (1, ))
assert_size_stride(primals_12, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_13, (32, ), (1, ))
assert_size_stride(primals_14, (24, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_15, (24, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, x1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 524288, grid=grid(524288), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [conv2d_1, x2], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 524288, grid=grid(524288), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [conv2d_2, x3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf5, primals_7, 524288, grid=grid(524288), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf7 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf5, buf6, primals_9, buf7, 1048576, grid=grid(1048576), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf9 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf3, buf8, primals_11, buf9, 1048576, grid=grid(1048576), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_5], Original ATen: [aten.convolution]
buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf11 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(buf1, buf10, primals_13, buf11, 1048576, grid=grid(1048576), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_6], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [conv2d_6, x_r], Original ATen: [aten.convolution, aten.tanh]
triton_poi_fused_convolution_tanh_2.run(buf13, primals_15, 393216, grid=grid(393216), stream=stream0)
del primals_15
buf14 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32)
buf15 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32)
buf16 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [pow_1, sub, mul, x, pow_2, sub_1, mul_1, x_1, pow_3, sub_2, mul_2, x_2, pow_4, sub_3, mul_3, enhance_image_1, pow_5, sub_4, mul_4, x_3, pow_6, sub_5, mul_5, x_4, pow_7, sub_6, mul_6, x_5, pow_8, sub_7, mul_7, enhance_image], Original ATen: [aten.pow, aten.sub, aten.mul, aten.add]
triton_poi_fused_add_mul_pow_sub_3.run(primals_3, buf13, buf14, buf15, buf16, 49152, grid=grid(49152), stream=stream0)
buf17 = empty_strided_cuda((4, 24, 64, 64), (98304, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [r], Original ATen: [aten.cat]
triton_poi_fused_cat_4.run(buf13, buf17, 393216, grid=grid(393216), stream=stream0)
buf18 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_5, x6], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_5.run(buf10, primals_13, buf18, 524288, grid=grid(524288), stream=stream0)
del buf10
del primals_13
buf19 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_4, x5], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_5.run(buf8, primals_11, buf19, 524288, grid=grid(524288), stream=stream0)
del buf8
del primals_11
buf20 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d_3, x4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_5.run(buf6, primals_9, buf20, 524288, grid=grid(524288), stream=stream0)
del buf6
del primals_9
return (buf15, buf16, buf17, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, buf1, buf3, buf5, buf7, buf9, buf11, buf13, reinterpret_tensor(buf13, (4, 3, 64, 64), (98304, 4096, 64, 1), 12288), reinterpret_tensor(buf13, (4, 3, 64, 64), (98304, 4096, 64, 1), 24576), reinterpret_tensor(buf13, (4, 3, 64, 64), (98304, 4096, 64, 1), 36864), reinterpret_tensor(buf13, (4, 3, 64, 64), (98304, 4096, 64, 1), 49152), reinterpret_tensor(buf13, (4, 3, 64, 64), (98304, 4096, 64, 1), 61440), reinterpret_tensor(buf13, (4, 3, 64, 64), (98304, 4096, 64, 1), 73728), reinterpret_tensor(buf13, (4, 3, 64, 64), (98304, 4096, 64, 1), 86016), buf14, buf15, buf18, buf19, buf20, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((32, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((32, 32, 3, 3), (288, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((24, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 64
x0 = xindex % 4096
x2 = xindex // 262144
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 32, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 131072 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 64, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 4096 * (-32 + x1) + 131072 * x2), tmp6,
other=0.0)
tmp10 = tl.load(in_ptr2 + (-32 + x1), tmp6, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp6, tmp13, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_tanh_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 24
