File size: 2,107 Bytes
0805752
f7f0a11
 
 
0805752
 
f7f0a11
0805752
f7f0a11
7abb544
48dc425
ab61d0c
 
 
 
 
48dc425
7abb544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7f0a11
 
7abb544
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
---
license: mit
task_categories:
- table-question-answering
configs:
- config_name: table
  data_files: sqa_table.jsonl
- config_name: test_query
  data_files: sqa_query.jsonl
---

πŸ“„ [Paper](https://arxiv.org/abs/2504.01346) | πŸ‘¨πŸ»β€πŸ’» [Code](https://github.com/jiaruzouu/T-RAG)

## πŸ” Introduction

Retrieval-Augmented Generation (RAG) has become a key paradigm to enhance Large Language Models (LLMs) with external knowledge. While most RAG systems focus on **text corpora**, real-world information is often stored in **tables** across web pages, Wikipedia, and relational databases. Existing methods struggle to retrieve and reason across **multiple heterogeneous tables**.

For MultiTableQA, we release a comprehensive benchmark, including five different datasets covering table fact-checking, single-hop QA, and multi-hop QA: 
| Dataset              | Link |
|-----------------------|------|
| MultiTableQA-TATQA    | πŸ€— [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_TATQA)   |
| MultiTableQA-TabFact  | πŸ€— [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_TabFact) |
| MultiTableQA-SQA      | πŸ€— [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_SQA)     |
| MultiTableQA-WTQ      | πŸ€— [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_WTQ)     |
| MultiTableQA-HybridQA | πŸ€— [dataset link](https://huggingface.co/datasets/jiaruz2/MultiTableQA_HybridQA)|


MultiTableQA extends the traditional single-table QA setting into a multi-table retrieval and question answering benchmark, enabling more realistic and challenging evaluations.

---
# Citation

If you find our work useful, please cite:

```bibtex
@misc{zou2025rag,
      title={RAG over Tables: Hierarchical Memory Index, Multi-Stage Retrieval, and Benchmarking}, 
      author={Jiaru Zou and Dongqi Fu and Sirui Chen and Xinrui He and Zihao Li and Yada Zhu and Jiawei Han and Jingrui He},
      year={2025},
      eprint={2504.01346},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2504.01346}, 
}
```