Update script usage examples to use filename + `classify` command.
#6
by
mit-ra
- opened
README.md
CHANGED
|
@@ -22,7 +22,7 @@ This is a modified version of https://huggingface.co/datasets/uv-scripts/classif
|
|
| 22 |
|
| 23 |
```bash
|
| 24 |
# Classify IMDB reviews
|
| 25 |
-
uv run
|
| 26 |
--input-dataset stanfordnlp/imdb \
|
| 27 |
--column text \
|
| 28 |
--labels "positive,negative" \
|
|
@@ -63,7 +63,7 @@ That's it! No installation, no setup - just `uv run`.
|
|
| 63 |
### Basic Classification
|
| 64 |
|
| 65 |
```bash
|
| 66 |
-
uv run
|
| 67 |
--input-dataset <dataset-id> \
|
| 68 |
--column <text-column> \
|
| 69 |
--labels <comma-separated-labels> \
|
|
@@ -98,7 +98,7 @@ uv run examples/classify-dataset.py \
|
|
| 98 |
Provide context for your labels to improve classification accuracy:
|
| 99 |
|
| 100 |
```bash
|
| 101 |
-
uv run
|
| 102 |
--input-dataset user/support-tickets \
|
| 103 |
--column content \
|
| 104 |
--labels "bug,feature,question,other" \
|
|
@@ -114,7 +114,7 @@ The model uses these descriptions to better understand what each label represent
|
|
| 114 |
Enable multi-label mode for documents that can have multiple applicable labels:
|
| 115 |
|
| 116 |
```bash
|
| 117 |
-
uv run
|
| 118 |
--input-dataset ag_news \
|
| 119 |
--column text \
|
| 120 |
--labels "world,sports,business,science" \
|
|
@@ -128,7 +128,7 @@ uv run examples/classify-dataset.py \
|
|
| 128 |
### Sentiment Analysis
|
| 129 |
|
| 130 |
```bash
|
| 131 |
-
uv run
|
| 132 |
--input-dataset stanfordnlp/imdb \
|
| 133 |
--column text \
|
| 134 |
--labels "positive,ambivalent,negative" \
|
|
@@ -139,7 +139,7 @@ uv run examples/classify-dataset.py \
|
|
| 139 |
### Support Ticket Classification
|
| 140 |
|
| 141 |
```bash
|
| 142 |
-
uv run
|
| 143 |
--input-dataset user/support-tickets \
|
| 144 |
--column content \
|
| 145 |
--labels "bug,feature_request,question,other" \
|
|
@@ -151,7 +151,7 @@ uv run examples/classify-dataset.py \
|
|
| 151 |
### News Categorization
|
| 152 |
|
| 153 |
```bash
|
| 154 |
-
uv run
|
| 155 |
--input-dataset ag_news \
|
| 156 |
--column text \
|
| 157 |
--labels "world,sports,business,tech" \
|
|
@@ -162,7 +162,7 @@ uv run examples/classify-dataset.py \
|
|
| 162 |
### Multi-Label News Classification
|
| 163 |
|
| 164 |
```bash
|
| 165 |
-
uv run
|
| 166 |
--input-dataset ag_news \
|
| 167 |
--column text \
|
| 168 |
--labels "world,sports,business,tech" \
|
|
@@ -180,7 +180,7 @@ Classify academic papers into machine learning research areas:
|
|
| 180 |
|
| 181 |
```bash
|
| 182 |
# Fast classification with random sampling
|
| 183 |
-
uv run
|
| 184 |
--input-dataset librarian-bots/arxiv-metadata-snapshot \
|
| 185 |
--column abstract \
|
| 186 |
--labels "llm,computer_vision,reinforcement_learning,optimization,theory,other" \
|
|
@@ -192,7 +192,7 @@ uv run examples/classify-dataset.py \
|
|
| 192 |
--shuffle
|
| 193 |
|
| 194 |
# Multi-label for nuanced classification
|
| 195 |
-
uv run
|
| 196 |
--input-dataset librarian-bots/arxiv-metadata-snapshot \
|
| 197 |
--column abstract \
|
| 198 |
--labels "multimodal,agents,reasoning,safety,efficiency" \
|
|
@@ -212,7 +212,7 @@ This script is optimized to run locally on GPU-equipped machines:
|
|
| 212 |
|
| 213 |
```bash
|
| 214 |
# Local execution with your GPU
|
| 215 |
-
uv run
|
| 216 |
--input-dataset stanfordnlp/imdb \
|
| 217 |
--column text \
|
| 218 |