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x3, tmp3, None)
@triton.jit
def triton_poi_fused_add_mul_pow_sub_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1,
out_ptr2, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 12288
x1 = xindex // 12288
tmp0 = tl.load(in_ptr0 + x2, None)
tmp1 = tl.load(in_ptr1 + (x0 + 98304 * x1), None)
tmp6 = tl.load(in_ptr1 + (12288 + x0 + 98304 * x1), None)
tmp11 = tl.load(in_ptr1 + (24576 + x0 + 98304 * x1), None)
tmp16 = tl.load(in_ptr1 + (36864 + x0 + 98304 * x1), None)
tmp21 = tl.load(in_ptr1 + (49152 + x0 + 98304 * x1), None)
tmp26 = tl.load(in_ptr1 + (61440 + x0 + 98304 * x1), None)
tmp31 = tl.load(in_ptr1 + (73728 + x0 + 98304 * x1), None)
tmp36 = tl.load(in_ptr1 + (86016 + x0 + 98304 * x1), None)
tmp2 = tmp0 * tmp0
tmp3 = tmp2 - tmp0
tmp4 = tmp1 * tmp3
tmp5 = tmp0 + tmp4
tmp7 = tmp5 * tmp5
tmp8 = tmp7 - tmp5
tmp9 = tmp6 * tmp8
tmp10 = tmp5 + tmp9
tmp12 = tmp10 * tmp10
tmp13 = tmp12 - tmp10
tmp14 = tmp11 * tmp13
tmp15 = tmp10 + tmp14
tmp17 = tmp15 * tmp15
tmp18 = tmp17 - tmp15
tmp19 = tmp16 * tmp18
tmp20 = tmp15 + tmp19
tmp22 = tmp20 * tmp20
tmp23 = tmp22 - tmp20
tmp24 = tmp21 * tmp23
tmp25 = tmp20 + tmp24
tmp27 = tmp25 * tmp25
tmp28 = tmp27 - tmp25
tmp29 = tmp26 * tmp28
tmp30 = tmp25 + tmp29
tmp32 = tmp30 * tmp30
tmp33 = tmp32 - tmp30
tmp34 = tmp31 * tmp33
tmp35 = tmp30 + tmp34
tmp37 = tmp35 * tmp35
tmp38 = tmp37 - tmp35
tmp39 = tmp36 * tmp38
tmp40 = tmp35 + tmp39
tl.store(out_ptr0 + x2, tmp5, None)
tl.store(out_ptr1 + x2, tmp20, None)
tl.store(out_ptr2 + x2, tmp40, None)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 24
x0 = xindex % 4096
x2 = xindex // 98304
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 98304 * x2), tmp4, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 6, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (12288 + x0 + 4096 * (-3 + x1) + 98304 * x2),
tmp9, other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 9, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (24576 + x0 + 4096 * (-6 + x1) + 98304 * x2),
tmp14, other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 12, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr0 + (36864 + x0 + 4096 * (-9 + x1) + 98304 * x2),
tmp19, other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 15, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tmp21 & tmp23
tmp25 = tl.load(in_ptr0 + (49152 + x0 + 4096 * (-12 + x1) + 98304 * x2),
tmp24, other=0.0)
tmp26 = tmp0 >= tmp22
tmp27 = tl.full([1], 18, tl.int64)
tmp28 = tmp0 < tmp27
tmp29 = tmp26 & tmp28
tmp30 = tl.load(in_ptr0 + (61440 + x0 + 4096 * (-15 + x1) + 98304 * x2),
tmp29, other=0.0)
tmp31 = tmp0 >= tmp27
tmp32 = tl.full([1], 21, tl.int64)
tmp33 = tmp0 < tmp32
tmp34 = tmp31 & tmp33
tmp35 = tl.load(in_ptr0 + (73728 + x0 + 4096 * (-18 + x1) + 98304 * x2),
tmp34, other=0.0)
tmp36 = tmp0 >= tmp32
tl.full([1], 24, tl.int64)
tmp39 = tl.load(in_ptr0 + (86016 + x0 + 4096 * (-21 + x1) + 98304 * x2),
tmp36, other=0.0)
tmp40 = tl.where(tmp34, tmp35, tmp39)
tmp41 = tl.where(tmp29, tmp30, tmp40)
tmp42 = tl.where(tmp24, tmp25, tmp41)
tmp43 = tl.where(tmp19, tmp20, tmp42)
tmp44 = tl.where(tmp14, tmp15, tmp43)
tmp45 = tl.where(tmp9, tmp10, tmp44)
tmp46 = tl.where(tmp4, tmp5, tmp45)
tl.store(out_ptr0 + x3, tmp46, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_5(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 32
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15) = args
args.clear()
assert_size_stride(primals_1, (32, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (32,), (1,))
assert_size_stride(primals_8, (32, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_9, (32,), (1,))
assert_size_stride(primals_10, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_11, (32,), (1,))
assert_size_stride(primals_12, (32, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_13, (32,), (1,))
assert_size_stride(primals_14, (24, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_15, (24,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(524288)](buf1, primals_2,
524288, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_0[grid(524288)](buf3, primals_5,
524288, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_0[grid(524288)](buf5, primals_7,
524288, XBLOCK=512, num_warps=8, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf7 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_1[grid(1048576)](buf5, buf6, primals_9, buf7,
