Dataset Viewer
Auto-converted to Parquet
jpg
imagewidth (px)
13
570
cls
int64
0
6
__key__
stringlengths
10
15
__url__
stringclasses
7 values
0
Angry_000000
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000001
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000002
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000003
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000004
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000005
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000006
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000007
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000008
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000009
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000010
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000011
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000012
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000013
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000014
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000015
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000016
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000017
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000018
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000019
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000020
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000021
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000022
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000023
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000024
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000025
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000026
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000027
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000028
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000029
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000030
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000031
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000032
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000033
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000034
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000035
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000036
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000037
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000038
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000039
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000040
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000041
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000042
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000043
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000044
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000045
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000046
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000047
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000048
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000049
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000050
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000051
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000052
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000053
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000054
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000055
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000056
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000057
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000058
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000059
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000060
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000061
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000062
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000063
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000064
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000065
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000066
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000067
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000068
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000069
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000070
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000071
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000072
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000073
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000074
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000075
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000076
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000077
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000078
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000079
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000080
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000081
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000082
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000083
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000084
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000085
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000086
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000087
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000088
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000089
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000090
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000091
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000092
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000093
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000094
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000095
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000096
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000097
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000098
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
0
Angry_000099
hf://datasets/imadhavan/FER2025@e240b900b0cf1ea20e1913d8a4755812617d595e/Angry.tar
End of preview. Expand in Data Studio

FER2025 – Facial Expression Recognition Dataset

License: Research Use Only Total Images Classes


Overview

FER2025 is a large-scale, balanced facial emotion dataset designed for deep learning and computer vision research. It contains 1,589,810 images across 7 emotion classes:

Class Images
Angry 224,624
Disgust 239,366
Fear 223,466
Happy 222,082
Neutral 234,230
Sad 217,884
Surprise 228,158

Image formats: jpg, jpeg, png Balanced: Maximum class difference ≈ 1.3%

FER2025 is suitable for feature extraction, model training, and benchmarkingandTraining deep learning model.


Dataset Structure

FER2025/ ➡️ Angry.tar | Disgust.tar | Fear.tar | Happy.tar | Neutral.tar | Sad.tar | Surprise.tar

Each TAR contains images + corresponding .cls label files for efficient streaming.


Recommended Usage

  • Feature Extraction: ResNet, EfficientNet, ViT embeddings
  • Training & Evaluation: Balanced classes remove need for oversampling or class weighting
  • Large-Scale Training: Use TAR/WebDataset format for GPU-efficient streaming

Example: Loading FER2025 with PyTorch + WebDataset

import webdataset as wds
from torchvision import transforms
import torch

transform = transforms.Compose([
    transforms.Resize((224,224)),
    transforms.ToTensor(),
])

dataset = (
    wds.WebDataset("FER2025/{Angry,Disgust,Fear,Happy,Neutral,Sad,Surprise}.tar")
    .decode("pil")
    .to_tuple("jpg", "cls")
    .map_tuple(transform, int)
)

loader = torch.utils.data.DataLoader(dataset, batch_size=64, num_workers=4, shuffle=True)

for images, labels in loader:
    print(images.shape, labels.shape)
    break

License & Ethical Use

License: CC BY-NC 4.0 – Attribution required, non-commercial use

Ethical Use: Images are sourced from publicly available data for research. Users must respect privacy and avoid commercial misuse.


Citations

@dataset {FER2025, author = {Adhavan M}, title = {FER2025: Large-Scale Balanced Facial Expression Dataset}, year = {2025}, url = https://huggingface.co/datasets/imadhavan/FER2025 }

Downloads last month
100