--labels "positive,negative" \
|
|
@@ -230,7 +230,7 @@ When working with ordered datasets, use `--shuffle` with `--max-samples` to get
|
|
| 230 |
|
| 231 |
```bash
|
| 232 |
# Get 50 random reviews instead of the first 50
|
| 233 |
-
uv run
|
| 234 |
--input-dataset stanfordnlp/imdb \
|
| 235 |
--column text \
|
| 236 |
--labels "positive,negative" \
|
|
@@ -248,7 +248,7 @@ By default, this script works with any instruction-tuned model. Here are some re
|
|
| 248 |
|
| 249 |
```bash
|
| 250 |
# Lightweight model for fast classification
|
| 251 |
-
uv run
|
| 252 |
--input-dataset user/my-dataset \
|
| 253 |
--column text \
|
| 254 |
--labels "A,B,C" \
|
|
@@ -256,7 +256,7 @@ uv run examples/classify-dataset.py \
|
|
| 256 |
--output-dataset user/classified
|
| 257 |
|
| 258 |
# Larger model for complex classification
|
| 259 |
-
uv run
|
| 260 |
--input-dataset user/legal-docs \
|
| 261 |
--column text \
|
| 262 |
--labels "contract,patent,brief,memo,other" \
|
|
@@ -264,7 +264,7 @@ uv run examples/classify-dataset.py \
|
|
| 264 |
--output-dataset user/legal-classified
|
| 265 |
|
| 266 |
# Specialized zero-shot classifier
|
| 267 |
-
uv run
|
| 268 |
--input-dataset user/my-dataset \
|
| 269 |
--column text \
|
| 270 |
--labels "A,B,C" \
|
|
@@ -277,7 +277,7 @@ uv run examples/classify-dataset.py \
|
|
| 277 |
Configure `--batch-size` for more effective batch processing with large datasets:
|
| 278 |
|
| 279 |
```bash
|
| 280 |
-
uv run
|
| 281 |
--input-dataset user/huge-dataset \
|
| 282 |
--column text \
|
| 283 |
--labels "A,B,C" \
|
|
@@ -342,7 +342,7 @@ Start with small tests, then run on the full dataset:
|
|
| 342 |
|
| 343 |
```bash
|
| 344 |
# Step 1: Test with small sample
|
| 345 |
-
uv run
|
| 346 |
--input-dataset your-dataset \
|
| 347 |
--column text \
|
| 348 |
--labels "label1,label2,label3" \
|
|
@@ -351,7 +351,7 @@ uv run examples/classify-dataset.py \
|
|
| 351 |
--max-samples 100
|
| 352 |
|
| 353 |
# Step 2: If results look good, run on full dataset
|
| 354 |
-
uv run
|
| 355 |
--input-dataset your-dataset \
|
| 356 |
--column text \
|
| 357 |
--labels "label1,label2,label3" \
|
|
|
|
| 22 |
|
| 23 |
```bash
|
| 24 |
# Classify IMDB reviews
|
| 25 |
+
uv run classify-dataset.py classify \
|
| 26 |
--input-dataset stanfordnlp/imdb \
|
| 27 |
--column text \
|
| 28 |
--labels "positive,negative" \
|
|
|
|
| 63 |
### Basic Classification
|
| 64 |
|
| 65 |
```bash
|
| 66 |
+
uv run classify-dataset.py classify \
|
| 67 |
--input-dataset <dataset-id> \
|
| 68 |
--column <text-column> \
|
| 69 |
--labels <comma-separated-labels> \
|
|
|
|
| 98 |
Provide context for your labels to improve classification accuracy:
|
| 99 |
|
| 100 |
```bash
|
| 101 |
+
uv run classify-dataset.py classify \
|
| 102 |
--input-dataset user/support-tickets \
|
| 103 |
--column content \
|
| 104 |
--labels "bug,feature,question,other" \
|
|
|
|
| 114 |
Enable multi-label mode for documents that can have multiple applicable labels:
|
| 115 |
|
| 116 |
```bash
|
| 117 |
+
uv run classify-dataset.py classify \
|
| 118 |
--input-dataset ag_news \
|
| 119 |
--column text \
|
| 120 |
--labels "world,sports,business,science" \
|
|
|
|
| 128 |
### Sentiment Analysis
|
| 129 |
|
| 130 |
```bash
|
| 131 |
+
uv run classify-dataset.py classify \
|
| 132 |
--input-dataset stanfordnlp/imdb \
|
| 133 |
--column text \
|
| 134 |
--labels "positive,ambivalent,negative" \
|
|
|
|