1048576, XBLOCK=1024, num_warps=4, num_stages=1)
buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf9 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_1[grid(1048576)](buf3, buf8, primals_11, buf9,
1048576, XBLOCK=1024, num_warps=4, num_stages=1)
buf10 = extern_kernels.convolution(buf9, primals_12, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf10, (4, 32, 64, 64), (131072, 4096, 64, 1))
buf11 = empty_strided_cuda((4, 64, 64, 64), (262144, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_1[grid(1048576)](buf1, buf10, primals_13,
buf11, 1048576, XBLOCK=1024, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf11, primals_14, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 24, 64, 64), (98304, 4096, 64, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_tanh_2[grid(393216)](buf13, primals_15,
393216, XBLOCK=512, num_warps=8, num_stages=1)
del primals_15
buf14 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.float32)
buf15 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.float32)
buf16 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1),
torch.float32)
triton_poi_fused_add_mul_pow_sub_3[grid(49152)](primals_3, buf13,
buf14, buf15, buf16, 49152, XBLOCK=256, num_warps=4, num_stages=1)
buf17 = empty_strided_cuda((4, 24, 64, 64), (98304, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_4[grid(393216)](buf13, buf17, 393216, XBLOCK=
1024, num_warps=4, num_stages=1)
buf18 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_5[grid(524288)](
buf10, primals_13, buf18, 524288, XBLOCK=512, num_warps=8,
num_stages=1)
del buf10
del primals_13
buf19 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_5[grid(524288)](
buf8, primals_11, buf19, 524288, XBLOCK=512, num_warps=8,
num_stages=1)
del buf8
del primals_11
buf20 = empty_strided_cuda((4, 32, 64, 64), (131072, 4096, 64, 1),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_5[grid(524288)](
buf6, primals_9, buf20, 524288, XBLOCK=512, num_warps=8,
num_stages=1)
del buf6
del primals_9
return (buf15, buf16, buf17, primals_1, primals_3, primals_4, primals_6,
primals_8, primals_10, primals_12, primals_14, buf1, buf3, buf5,
buf7, buf9, buf11, buf13, reinterpret_tensor(buf13, (4, 3, 64, 64),
(98304, 4096, 64, 1), 12288), reinterpret_tensor(buf13, (4, 3, 64,
64), (98304, 4096, 64, 1), 24576), reinterpret_tensor(buf13, (4, 3,
64, 64), (98304, 4096, 64, 1), 36864), reinterpret_tensor(buf13, (4,
3, 64, 64), (98304, 4096, 64, 1), 49152), reinterpret_tensor(buf13,
(4, 3, 64, 64), (98304, 4096, 64, 1), 61440), reinterpret_tensor(
buf13, (4, 3, 64, 64), (98304, 4096, 64, 1), 73728),
reinterpret_tensor(buf13, (4, 3, 64, 64), (98304, 4096, 64, 1),
86016), buf14, buf15, buf18, buf19, buf20)
class enhance_net_nopoolNew(nn.Module):
def __init__(self):
super(enhance_net_nopoolNew, self).__init__()
self.relu = nn.ReLU(inplace=True)
number_f = 32
self.e_conv1 = nn.Conv2d(3, number_f, 3, 1, 1, bias=True)
self.e_conv2 = nn.Conv2d(number_f, number_f, 3, 1, 1, bias=True)
self.e_conv3 = nn.Conv2d(number_f, number_f, 3, 1, 1, bias=True)
self.e_conv4 = nn.Conv2d(number_f, number_f, 3, 1, 1, bias=True)
self.e_conv5 = nn.Conv2d(number_f * 2, number_f, 3, 1, 1, bias=True)
self.e_conv6 = nn.Conv2d(number_f * 2, number_f, 3, 1, 1, bias=True)
self.e_conv7 = nn.Conv2d(number_f * 2, 24, 3, 1, 1, bias=True)
self.maxpool = nn.MaxPool2d(2, stride=2, return_indices=False,
ceil_mode=False)
self.upsample = nn.UpsamplingBilinear2d(scale_factor=2)
def forward(self, input_0):
primals_1 = self.e_conv1.weight
primals_2 = self.e_conv1.bias
primals_4 = self.e_conv2.weight
primals_5 = self.e_conv2.bias
primals_6 = self.e_conv3.weight
primals_7 = self.e_conv3.bias
primals_8 = self.e_conv4.weight
primals_9 = self.e_conv4.bias
primals_10 = self.e_conv5.weight
primals_11 = self.e_conv5.bias
primals_12 = self.e_conv6.weight
primals_13 = self.e_conv6.bias
primals_14 = self.e_conv7.weight
primals_15 = self.e_conv7.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15])
return output[0], output[1], output[2]
|
farhantandia/Applied-CV-Zero-DCE-master
|
enhance_net_nopool
| false
| 6,704
|
[
"MIT"
] | 1
|
56a0f8aec799eb5d125f5d9f44f692b9a9a3c990
|
https://github.com/farhantandia/Applied-CV-Zero-DCE-master/tree/56a0f8aec799eb5d125f5d9f44f692b9a9a3c990
|
OutputDiscriminator
