|  | """ | 
					
						
						|  | @author: chkarada | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import os | 
					
						
						|  | import glob | 
					
						
						|  | import argparse | 
					
						
						|  | import ast | 
					
						
						|  | import configparser as CP | 
					
						
						|  | from itertools import repeat | 
					
						
						|  | import multiprocessing | 
					
						
						|  | from multiprocessing import Pool | 
					
						
						|  | import random | 
					
						
						|  | from random import shuffle | 
					
						
						|  | import librosa | 
					
						
						|  | import numpy as np | 
					
						
						|  | from audiolib import is_clipped, audioread, audiowrite, snr_mixer, activitydetector | 
					
						
						|  | import utils | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | PROCESSES = multiprocessing.cpu_count() | 
					
						
						|  | MAXTRIES = 50 | 
					
						
						|  | MAXFILELEN = 100 | 
					
						
						|  |  | 
					
						
						|  | np.random.seed(2) | 
					
						
						|  | random.seed(3) | 
					
						
						|  |  | 
					
						
						|  | clean_counter = None | 
					
						
						|  | noise_counter = None | 
					
						
						|  |  | 
					
						
						|  | def init(args1, args2): | 
					
						
						|  | ''' store the counter for later use ''' | 
					
						
						|  | global clean_counter, noise_counter | 
					
						
						|  | clean_counter = args1 | 
					
						
						|  | noise_counter = args2 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def build_audio(is_clean, params, filenum, audio_samples_length=-1): | 
					
						
						|  | '''Construct an audio signal from source files''' | 
					
						
						|  |  | 
					
						
						|  | fs_output = params['fs'] | 
					
						
						|  | silence_length = params['silence_length'] | 
					
						
						|  | if audio_samples_length == -1: | 
					
						
						|  | audio_samples_length = int(params['audio_length']*params['fs']) | 
					
						
						|  |  | 
					
						
						|  | output_audio = np.zeros(0) | 
					
						
						|  | remaining_length = audio_samples_length | 
					
						
						|  | files_used = [] | 
					
						
						|  | clipped_files = [] | 
					
						
						|  |  | 
					
						
						|  | global clean_counter, noise_counter | 
					
						
						|  | if is_clean: | 
					
						
						|  | source_files = params['cleanfilenames'] | 
					
						
						|  | idx_counter = clean_counter | 
					
						
						|  | else: | 
					
						
						|  | source_files = params['noisefilenames'] | 
					
						
						|  | idx_counter = noise_counter | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | silence = np.zeros(int(fs_output*silence_length)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tries_left = MAXTRIES | 
					
						
						|  | while remaining_length > 0 and tries_left > 0: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with idx_counter.get_lock(): | 
					
						
						|  | idx_counter.value += 1 | 
					
						
						|  | idx = idx_counter.value % np.size(source_files) | 
					
						
						|  |  | 
					
						
						|  | input_audio, fs_input = audioread(source_files[idx]) | 
					
						
						|  | if fs_input != fs_output: | 
					
						
						|  | input_audio = librosa.resample(input_audio, fs_input, fs_output) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if len(input_audio) > remaining_length and (not is_clean or not params['is_test_set']): | 
					
						
						|  | idx_seg = np.random.randint(0, len(input_audio)-remaining_length) | 
					
						
						|  | input_audio = input_audio[idx_seg:idx_seg+remaining_length] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_clipped(input_audio): | 
					
						
						|  | clipped_files.append(source_files[idx]) | 
					
						
						|  | tries_left -= 1 | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | files_used.append(source_files[idx]) | 
					
						
						|  | output_audio = np.append(output_audio, input_audio) | 
					
						
						|  | remaining_length -= len(input_audio) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if remaining_length > 0: | 
					
						
						|  | silence_len = min(remaining_length, len(silence)) | 
					
						
						|  | output_audio = np.append(output_audio, silence[:silence_len]) | 
					
						
						|  | remaining_length -= silence_len | 
					
						
						|  |  | 
					
						
						|  | if tries_left == 0: | 
					
						
						|  | print("Audio generation failed for filenum " + str(filenum)) | 
					
						
						|  | return [], [], clipped_files | 
					
						
						|  |  | 
					
						
						|  | return output_audio, files_used, clipped_files | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def gen_audio(is_clean, params, filenum, audio_samples_length=-1): | 
					
						
						|  | '''Calls build_audio() to get an audio signal, and verify that it meets the | 
					
