Commit
·
548dcee
1
Parent(s):
050702c
Upload generate_ds.ipynb
Browse files- utils/generate_ds.ipynb +156 -0
utils/generate_ds.ipynb
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"from datasets import load_dataset"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"cell_type": "code",
|
| 14 |
+
"execution_count": null,
|
| 15 |
+
"metadata": {},
|
| 16 |
+
"outputs": [],
|
| 17 |
+
"source": [
|
| 18 |
+
"data_files = {\n",
|
| 19 |
+
" \"train\": \"./train.txt\",\n",
|
| 20 |
+
" \"val\": \"./val.txt\",\n",
|
| 21 |
+
" \"test\": \"./test.txt\",\n",
|
| 22 |
+
"}\n",
|
| 23 |
+
"ds = load_dataset(\"text\", data_files=data_files)"
|
| 24 |
+
]
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "code",
|
| 28 |
+
"execution_count": null,
|
| 29 |
+
"metadata": {},
|
| 30 |
+
"outputs": [],
|
| 31 |
+
"source": [
|
| 32 |
+
"ds['train'] = ds['train'].rename_column('text', 'SMILE')\n",
|
| 33 |
+
"ds['val'] = ds['val'].rename_column('text', 'SMILE')\n",
|
| 34 |
+
"ds['test'] = ds['test'].rename_column('text', 'SMILE')"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": null,
|
| 40 |
+
"metadata": {},
|
| 41 |
+
"outputs": [],
|
| 42 |
+
"source": [
|
| 43 |
+
"import selfies as sf\n",
|
| 44 |
+
"\n",
|
| 45 |
+
"def try_convert(row):\n",
|
| 46 |
+
" selfie = None\n",
|
| 47 |
+
" try:\n",
|
| 48 |
+
" selfie = sf.encoder(row['SMILE'])\n",
|
| 49 |
+
" except:\n",
|
| 50 |
+
" pass\n",
|
| 51 |
+
"\n",
|
| 52 |
+
" return {'SELFIE': selfie}\n",
|
| 53 |
+
"\n",
|
| 54 |
+
"# Alongside the SMILES, we also need to convert them to SELFIES\n",
|
| 55 |
+
"# ds['train'] = ds['train'].add_column('SELFIE', ds['train'].map(try_convert, num_proc=8))"
|
| 56 |
+
]
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"cell_type": "code",
|
| 60 |
+
"execution_count": null,
|
| 61 |
+
"metadata": {},
|
| 62 |
+
"outputs": [],
|
| 63 |
+
"source": [
|
| 64 |
+
"ds['train'] = ds['train'].map(try_convert, num_proc=8)\n",
|
| 65 |
+
"ds['val'] = ds['val'].map(try_convert, num_proc=8)\n",
|
| 66 |
+
"ds['test'] = ds['test'].map(try_convert, num_proc=8)"
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
{
|
| 70 |
+
"cell_type": "code",
|
| 71 |
+
"execution_count": null,
|
| 72 |
+
"metadata": {},
|
| 73 |
+
"outputs": [],
|
| 74 |
+
"source": [
|
| 75 |
+
"# Drop the rows where the conversion failed\n",
|
| 76 |
+
"ds['train'] = ds['train'].filter(lambda row: row['SELFIE'] is not None)\n",
|
| 77 |
+
"ds['val'] = ds['val'].filter(lambda row: row['SELFIE'] is not None)\n",
|
| 78 |
+
"ds['test'] = ds['test'].filter(lambda row: row['SELFIE'] is not None)"
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"cell_type": "code",
|
| 83 |
+
"execution_count": null,
|
| 84 |
+
"metadata": {},
|
| 85 |
+
"outputs": [],
|
| 86 |
+
"source": [
|
| 87 |
+
"from tokenizers import Tokenizer\n",
|
| 88 |
+
"\n",
|
| 89 |
+
"tokenizer = Tokenizer.from_pretrained(\"haydn-jones/GuacamolSELFIETokenizer\")"
|
| 90 |
+
]
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"cell_type": "code",
|
| 94 |
+
"execution_count": null,
|
| 95 |
+
"metadata": {},
|
| 96 |
+
"outputs": [],
|
| 97 |
+
"source": [
|
| 98 |
+
"unk_id = tokenizer.token_to_id('<UNK>')\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"# Drop any rows where the tokenization has an <UNK> token\n",
|
| 101 |
+
"ds['train'] = ds['train'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)\n",
|
| 102 |
+
"ds['val'] = ds['val'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)\n",
|
| 103 |
+
"ds['test'] = ds['test'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)"
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
{
|
| 107 |
+
"cell_type": "code",
|
| 108 |
+
"execution_count": null,
|
| 109 |
+
"metadata": {},
|
| 110 |
+
"outputs": [],
|
| 111 |
+
"source": [
|
| 112 |
+
"ds.save_to_disk('./guacamol')"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "code",
|
| 117 |
+
"execution_count": null,
|
| 118 |
+
"metadata": {},
|
| 119 |
+
"outputs": [],
|
| 120 |
+
"source": [
|
| 121 |
+
"repo_id = \"haydn-jones/Guacamol\"\n",
|
| 122 |
+
"\n",
|
| 123 |
+
"# Push the dataset to the repo\n",
|
| 124 |
+
"ds.push_to_hub(repo_id)"
|
| 125 |
+
]
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
"cell_type": "code",
|
| 129 |
+
"execution_count": null,
|
| 130 |
+
"metadata": {},
|
| 131 |
+
"outputs": [],
|
| 132 |
+
"source": []
|
| 133 |
+
}
|
| 134 |
+
],
|
| 135 |
+
"metadata": {
|
| 136 |
+
"kernelspec": {
|
| 137 |
+
"display_name": "ddpm",
|
| 138 |
+
"language": "python",
|
| 139 |
+
"name": "python3"
|
| 140 |
+
},
|
| 141 |
+
"language_info": {
|
| 142 |
+
"codemirror_mode": {
|
| 143 |
+
"name": "ipython",
|
| 144 |
+
"version": 3
|
| 145 |
+
},
|
| 146 |
+
"file_extension": ".py",
|
| 147 |
+
"mimetype": "text/x-python",
|
| 148 |
+
"name": "python",
|
| 149 |
+
"nbconvert_exporter": "python",
|
| 150 |
+
"pygments_lexer": "ipython3",
|
| 151 |
+
"version": "3.11.6"
|
| 152 |
+
}
|
| 153 |
+
},
|
| 154 |
+
"nbformat": 4,
|
| 155 |
+
"nbformat_minor": 2
|
| 156 |
+
}
|