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/x5/cx5x3ctvlxfngzqxjhckinfe5o47op62tt3oe6cizqbvhu2jadcg.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x => gt, mul, where
# Graph fragment:
# %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {})
# %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 278784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr1 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/j6/cj6preby6v25qpri36zdc64okaiku4g3n2g3ntdegoyuutlffwkx.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x_1 => gt_1, mul_1, where_1
# Graph fragment:
# %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.2), kwargs = {})
# %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {})
triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 147968
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr1 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/24/c24d6loxuicc53yfdbmizoqhkrh5m2bpnt3a4ffeuex7f6y3vnth.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x_2 => gt_2, mul_2, where_2
# Graph fragment:
# %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {})
# %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {})
triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 82944
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + (x0), tmp2, xmask)
tl.store(out_ptr1 + (x0), tmp5, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/f7/cf7lcprivgof4fqsrblqrk334iqoref57wus34pdpmrc65sotzf7.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# x_3 => gt_3, mul_3, where_3
# Graph fragment:
# %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.2), kwargs = {})
# %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {})
triton_poi_fused_leaky_relu_3 = async_compile.triton('triton_poi_fused_leaky_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 51200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + (x0), tmp2, None)
tl.store(out_ptr1 + (x0), tmp5, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (64, 2, 4, 4), (32, 16, 4, 1))
assert_size_stride(primals_2, (4, 2, 64, 64), (8192, 4096, 64, 1))
assert_size_stride(primals_3, (128, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_4, (256, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_5, (512, 256, 4, 4), (4096, 16, 4, 1))
assert_size_stride(primals_6, (1, 512, 4, 4), (8192, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 33, 33), (69696, 1089, 33, 1))
buf1 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.bool)
buf2 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(buf0, buf1, buf2, 278784, grid=grid(278784), stream=stream0)
del buf0
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_3, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 128, 17, 17), (36992, 289, 17, 1))
buf4 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.bool)
buf5 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_1.run(buf3, buf4, buf5, 147968, grid=grid(147968), stream=stream0)
del buf3
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_4, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 9, 9), (20736, 81, 9, 1))
buf7 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.bool)
buf8 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_2.run(buf6, buf7, buf8, 82944, grid=grid(82944), stream=stream0)
del buf6
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf9 = extern_kernels.convolution(buf8, primals_5, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 512, 5, 5), (12800, 25, 5, 1))
buf10 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch.bool)
buf11 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu]
triton_poi_fused_leaky_relu_3.run(buf9, buf10, buf11, 51200, grid=grid(51200), stream=stream0)
del buf9
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_6, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 1, 3, 3), (9, 9, 3, 1))
return (buf12, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 2, 4, 4), (32, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 2, 64, 64), (8192, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((128, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((256, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((512, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 512, 4, 4), (8192, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 278784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr1 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 147968
