Dataset Viewer
Auto-converted to Parquet Duplicate
Model_name
stringlengths
12
33
Train_size
int64
29.2k
50.8k
Test_size
int64
7.3k
12.7k
arg
dict
lora
null
Parameters
int64
109M
739M
Trainable_parameters
int64
109M
739M
r
null
Memory Allocation
stringlengths
6
8
Training Time
stringlengths
6
8
Performance
dict
google-t5/t5-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
738,731,021
738,731,021
null
11588.28
2439.83
{ "accuracy": 0.905311413215302, "f1_macro": 0.9001468326592003, "f1_weighted": 0.9055258977504169, "precision": 0.8997647095491552, "recall": 0.9007592062400178 }
RUCAIBox/mvp
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
407,356,429
407,356,429
null
7237.18
1238.27
{ "accuracy": 0.9037306354726525, "f1_macro": 0.899790061152644, "f1_weighted": 0.9039185916524872, "precision": 0.9003406292718075, "recall": 0.899475423533622 }
facebook/bart-large-mnli
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
407,354,381
407,354,381
null
5912.1
1178.58
{ "accuracy": 0.9046791021182422, "f1_macro": 0.9004031523813835, "f1_weighted": 0.9049364768829319, "precision": 0.9012616066439333, "recall": 0.899805643350522 }
google/flan-t5-base
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
223,504,141
223,504,141
null
4195.79
860.96
{ "accuracy": 0.8925861523869744, "f1_macro": 0.887617919892038, "f1_weighted": 0.8926227324933397, "precision": 0.8889503598540187, "recall": 0.8864927381658047 }
facebook/bart-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
407,354,381
407,354,381
null
5962.44
1233.77
{ "accuracy": 0.902466013278533, "f1_macro": 0.8980103056409068, "f1_weighted": 0.9026728656106815, "precision": 0.8987274426864164, "recall": 0.8974978119714402 }
FacebookAI/roberta-base
29,188
7,297
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
130,320,852
130,320,852
null
2905.07
554.08
{ "accuracy": 0.27463341099081817, "f1_macro": 0.00718026358955698, "f1_weighted": 0.1592110676755744, "precision": 0.006277277125165272, "recall": 0.012833144249407423 }
google-bert/bert-base-uncased
29,188
7,297
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
115,157,460
115,157,460
null
2710.9
552.55
{ "accuracy": 0.25339180485130874, "f1_macro": 0.005499402516701471, "f1_weighted": 0.1358793175501451, "precision": 0.0043077087743916805, "recall": 0.010308437603367747 }
google/rembert
29,188
7,297
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
584,429,524
584,429,524
null
10879.12
3238.83
{ "accuracy": 0.038234891051116895, "f1_macro": 0.0000316926175057751, "f1_weighted": 0.0028161390188124642, "precision": 0.000016452190641616565, "recall": 0.0004302925989672978 }
FacebookAI/xlm-roberta-large
29,188
7,297
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
567,454,932
567,454,932
null
10221.62
1798.96
{ "accuracy": 0.038234891051116895, "f1_macro": 0.0000316926175057751, "f1_weighted": 0.0028161390188124642, "precision": 0.000016452190641616565, "recall": 0.0004302925989672978 }
FacebookAI/roberta-large
29,188
7,297
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
362,924,244
362,924,244
null
7767.25
1723.85
{ "accuracy": 0.038234891051116895, "f1_macro": 0.0000316926175057751, "f1_weighted": 0.0028161390188124642, "precision": 0.000016452190641616565, "recall": 0.0004302925989672978 }
google-bert/bert-large-uncased
29,188
7,297
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
342,706,388
342,706,388
null
7524.62
1714.2
{ "accuracy": 0.038234891051116895, "f1_macro": 0.0000316926175057751, "f1_weighted": 0.0028161390188124642, "precision": 0.000016452190641616565, "recall": 0.0004302925989672978 }
answerdotai/ModernBERT-large
29,188
7,297
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
403,395,796
403,395,796
null
9115.1
2085.41
{ "accuracy": 0.3449362751815815, "f1_macro": 0.028710685639799498, "f1_weighted": 0.2507159501037141, "precision": 0.02645903933690301, "recall": 0.0403564472558043 }
andreasmadsen/efficient_mlm_m0.40
29,188
7,297
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
362,926,292
362,926,292