						
						|  | activity threshold''' | 
					
						
						|  |  | 
					
						
						|  | clipped_files = [] | 
					
						
						|  | low_activity_files = [] | 
					
						
						|  | if audio_samples_length == -1: | 
					
						
						|  | audio_samples_length = int(params['audio_length']*params['fs']) | 
					
						
						|  | if is_clean: | 
					
						
						|  | activity_threshold = params['clean_activity_threshold'] | 
					
						
						|  | else: | 
					
						
						|  | activity_threshold = params['noise_activity_threshold'] | 
					
						
						|  |  | 
					
						
						|  | while True: | 
					
						
						|  | audio, source_files, new_clipped_files = \ | 
					
						
						|  | build_audio(is_clean, params, filenum, audio_samples_length) | 
					
						
						|  |  | 
					
						
						|  | clipped_files += new_clipped_files | 
					
						
						|  | if len(audio) < audio_samples_length: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | if activity_threshold == 0.0: | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  | percactive = activitydetector(audio=audio) | 
					
						
						|  | if percactive > activity_threshold: | 
					
						
						|  | break | 
					
						
						|  | else: | 
					
						
						|  | low_activity_files += source_files | 
					
						
						|  |  | 
					
						
						|  | return audio, source_files, clipped_files, low_activity_files | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main_gen(params, filenum): | 
					
						
						|  | '''Calls gen_audio() to generate the audio signals, verifies that they meet | 
					
						
						|  | the requirements, and writes the files to storage''' | 
					
						
						|  |  | 
					
						
						|  | print("Generating file #" + str(filenum)) | 
					
						
						|  |  | 
					
						
						|  | clean_clipped_files = [] | 
					
						
						|  | clean_low_activity_files = [] | 
					
						
						|  | noise_clipped_files = [] | 
					
						
						|  | noise_low_activity_files = [] | 
					
						
						|  |  | 
					
						
						|  | while True: | 
					
						
						|  |  | 
					
						
						|  | clean, clean_source_files, clean_cf, clean_laf = \ | 
					
						
						|  | gen_audio(True, params, filenum) | 
					
						
						|  |  | 
					
						
						|  | noise, noise_source_files, noise_cf, noise_laf = \ | 
					
						
						|  | gen_audio(False, params, filenum, len(clean)) | 
					
						
						|  |  | 
					
						
						|  | clean_clipped_files += clean_cf | 
					
						
						|  | clean_low_activity_files += clean_laf | 
					
						
						|  | noise_clipped_files += noise_cf | 
					
						
						|  | noise_low_activity_files += noise_laf | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not params['randomize_snr']: | 
					
						
						|  | snr = params['snr'] | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | snr = np.random.randint(params['snr_lower'], params['snr_upper']) | 
					
						
						|  |  | 
					
						
						|  | clean_snr, noise_snr, noisy_snr, target_level = snr_mixer(params=params, | 
					
						
						|  | clean=clean, | 
					
						
						|  | noise=noise, | 
					
						
						|  | snr=snr) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_clipped(clean_snr) or is_clipped(noise_snr) or is_clipped(noisy_snr): | 
					
						
						|  | continue | 
					
						
						|  | else: | 
					
						
						|  | break | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hyphen = '-' | 
					
						
						|  | clean_source_filenamesonly = [i[:-4].split(os.path.sep)[-1] for i in clean_source_files] | 
					
						
						|  | clean_files_joined = hyphen.join(clean_source_filenamesonly)[:MAXFILELEN] | 
					
						
						|  | noise_source_filenamesonly = [i[:-4].split(os.path.sep)[-1] for i in noise_source_files] | 
					
						
						|  | noise_files_joined = hyphen.join(noise_source_filenamesonly)[:MAXFILELEN] | 
					
						
						|  |  | 
					
						
						|  | noisyfilename = clean_files_joined + '_' + noise_files_joined + '_snr' + \ | 
					
						
						|  | str(snr) + '_fileid_' + str(filenum) + '.wav' | 
					
						
						|  | cleanfilename = 'clean_fileid_'+str(filenum)+'.wav' | 
					
						
						|  | noisefilename = 'noise_fileid_'+str(filenum)+'.wav' | 
					
						
						|  |  | 
					
						
						|  | noisypath = os.path.join(params['noisyspeech_dir'], noisyfilename) | 
					
						
						|  | cleanpath = os.path.join(params['clean_proc_dir'], cleanfilename) | 
					
						
						|  | noisepath = os.path.join(params['noise_proc_dir'], noisefilename) | 
					
						
						|  |  | 
					
						
						|  | audio_signals = [noisy_snr, clean_snr, noise_snr] | 
					
						
						|  | file_paths = [noisypath, cleanpath, noisepath] | 
					
						
						|  |  | 
					
						
						|  | for i in range(len(audio_signals)): | 
					
						
						|  | try: | 
					
						
						|  | audiowrite(file_paths[i], audio_signals[i], params['fs']) | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(str(e)) | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  | return clean_source_files, clean_clipped_files, clean_low_activity_files, \ | 
					