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr1 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_2(in_ptr0, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xnumel = 82944
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + x0, tmp2, xmask)
tl.store(out_ptr1 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_leaky_relu_3(in_ptr0, out_ptr0, out_ptr1, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, None)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.2
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + x0, tmp2, None)
tl.store(out_ptr1 + x0, tmp5, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (64, 2, 4, 4), (32, 16, 4, 1))
assert_size_stride(primals_2, (4, 2, 64, 64), (8192, 4096, 64, 1))
assert_size_stride(primals_3, (128, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_4, (256, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_5, (512, 256, 4, 4), (4096, 16, 4, 1))
assert_size_stride(primals_6, (1, 512, 4, 4), (8192, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2,
2), padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 33, 33), (69696, 1089, 33, 1))
buf1 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1),
torch.bool)
buf2 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(278784)](buf0, buf1, buf2,
278784, XBLOCK=512, num_warps=8, num_stages=1)
del buf0
buf3 = extern_kernels.convolution(buf2, primals_3, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 128, 17, 17), (36992, 289, 17, 1))
buf4 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1),
torch.bool)
buf5 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1),
torch.float32)
triton_poi_fused_leaky_relu_1[grid(147968)](buf3, buf4, buf5,
147968, XBLOCK=512, num_warps=8, num_stages=1)
del buf3
buf6 = extern_kernels.convolution(buf5, primals_4, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 256, 9, 9), (20736, 81, 9, 1))
buf7 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.bool
)
buf8 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.
float32)
triton_poi_fused_leaky_relu_2[grid(82944)](buf6, buf7, buf8, 82944,
XBLOCK=512, num_warps=8, num_stages=1)
del buf6
buf9 = extern_kernels.convolution(buf8, primals_5, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 512, 5, 5), (12800, 25, 5, 1))
buf10 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch
.bool)
buf11 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch
.float32)
triton_poi_fused_leaky_relu_3[grid(51200)](buf9, buf10, buf11,
51200, XBLOCK=256, num_warps=4, num_stages=1)
del buf9
buf12 = extern_kernels.convolution(buf11, primals_6, stride=(2, 2),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 1, 3, 3), (9, 9, 3, 1))
return (buf12, primals_1, primals_2, primals_3, primals_4, primals_5,
primals_6, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11)
class OutputDiscriminatorNew(nn.Module):
def __init__(self):
super(OutputDiscriminatorNew, self).__init__()
filter_num_list = [64, 128, 256, 512, 1]
self.conv1 = nn.Conv2d(2, filter_num_list[0], kernel_size=4, stride
=2, padding=2, bias=False)
self.conv2 = nn.Conv2d(filter_num_list[0], filter_num_list[1],
kernel_size=4, stride=2, padding=2, bias=False)
self.conv3 = nn.Conv2d(filter_num_list[1], filter_num_list[2],
kernel_size=4, stride=2, padding=2, bias=False)
self.conv4 = nn.Conv2d(filter_num_list[2], filter_num_list[3],
kernel_size=4, stride=2, padding=2, bias=False)
self.conv5 = nn.Conv2d(filter_num_list[3], filter_num_list[4],
kernel_size=4, stride=2, padding=2, bias=False)
self.leakyrelu = nn.LeakyReLU(negative_slope=0.2)
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0.0, 0.02)
if m.bias is not None:
m.bias.data.zero_()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_3 = self.conv2.weight
primals_4 = self.conv3.weight
primals_5 = self.conv4.weight
primals_6 = self.conv5.weight
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
EmmaW8/BEAL
|
OutputDiscriminator
| false
| 13,683
|
[
"MIT"
] | 95
|
945cad38a354605b8bca5bc01ae1b65848d605e1
|
https://github.com/EmmaW8/BEAL/tree/945cad38a354605b8bca5bc01ae1b65848d605e1
|
DIAYNBaselineModel
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/vy/cvy76z3xhuu5iebvxsmwl44toxyhkogty6m2fwp7r47fvhvoziwi.py
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# z => tanh
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_2), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/kq/ckq7yos7pu4pdqbldmezq4qzzp4smb3obbexm5mkgz2idbxyhosy.py
