Dataset Viewer
The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
Instruction from Wanwan Feng
Step 1 β Generate Embeddings for All Input Files
This step shows the creation of this SE600M-embedding dataset from the existing training dataset provided by the Arc Institute for the Virtual Cell Challenge.
import os
os.environ['MPLBACKEND'] = 'Agg'
# 1. Files to process
FILENAMES_TO_PROCESS = [
"competition_train.h5",
"jurkat.h5",
"k562.h5",
"k562_gwps.h5",
"rpe1.h5",
"competition_val_template.h5ad",
"hepg2.h5"
]
# 2. Model & directory configuration
model_folder = "Path/to/VCC/arcinstitute/SE-600M/"
checkpoint_path = "Path/to/VCC/arcinstitute/SE-600M/se600m_epoch16.ckpt"
input_dir = "./competition_support_set"
output_dir = "./vci_pretrain"
# 3. Create output directory
os.makedirs(output_dir, exist_ok=True)
# 4. Loop over files
for filename in FILENAMES_TO_PROCESS:
input_path = os.path.join(input_dir, filename)
output_path = os.path.join(output_dir, filename)
if os.path.exists(output_path):
print(f"β
Skipping {filename}, already exists.")
continue
print(f"π Processing {filename} ...")
!state emb transform --model-folder {model_folder} --checkpoint {checkpoint_path} --input {input_path} --output {output_path}
print(f"β
Finished {filename}\n")
Step 2 β Train Model
This step shows how to use the generated SE600M embedding dataset to train a State Transition (ST) model.
state tx train data.kwargs.toml_config_path="vci_pretrain/starter.toml" data.kwargs.embed_key="X_state" data.kwargs.num_workers=4 data.kwargs.batch_col="batch_var" data.kwargs.pert_col="target_gene" data.kwargs.cell_type_key="cell_type" data.kwargs.control_pert="non-targeting" data.kwargs.perturbation_features_file="vci_pretrain/ESM2_pert_features.pt" training.max_steps=8000 training.ckpt_every_n_steps=1000 model=tahoe_sm wandb.tags="[first_run]" output_dir="competition_state" name="first_run"
Step 3 β Run Inference on Validation Data
state tx infer --embed_key X_state --output "competition_se/prediction.h5ad" --model_dir "competition_se/first_run" --checkpoint "competition_se/first_run/checkpoints/last.ckpt" --adata "vci_pretrain/competition_val_template.h5ad" --pert_col "target_gene"
Leaderboard Result
That's it! You can now upload the vcc file to the leaderboard. We hope contestants will improve significantly on this baseline.For reference, after 8000 steps of training, this model generated the following unnormalized scores:
DE Score: 0.183
MAE Score: 0.334
Perturbation Score: 0.579
And the following normalized overall score: 0.072
- Downloads last month
- 74