						
						|  | noise_source_files, noise_clipped_files, noise_low_activity_files | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def extract_list(input_list, index): | 
					
						
						|  | output_list = [i[index] for i in input_list] | 
					
						
						|  | flat_output_list = [item for sublist in output_list for item in sublist] | 
					
						
						|  | flat_output_list = sorted(set(flat_output_list)) | 
					
						
						|  | return flat_output_list | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main_body(): | 
					
						
						|  | '''Main body of this file''' | 
					
						
						|  |  | 
					
						
						|  | parser = argparse.ArgumentParser() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | parser.add_argument('--cfg', default='noisyspeech_synthesizer.cfg', | 
					
						
						|  | help='Read noisyspeech_synthesizer.cfg for all the details') | 
					
						
						|  | parser.add_argument('--cfg_str', type=str, default='noisy_speech') | 
					
						
						|  | args = parser.parse_args() | 
					
						
						|  |  | 
					
						
						|  | params = dict() | 
					
						
						|  | params['args'] = args | 
					
						
						|  | cfgpath = os.path.join(os.path.dirname(__file__), args.cfg) | 
					
						
						|  | assert os.path.exists(cfgpath), f'No configuration file as [{cfgpath}]' | 
					
						
						|  |  | 
					
						
						|  | cfg = CP.ConfigParser() | 
					
						
						|  | cfg._interpolation = CP.ExtendedInterpolation() | 
					
						
						|  | cfg.read(cfgpath) | 
					
						
						|  | params['cfg'] = cfg._sections[args.cfg_str] | 
					
						
						|  | cfg = params['cfg'] | 
					
						
						|  |  | 
					
						
						|  | clean_dir = os.path.join(os.path.dirname(__file__), 'CleanSpeech') | 
					
						
						|  | if cfg['speech_dir'] != 'None': | 
					
						
						|  | clean_dir = cfg['speech_dir'] | 
					
						
						|  | if not os.path.exists(clean_dir): | 
					
						
						|  | assert False, ('Clean speech data is required') | 
					
						
						|  |  | 
					
						
						|  | noise_dir = os.path.join(os.path.dirname(__file__), 'Noise') | 
					
						
						|  | if cfg['noise_dir'] != 'None': | 
					
						
						|  | noise_dir = cfg['noise_dir'] | 
					
						
						|  | if not os.path.exists(noise_dir): | 
					
						
						|  | assert False, ('Noise data is required') | 
					
						
						|  |  | 
					
						
						|  | params['fs'] = int(cfg['sampling_rate']) | 
					
						
						|  | params['audioformat'] = cfg['audioformat'] | 
					
						
						|  | params['audio_length'] = float(cfg['audio_length']) | 
					
						
						|  | params['silence_length'] = float(cfg['silence_length']) | 
					
						
						|  | params['total_hours'] = float(cfg['total_hours']) | 
					
						
						|  |  | 
					
						
						|  | if cfg['fileindex_start'] != 'None' and cfg['fileindex_start'] != 'None': | 
					
						
						|  | params['fileindex_start'] = int(cfg['fileindex_start']) | 
					
						
						|  | params['fileindex_end'] = int(cfg['fileindex_end']) | 
					
						
						|  | params['num_files'] = int(params['fileindex_end'])-int(params['fileindex_start']) | 
					
						
						|  | else: | 
					
						
						|  | params['num_files'] = int((params['total_hours']*60*60)/params['audio_length']) | 
					
						
						|  |  | 
					
						
						|  | print('Number of files to be synthesized:', params['num_files']) | 
					
						
						|  | params['is_test_set'] = utils.str2bool(cfg['is_test_set']) | 
					
						
						|  | params['clean_activity_threshold'] = float(cfg['clean_activity_threshold']) | 
					
						
						|  | params['noise_activity_threshold'] = float(cfg['noise_activity_threshold']) | 
					
