Datasets:
metadata
license: cc-by-sa-4.0
language:
- th
tags:
- speech-recognition
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
dataset_info:
features:
- name: audio
dtype:
audio:
sampling_rate: 16000
- name: sentence
dtype: string
- name: speaker_id
dtype: string
- name: mic
dtype: string
- name: duration
dtype: float64
splits:
- name: train
num_bytes: 8212128894.78
num_examples: 120245
- name: validation
num_bytes: 1296622162.01
num_examples: 13090
- name: test
num_bytes: 1623791447.32
num_examples: 27580
download_size: 13180732521
dataset_size: 11132542504.109999
LOTUSDIS
Dataset Description
How to use
You can easily load the dataset using the 🤗 datasets library. The dataset can be loaded and prepared with a single line of Python code:
from datasets import load_dataset
lotus_dis = load_dataset("nectec/LOTUSDIS", split="train")
To iterate through the dataset without downloading it entirely, you can use streaming mode:
from datasets import load_dataset
lotus_dis = load_dataset("nectec/LOTUSDIS", split="train", streaming=True)
print(next(iter(lotus_dis)))
Learn more about how to load and prepare audio datasets in the Hugging Face Audio Datasets tutorial.
Full meeting session resources:
- Audio files: Download here
- Annotation files (TextGrid): Download here
Citation
@misc{tipaksorn2025lotusdisthaifarfieldmeeting,
title={LOTUSDIS: A Thai far-field meeting corpus for robust conversational ASR},
author={Pattara Tipaksorn and Sumonmas Thatphithakkul and Vataya Chunwijitra and Kwanchiva Thangthai},
year={2025},
eprint={2509.18722},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2509.18722},
}