jing222 nielsr HF Staff commited on
Commit
26d1579
Β·
verified Β·
1 Parent(s): 64dfd33

Improve dataset card: Add task category, tags, paper/code links, and sample usage (#1)

Browse files

- Improve dataset card: Add task category, tags, paper/code links, and sample usage (5ac1e74cd40b473b80d4237e4445556e9239739a)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +58 -3
README.md CHANGED
@@ -1,10 +1,17 @@
1
  ---
2
- license: cc-by-nc-4.0
3
  language:
4
  - en
5
- pretty_name: InfraDepth
6
  size_categories:
7
  - 100M<n<1B
 
 
 
 
 
 
 
 
8
  ---
9
 
10
  ## InfraDepth
@@ -16,6 +23,11 @@ The dataset combines **3D point clouds of masonry bridges and tunnels**, project
16
 
17
  ---
18
 
 
 
 
 
 
19
  ## πŸ“ Dataset Structure
20
 
21
  ```bash
@@ -74,6 +86,49 @@ Each `patch_{idx}.npz` file contains:
74
 
75
  ---
76
 
77
- ## πŸ“Œ Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  If you use this dataset, please cite the associated paper:
79
 
 
 
 
 
 
 
 
 
 
1
  ---
 
2
  language:
3
  - en
4
+ license: cc-by-nc-4.0
5
  size_categories:
6
  - 100M<n<1B
7
+ pretty_name: InfraDepth
8
+ task_categories:
9
+ - depth-estimation
10
+ tags:
11
+ - 3d-point-cloud
12
+ - image-restoration
13
+ - image-segmentation
14
+ - civil-engineering
15
  ---
16
 
17
  ## InfraDepth
 
23
 
24
  ---
25
 
26
+ **Paper**: [InfraDiffusion: zero-shot depth map restoration with diffusion models and prompted segmentation from sparse infrastructure point clouds](https://huggingface.co/papers/2509.03324)
27
+ **Code**: [https://github.com/Jingyixiong/InfraDiffusion-official-implement](https://github.com/Jingyixiong/InfraDiffusion-official-implement)
28
+
29
+ ---
30
+
31
  ## πŸ“ Dataset Structure
32
 
33
  ```bash
 
86
 
87
  ---
88
 
89
+ ## ✨ Sample Usage
90
+
91
+ The `InfraDepth` dataset is designed to be used with the `InfraDiffusion` framework. Below are examples from the official GitHub repository on how to run InfraDiffusion restoration using the dataset:
92
+
93
+ **(1) Masonry Tunnel Dataset**
94
+ ```bash
95
+ python main.py data=tunnels \
96
+ image_restore.deg=inpainting \
97
+ image_restore.sigma_y=0.16 \
98
+ general.save_results=true
99
+ ```
100
+
101
+ **(2) Masonry Bridge Dataset**
102
+ ```bash
103
+ python main.py data=masonry_bridges \
104
+ image_restore.deg=inpainting \
105
+ image_restore.sigma_y=0.16 \
106
+ general.save_results=true
107
+ ```
108
+
109
+ **(3) Selecting a Specific Infrastructure (infrastructure names can be found in `configs/data`)**
110
+ Example: To just get image restoration results on `hertfordshire`, override it:
111
+ ```bash
112
+ python main.py \
113
+ data=masonry_bridges \
114
+ data.infra_name='begc' \
115
+ image_restore.deg=inpainting \
116
+ image_restore.sigma_y=0.16 \
117
+ general.save_results=true
118
+ ```
119
+
120
+ For more detailed usage instructions, including environment setup and SAM segmentation, please refer to the [official GitHub repository](https://github.com/Jingyixiong/InfraDiffusion-official-implement).
121
+
122
+ ---
123
+
124
+ ## πŸ“š Citation
125
  If you use this dataset, please cite the associated paper:
126
 
127
+ ```bibtex
128
+ @article{jing2025infradiffusion,
129
+ title={InfraDiffusion: zero-shot depth map restoration with diffusion models and prompted segmentation from sparse infrastructure point clouds},
130
+ author={Jing, Yixiong and Zhang, Cheng and Wu, Haibing and Wang, Guangming and Wysocki, Olaf and Sheil, Brian},
131
+ year={2025},
132
+ note={Preprint}
133
+ }
134
+ ```