# Topologically Sorted Source Nodes: [arange], Original ATen: [aten.arange]
# Source node to ATen node mapping:
# arange => iota_default
# Graph fragment:
# %iota_default : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
triton_poi_fused_arange_1 = async_compile.triton('triton_poi_fused_arange_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_arange_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/rs/crszmfsdbczfi4oy24fpatbo2mfe4smpek6hk4b3rjcokc4cdses.py
# Topologically Sorted Source Nodes: [critic_2], Original ATen: [aten.index]
# Source node to ATen node mapping:
# critic_2 => index
# Graph fragment:
# %index : [num_users=1] = call_function[target=torch.ops.aten.index.Tensor](args = (%view, [%iota_default, %primals_6]), kwargs = {})
triton_poi_fused_index_2 = async_compile.triton('triton_poi_fused_index_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_index_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_index_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert(((0 <= tmp4) & (tmp4 < 4)) | ~(xmask), "index out of bounds: 0 <= tmp4 < 4")
tmp6 = tl.load(in_ptr1 + (tmp4 + (4*x0)), xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [z], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [critic], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [arange], Original ATen: [aten.arange]
triton_poi_fused_arange_1.run(buf3, 4, grid=grid(4), stream=stream0)
buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [critic_2], Original ATen: [aten.index]
triton_poi_fused_index_2.run(primals_6, buf2, buf4, 4, grid=grid(4), stream=stream0)
del buf2
return (buf4, primals_3, primals_6, buf1, buf3, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.int64)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_arange_1(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_index_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.full([XBLOCK], 4, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask,
'index out of bounds: 0 <= tmp4 < 4')
tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * x0), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(primals_3, reinterpret_tensor(primals_1, (4, 4),
(1, 4), 0), out=buf0)
del primals_1
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(16)](buf1, primals_2, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4,), (1,), torch.int64)
triton_poi_fused_arange_1[grid(4)](buf3, 4, XBLOCK=4, num_warps=1,
num_stages=1)
buf4 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
triton_poi_fused_index_2[grid(4)](primals_6, buf2, buf4, 4, XBLOCK=
4, num_warps=1, num_stages=1)
del buf2
return buf4, primals_3, primals_6, buf1, buf3, primals_4
class DIAYNBaselineModelNew(nn.Module):
"""The model that computes V(s)"""
def __init__(self, n_observations, n_hidden, n_policies):
super().__init__()
self.linear = nn.Linear(n_observations, n_hidden)
self.linear2 = nn.Linear(n_hidden, n_policies)
self.n_policies = n_policies
def forward(self, input_0, input_1):
primals_1 = self.linear.weight
primals_2 = self.linear.bias
primals_3 = self.linear2.weight
primals_5 = self.linear2.bias
primals_4 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
Purple-PI/rlstructures
|
DIAYNBaselineModel
| false
| 14,252
|
[
"MIT"
] | 281
|
9b201b083715bbda2f3534b010c84e11dfc0a1c7
|
https://github.com/Purple-PI/rlstructures/tree/9b201b083715bbda2f3534b010c84e11dfc0a1c7
|
UpConv
|
import torch
import torch.nn as nn
from collections import OrderedDict
class UpConv(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.up_conv = nn.Sequential(OrderedDict([('up', nn.Upsample(
scale_factor=2)), ('conv', nn.Conv2d(in_channels, in_channels //
2, kernel_size=3, padding=1))]))
def forward(self, x):
return self.up_conv(x)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from collections import OrderedDict
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 8 % 8
x0 = xindex % 8
x2 = xindex // 64
x4 = xindex
tmp0 = x1
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 * tmp2
tmp4 = tmp3.to(tl.int32)
tmp5 = x0
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp6 * tmp2
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x4, tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64 % 2
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (2, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 2, 8, 8), (128, 64, 8, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(512)](buf2, primals_3, 512,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return buf2, primals_2, buf0