| 139 |
### Support Ticket Classification
|
| 140 |
|
| 141 |
```bash
|
| 142 |
+
uv run classify-dataset.py classify \
|
| 143 |
--input-dataset user/support-tickets \
|
| 144 |
--column content \
|
| 145 |
--labels "bug,feature_request,question,other" \
|
|
|
|
| 151 |
### News Categorization
|
| 152 |
|
| 153 |
```bash
|
| 154 |
+
uv run classify-dataset.py classify \
|
| 155 |
--input-dataset ag_news \
|
| 156 |
--column text \
|
| 157 |
--labels "world,sports,business,tech" \
|
|
|
|
| 162 |
### Multi-Label News Classification
|
| 163 |
|
| 164 |
```bash
|
| 165 |
+
uv run classify-dataset.py classify \
|
| 166 |
--input-dataset ag_news \
|
| 167 |
--column text \
|
| 168 |
--labels "world,sports,business,tech" \
|
|
|
|
| 180 |
|
| 181 |
```bash
|
| 182 |
# Fast classification with random sampling
|
| 183 |
+
uv run classify-dataset.py classify \
|
| 184 |
--input-dataset librarian-bots/arxiv-metadata-snapshot \
|
| 185 |
--column abstract \
|
| 186 |
--labels "llm,computer_vision,reinforcement_learning,optimization,theory,other" \
|
|
|
|
| 192 |
--shuffle
|
| 193 |
|
| 194 |
# Multi-label for nuanced classification
|
| 195 |
+
uv run classify-dataset.py classify \
|
| 196 |
--input-dataset librarian-bots/arxiv-metadata-snapshot \
|
| 197 |
--column abstract \
|
| 198 |
--labels "multimodal,agents,reasoning,safety,efficiency" \
|
|
|
|
| 212 |
|
| 213 |
```bash
|
| 214 |
# Local execution with your GPU
|
| 215 |
+
uv run classify-dataset.py classify \
|
| 216 |
--input-dataset stanfordnlp/imdb \
|
| 217 |
--column text \
|
| 218 |
--labels "positive,negative" \
|
|
|
|
| 230 |
|
| 231 |
```bash
|
| 232 |
# Get 50 random reviews instead of the first 50
|
| 233 |
+
uv run classify-dataset.py classify \
|
| 234 |
--input-dataset stanfordnlp/imdb \
|
| 235 |
--column text \
|
| 236 |
--labels "positive,negative" \
|
|
|
|
| 248 |
|
| 249 |
```bash
|
| 250 |
# Lightweight model for fast classification
|
| 251 |
+
uv run classify-dataset.py classify \
|
| 252 |
--input-dataset user/my-dataset \
|
| 253 |
--column text \
|
| 254 |
--labels "A,B,C" \
|
|
|
|
| 256 |
--output-dataset user/classified
|
| 257 |
|
| 258 |
# Larger model for complex classification
|
| 259 |
+
uv run classify-dataset.py classify \
|
| 260 |
--input-dataset user/legal-docs \
|
| 261 |
--column text \
|
| 262 |
--labels "contract,patent,brief,memo,other" \
|
|
|
|
| 264 |
--output-dataset user/legal-classified
|
| 265 |
|
| 266 |
# Specialized zero-shot classifier
|
| 267 |
+
uv run classify-dataset.py classify \
|
| 268 |
--input-dataset user/my-dataset \
|
| 269 |
--column text \
|
| 270 |
--labels "A,B,C" \
|
|
|
|
| 277 |
Configure `--batch-size` for more effective batch processing with large datasets:
|
| 278 |
|
| 279 |
```bash
|
| 280 |
+
uv run classify-dataset.py classify \
|
| 281 |
--input-dataset user/huge-dataset \
|
| 282 |
--column text \
|
| 283 |
--labels "A,B,C" \
|
|
|
|
| 342 |
|
| 343 |
```bash
|
| 344 |
# Step 1: Test with small sample
|
| 345 |
+
uv run classify-dataset.py classify \
|
| 346 |
--input-dataset your-dataset \
|
| 347 |
--column text \
|
| 348 |
--labels "label1,label2,label3" \
|
|
|
|
| 351 |
--max-samples 100
|
| 352 |
|
| 353 |
# Step 2: If results look good, run on full dataset
|
| 354 |
+
uv run classify-dataset.py classify \
|
| 355 |
--input-dataset your-dataset \
|
| 356 |
--column text \
|
| 357 |
--labels "label1,label2,label3" \
|