						
						|  | params['snr_lower'] = int(cfg['snr_lower']) | 
					
						
						|  | params['snr_upper'] = int(cfg['snr_upper']) | 
					
						
						|  | params['randomize_snr'] = utils.str2bool(cfg['randomize_snr']) | 
					
						
						|  | params['target_level_lower'] = int(cfg['target_level_lower']) | 
					
						
						|  | params['target_level_upper'] = int(cfg['target_level_upper']) | 
					
						
						|  |  | 
					
						
						|  | if 'snr' in cfg.keys(): | 
					
						
						|  | params['snr'] = int(cfg['snr']) | 
					
						
						|  | else: | 
					
						
						|  | params['snr'] = int((params['snr_lower'] + params['snr_upper'])/2) | 
					
						
						|  |  | 
					
						
						|  | params['noisyspeech_dir'] = utils.get_dir(cfg, 'noisy_destination', 'noisy') | 
					
						
						|  | params['clean_proc_dir'] = utils.get_dir(cfg, 'clean_destination', 'clean') | 
					
						
						|  | params['noise_proc_dir'] = utils.get_dir(cfg, 'noise_destination', 'noise') | 
					
						
						|  |  | 
					
						
						|  | if 'speech_csv' in cfg.keys() and cfg['speech_csv'] != 'None': | 
					
						
						|  | cleanfilenames = pd.read_csv(cfg['speech_csv']) | 
					
						
						|  | cleanfilenames = cleanfilenames['filename'] | 
					
						
						|  | else: | 
					
						
						|  | cleanfilenames = glob.glob(os.path.join(clean_dir, params['audioformat'])) | 
					
						
						|  | params['cleanfilenames'] = cleanfilenames | 
					
						
						|  | shuffle(params['cleanfilenames']) | 
					
						
						|  | params['num_cleanfiles'] = len(params['cleanfilenames']) | 
					
						
						|  |  | 
					
						
						|  | params['noisefilenames'] = glob.glob(os.path.join(noise_dir, params['audioformat'])) | 
					
						
						|  | shuffle(params['noisefilenames']) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | global clean_counter, noise_counter | 
					
						
						|  | clean_counter = multiprocessing.Value('i', 0) | 
					
						
						|  | noise_counter = multiprocessing.Value('i', 0) | 
					
						
						|  |  | 
					
						
						|  | multi_pool = multiprocessing.Pool(processes=PROCESSES, initializer = init, initargs = (clean_counter, noise_counter, )) | 
					
						
						|  | fileindices = range(params['num_files']) | 
					
						
						|  | output_lists = multi_pool.starmap(main_gen, zip(repeat(params), fileindices)) | 
					
						
						|  |  | 
					
						
						|  | flat_output_lists = [] | 
					
						
						|  | num_lists = 6 | 
					
						
						|  | for i in range(num_lists): | 
					
						
						|  | flat_output_lists.append(extract_list(output_lists, i)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | log_dir = utils.get_dir(cfg, 'log_dir', 'Logs') | 
					
						
						|  |  | 
					
						
						|  | utils.write_log_file(log_dir, 'source_files.csv', flat_output_lists[0] + flat_output_lists[3]) | 
					
						
						|  | utils.write_log_file(log_dir, 'clipped_files.csv', flat_output_lists[1] + flat_output_lists[4]) | 
					
						
						|  | utils.write_log_file(log_dir, 'low_activity_files.csv', flat_output_lists[2] + flat_output_lists[5]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | total_clean = len(flat_output_lists[0]) + len(flat_output_lists[1]) + len(flat_output_lists[2]) | 
					
						
						|  | total_noise = len(flat_output_lists[3]) + len(flat_output_lists[4]) + len(flat_output_lists[5]) | 
					
						
						|  | pct_clean_clipped = round(len(flat_output_lists[1])/total_clean*100, 1) | 
					
						
						|  | pct_noise_clipped = round(len(flat_output_lists[4])/total_noise*100, 1) | 
					
						
						|  | pct_clean_low_activity = round(len(flat_output_lists[2])/total_clean*100, 1) | 
					
						
						|  | pct_noise_low_activity = round(len(flat_output_lists[5])/total_noise*100, 1) | 
					
						
						|  |  | 
					
						
						|  | print("Of the " + str(total_clean) + " clean speech files analyzed, " + str(pct_clean_clipped) + \ | 
					
						
						|  | "% had clipping, and " + str(pct_clean_low_activity) + "% had low activity " + \ | 
					
						
						|  | "(below " + str(params['clean_activity_threshold']*100) + "% active percentage)") | 
					
						
						|  | print("Of the " + str(total_noise) + " noise files analyzed, " + str(pct_noise_clipped) + \ | 
					
						
						|  | "% had clipping, and " + str(pct_noise_low_activity) + "% had low activity " + \ | 
					
						
						|  | "(below " + str(params['noise_activity_threshold']*100) + "% active percentage)") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == '__main__': | 
					
						
						|  | main_body() | 
					
						
						|  |  |