null
9582.38
1914.38
{ "accuracy": 0.16157324928052624, "f1_macro": 0.0011550620290914865, "f1_weighted": 0.05812715037449428, "precision": 0.000746305867522758, "recall": 0.0032914033832205157 }
microsoft/deberta-large
29,188
7,297
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
413,777,108
413,777,108
null
15581.85
2726.35
{ "accuracy": 0.31848704947238593, "f1_macro": 0.014595017171986416, "f1_weighted": 0.2074780060789023, "precision": 0.012767861825038196, "recall": 0.02299426309908977 }
albert/albert-xxlarge-v2
29,188
7,297
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
252,831,444
252,831,444
null
14857.67
11517.15
{ "accuracy": 0.038234891051116895, "f1_macro": 0.0000316926175057751, "f1_weighted": 0.0028161390188124642, "precision": 0.000016452190641616565, "recall": 0.0004302925989672978 }
google/rembert
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
575,935,373
575,935,373
null
11362.96
10058.6
{ "accuracy": 0.09318684792918115, "f1_macro": 0.013114352930707496, "f1_weighted": 0.015887107759164857, "precision": 0.007168219071475473, "recall": 0.07692307692307693 }
FacebookAI/xlm-roberta-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
559,903,757
559,903,757
null
11211.07
2550.65
{ "accuracy": 0.9000158077774265, "f1_macro": 0.896197393181218, "f1_weighted": 0.900237657943695, "precision": 0.8963125289239188, "recall": 0.8963717186390119 }
FacebookAI/roberta-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
355,373,069
355,373,069
null
7111.97
1999.2
{ "accuracy": 0.9019917799557382, "f1_macro": 0.89725405712224, "f1_weighted": 0.9021952524586633, "precision": 0.8965347970789997, "recall": 0.8982035133570594 }
google-t5/t5-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
738,731,021
738,731,021
null
11588.28
1457.28
{ "accuracy": 0.9067341131836864, "f1_macro": 0.9025164126614181, "f1_weighted": 0.9069888812345382, "precision": 0.9028649731936694, "recall": 0.9024028117037944 }
RUCAIBox/mvp
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
407,356,429
407,356,429
null
7237.18
716.61
{ "accuracy": 0.90396775213405, "f1_macro": 0.8996796299968829, "f1_weighted": 0.9041053411616709, "precision": 0.9004481467577173, "recall": 0.8991369747406807 }
facebook/bart-large-mnli
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
407,354,381
407,354,381
null
5912.1
680.05
{ "accuracy": 0.9038887132469174, "f1_macro": 0.8998128452032848, "f1_weighted": 0.9040955792448577, "precision": 0.9002449896492293, "recall": 0.899607741675713 }
google/flan-t5-base
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
223,504,141
223,504,141
null
4195.79
819.97
{ "accuracy": 0.8934555801454316, "f1_macro": 0.8880342734971147, "f1_weighted": 0.8935988926251112, "precision": 0.8893522316201353, "recall": 0.8869647498717939 }
facebook/bart-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
407,354,381
407,354,381
null
5962.44
686.96
{ "accuracy": 0.9050742965539045, "f1_macro": 0.900769902933932, "f1_weighted": 0.9053382498008268, "precision": 0.9016571663204758, "recall": 0.9001964470074018 }
FacebookAI/roberta-base
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
124,655,629
124,655,629
null
4385.56
218.19
{ "accuracy": 0.8899778691116029, "f1_macro": 0.8848329905104584, "f1_weighted": 0.8900907430957858, "precision": 0.885767288692668, "recall": 0.8841083671451428 }
google-bert/bert-base-uncased
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
109,492,237
109,492,237
null
1688.47
216.14
{ "accuracy": 0.8926651912741068, "f1_macro": 0.8886169207424561, "f1_weighted": 0.8928197492691522, "precision": 0.889444807314294, "recall": 0.8880678792599225 }
google/rembert
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
575,935,373
575,935,373
null
8276.66
845.26
{ "accuracy": 0.902466013278533, "f1_macro": 0.8982981055251594, "f1_weighted": 0.9026865994465366, "precision": 0.89836493181994, "recall": 0.8984973994112883 }
FacebookAI/xlm-roberta-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
559,903,757
559,903,757
null
