Datasets:
Improve dataset card: Add task category, tags, paper/code links, and sample usage (#1)
Browse files- Improve dataset card: Add task category, tags, paper/code links, and sample usage (5ac1e74cd40b473b80d4237e4445556e9239739a)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -1,10 +1,17 @@
|
|
| 1 |
---
|
| 2 |
-
license: cc-by-nc-4.0
|
| 3 |
language:
|
| 4 |
- en
|
| 5 |
-
|
| 6 |
size_categories:
|
| 7 |
- 100M<n<1B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
---
|
| 9 |
|
| 10 |
## InfraDepth
|
|
@@ -16,6 +23,11 @@ The dataset combines **3D point clouds of masonry bridges and tunnels**, project
|
|
| 16 |
|
| 17 |
---
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
## π Dataset Structure
|
| 20 |
|
| 21 |
```bash
|
|
@@ -74,6 +86,49 @@ Each `patch_{idx}.npz` file contains:
|
|
| 74 |
|
| 75 |
---
|
| 76 |
|
| 77 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
If you use this dataset, please cite the associated paper:
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
+
license: cc-by-nc-4.0
|
| 5 |
size_categories:
|
| 6 |
- 100M<n<1B
|
| 7 |
+
pretty_name: InfraDepth
|
| 8 |
+
task_categories:
|
| 9 |
+
- depth-estimation
|
| 10 |
+
tags:
|
| 11 |
+
- 3d-point-cloud
|
| 12 |
+
- image-restoration
|
| 13 |
+
- image-segmentation
|
| 14 |
+
- civil-engineering
|
| 15 |
---
|
| 16 |
|
| 17 |
## InfraDepth
|
|
|
|
| 23 |
|
| 24 |
---
|
| 25 |
|
| 26 |
+
**Paper**: [InfraDiffusion: zero-shot depth map restoration with diffusion models and prompted segmentation from sparse infrastructure point clouds](https://huggingface.co/papers/2509.03324)
|
| 27 |
+
**Code**: [https://github.com/Jingyixiong/InfraDiffusion-official-implement](https://github.com/Jingyixiong/InfraDiffusion-official-implement)
|
| 28 |
+
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
## π Dataset Structure
|
| 32 |
|
| 33 |
```bash
|
|
|
|
| 86 |
|
| 87 |
---
|
| 88 |
|
| 89 |
+
## β¨ Sample Usage
|
| 90 |
+
|
| 91 |
+
The `InfraDepth` dataset is designed to be used with the `InfraDiffusion` framework. Below are examples from the official GitHub repository on how to run InfraDiffusion restoration using the dataset:
|
| 92 |
+
|
| 93 |
+
**(1) Masonry Tunnel Dataset**
|
| 94 |
+
```bash
|
| 95 |
+
python main.py data=tunnels \
|
| 96 |
+
image_restore.deg=inpainting \
|
| 97 |
+
image_restore.sigma_y=0.16 \
|
| 98 |
+
general.save_results=true
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
**(2) Masonry Bridge Dataset**
|
| 102 |
+
```bash
|
| 103 |
+
python main.py data=masonry_bridges \
|
| 104 |
+
image_restore.deg=inpainting \
|
| 105 |
+
image_restore.sigma_y=0.16 \
|
| 106 |
+
general.save_results=true
|
| 107 |
+
```
|
| 108 |
+
|
| 109 |
+
**(3) Selecting a Specific Infrastructure (infrastructure names can be found in `configs/data`)**
|
| 110 |
+
Example: To just get image restoration results on `hertfordshire`, override it:
|
| 111 |
+
```bash
|
| 112 |
+
python main.py \
|
| 113 |
+
data=masonry_bridges \
|
| 114 |
+
data.infra_name='begc' \
|
| 115 |
+
image_restore.deg=inpainting \
|
| 116 |
+
image_restore.sigma_y=0.16 \
|
| 117 |
+
general.save_results=true
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
For more detailed usage instructions, including environment setup and SAM segmentation, please refer to the [official GitHub repository](https://github.com/Jingyixiong/InfraDiffusion-official-implement).
|
| 121 |
+
|
| 122 |
+
---
|
| 123 |
+
|
| 124 |
+
## π Citation
|
| 125 |
If you use this dataset, please cite the associated paper:
|
| 126 |
|
| 127 |
+
```bibtex
|
| 128 |
+
@article{jing2025infradiffusion,
|
| 129 |
+
title={InfraDiffusion: zero-shot depth map restoration with diffusion models and prompted segmentation from sparse infrastructure point clouds},
|
| 130 |
+
author={Jing, Yixiong and Zhang, Cheng and Wu, Haibing and Wang, Guangming and Wysocki, Olaf and Sheil, Brian},
|
| 131 |
+
year={2025},
|
| 132 |
+
note={Preprint}
|
| 133 |
+
}
|
| 134 |
+
```
|