class UpConvNew(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.up_conv = nn.Sequential(OrderedDict([('up', nn.Upsample(
scale_factor=2)), ('conv', nn.Conv2d(in_channels, in_channels //
2, kernel_size=3, padding=1))]))
def forward(self, input_0):
primals_2 = self.up_conv.conv.weight
primals_3 = self.up_conv.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
wan2000/ssdf-perception
|
UpConv
| false
| 13,078
|
[
"MIT"
] | 0
|
df91bfb60f0d1b324fecada3d99d3498ca5794b0
|
https://github.com/wan2000/ssdf-perception/tree/df91bfb60f0d1b324fecada3d99d3498ca5794b0
|
TorchNotEqual
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/vh/cvhfvk3pwuzx4n3ozsogpbil36dtmaja4i6tskt5nzdzznkni27d.py
# Topologically Sorted Source Nodes: [ne], Original ATen: [aten.ne]
# Source node to ATen node mapping:
# ne => ne
# Graph fragment:
# %ne : [num_users=1] = call_function[target=torch.ops.aten.ne.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
triton_poi_fused_ne_0 = async_compile.triton('triton_poi_fused_ne_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_ne_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_ne_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 != tmp1
tl.store(out_ptr0 + (x0), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [ne], Original ATen: [aten.ne]
stream0 = get_raw_stream(0)
triton_poi_fused_ne_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_ne_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 != tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_ne_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class TorchNotEqualNew(torch.nn.Module):
def __init__(self):
super(TorchNotEqualNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
Ilyabasharov/torch2trt
|
TorchNotEqual
| false
| 2,562
|
[
"MIT"
] | 0
|
76bf298b3da408509665e23e2494922b131afb10
|
https://github.com/Ilyabasharov/torch2trt/tree/76bf298b3da408509665e23e2494922b131afb10
|
GraphConv
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
class MeanAggregator(nn.Module):
def forward(self, features, A):
x = torch.bmm(A, features)
return x
class GraphConv(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.weight = nn.Parameter(torch.FloatTensor(in_dim * 2, out_dim))
self.bias = nn.Parameter(torch.FloatTensor(out_dim))
init.xavier_uniform_(self.weight)
init.constant_(self.bias, 0)
self.aggregator = MeanAggregator()
def forward(self, features, A):
_b, _n, d = features.shape
assert d == self.in_dim
agg_feats = self.aggregator(features, A)
cat_feats = torch.cat([features, agg_feats], dim=2)
out = torch.einsum('bnd,df->bnf', cat_feats, self.weight)
out = F.relu(out + self.bias)
return out
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_dim': 4, 'out_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (8, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(primals_2, primals_1, out=buf0)
del primals_2
buf1 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](primals_1, buf0, buf1, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf2 = reinterpret_tensor(buf0, (1, 16, 4), (64, 4, 1), 0)
del buf0
extern_kernels.bmm(reinterpret_tensor(buf1, (1, 16, 8), (0, 8, 1),
0), reinterpret_tensor(primals_3, (1, 8, 4), (32, 4, 1), 0),
out=buf2)
del primals_3
buf3 = reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0)
del buf2
buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_1[grid(64)](buf3,
primals_4, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_4
return buf3, buf4, reinterpret_tensor(buf1, (1, 8, 16), (128, 1, 8), 0)
class MeanAggregator(nn.Module):
def forward(self, features, A):
x = torch.bmm(A, features)
return x
class GraphConvNew(nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.weight = nn.Parameter(torch.FloatTensor(in_dim * 2, out_dim))
self.bias = nn.Parameter(torch.FloatTensor(out_dim))
init.xavier_uniform_(self.weight)
init.constant_(self.bias, 0)
self.aggregator = MeanAggregator()
def forward(self, input_0, input_1):
primals_3 = self.weight
primals_4 = self.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
NceBoy/mmocr
|
GraphConv
| false
| 11,736
|
[
"Apache-2.0"
] | 0
|
3fb7a18d7eb44799e75c1991e5da2044b458d411
|
https://github.com/NceBoy/mmocr/tree/3fb7a18d7eb44799e75c1991e5da2044b458d411
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.