7745.19
571.27
{ "accuracy": 0.09318684792918115, "f1_macro": 0.013114352930707496, "f1_weighted": 0.015887107759164857, "precision": 0.007168219071475473, "recall": 0.07692307692307693 }
FacebookAI/roberta-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
355,373,069
355,373,069
null
5297.55
550.29
{ "accuracy": 0.8962219411950679, "f1_macro": 0.8916745194492057, "f1_weighted": 0.8964015864011297, "precision": 0.8924093823026796, "recall": 0.8912905424771191 }
albert/albert-xxlarge-v2
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
222,648,845
222,648,845
null
6667.78
8079.31
{ "accuracy": 0.9050742965539045, "f1_macro": 0.9009825073983934, "f1_weighted": 0.9052176822414313, "precision": 0.9012795327555059, "recall": 0.9008852335431337 }
google-bert/bert-large-uncased
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
335,155,213
335,155,213
null
4886.3
547.64
{ "accuracy": 0.8947202023395511, "f1_macro": 0.8904079883340379, "f1_weighted": 0.8950335939481157, "precision": 0.8914999498607562, "recall": 0.8897811560478276 }
answerdotai/ModernBERT-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
395,844,621
395,844,621
null
5842.19
682.26
{ "accuracy": 0.9057856465380968, "f1_macro": 0.901338532935281, "f1_weighted": 0.905901209670135, "precision": 0.901918736978264, "recall": 0.9009368522235442 }
microsoft/deberta-large
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
406,225,933
406,225,933
null
6680.97
984.56
{ "accuracy": 0.9010433133101486, "f1_macro": 0.8973517281967539, "f1_weighted": 0.9011540413761435, "precision": 0.8977023164249224, "recall": 0.8971315248974281 }
albert/albert-xxlarge-v2
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": null, "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
222,648,845
222,648,845
null
6600.11
2953.67
{ "accuracy": 0.9034144799241227, "f1_macro": 0.898766352404977, "f1_weighted": 0.9035133330125783, "precision": 0.8989349032794968, "recall": 0.8988023893973107 }
Qwen/Qwen3-Reranker-0.6B
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
595,789,824
595,789,824
null
7680.82
1487.67
{ "accuracy": 0.8906101802086627, "f1_macro": 0.8856190602052337, "f1_weighted": 0.8909707181094528, "precision": 0.8870608911099811, "recall": 0.8847266524641918 }
facebook/opt-350m
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
331,203,072
331,203,072
null
4831.76
1661.37
{ "accuracy": 0.8934555801454316, "f1_macro": 0.888732617517387, "f1_weighted": 0.8936011570096788, "precision": 0.8901990195647124, "recall": 0.8876888532995928 }
facebook/opt-125m
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
125,249,280
125,249,280
null
2019.24
564.28
{ "accuracy": 0.8912424913057224, "f1_macro": 0.8865077645797317, "f1_weighted": 0.8913606729493533, "precision": 0.8878431939879146, "recall": 0.8853748553458757 }
Qwen/Qwen3-Reranker-0.6B
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
595,789,824
595,789,824
null
6563.3
1688.38
{ "accuracy": 0.8950363578880809, "f1_macro": 0.8894444222821817, "f1_weighted": 0.8953137655578199, "precision": 0.8910360593052963, "recall": 0.8882321711981752 }
facebook/opt-350m
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
331,203,072
331,203,072
null
2907.05
971.35
{ "accuracy": 0.8930603857097692, "f1_macro": 0.888423804575579, "f1_weighted": 0.8933140676792135, "precision": 0.8909943080518251, "recall": 0.8863806180613112 }
facebook/opt-125m
50,775
12,652
{ "auto_find_batch_size": true, "gradient_accumulation_steps": 4, "learning_rate": 0.00005, "logging_steps": 1, "lr_scheduler_type": "linear", "num_train_epochs": 1, "optim": "adamw_8bit", "output_dir": "outputs", "report_to": "none", "save_strategy": "no", "save_total_limit": 0, "seed": 3407, "warmup_steps": 5, "weight_decay": 0.01 }
null
125,249,280
125,249,280
null
1539.88
339.99
{ "accuracy": 0.8917167246285173, "f1_macro": 0.8865579857687786, "f1_weighted": 0.8919501094686145, "precision": 0.8868577521801648, "recall": 0.8865933155860106 }
README.md exists but content is empty.
Downloads last month
24