|
|
|
|
|
""" |
|
|
Create correlation plots for muscle fat vs Cobb angles |
|
|
""" |
|
|
|
|
|
import pandas as pd |
|
|
import numpy as np |
|
|
import matplotlib.pyplot as plt |
|
|
import seaborn as sns |
|
|
from pathlib import Path |
|
|
from scipy.stats import pearsonr |
|
|
import argparse |
|
|
|
|
|
plt.style.use('seaborn-v0_8') |
|
|
sns.set_palette("husl") |
|
|
|
|
|
dev_correlation_csv = Path("../pearson_correlation/dev_cobb_corr/fatty_atrophy_thoracic_correlations.csv") |
|
|
test_correlation_csv = Path("../pearson_correlation/test_cobb_corr/fatty_atrophy_thoracic_correlations.csv") |
|
|
|
|
|
dev_fatty_csv = Path("../fatty_data/dev_fat.csv") |
|
|
test_fatty_csv = Path("../fatty_data/test_fat.csv") |
|
|
|
|
|
dev_cobb_csv = Path("../cobb_angles/dev_cobb.csv") |
|
|
test_cobb_csv = Path("../cobb_angles/test_cobb.csv") |
|
|
|
|
|
def load_correlation_data(dataset="dev"): |
|
|
"""Load the correlation data from the CSV file.""" |
|
|
if dataset == "dev": |
|
|
csv_path = dev_correlation_csv |
|
|
else: |
|
|
csv_path = test_correlation_csv |
|
|
|
|
|
if not csv_path.exists(): |
|
|
print(f"Error: Correlation file not found at {csv_path}") |
|
|
return None |
|
|
|
|
|
df = pd.read_csv(csv_path) |
|
|
print(f"Loaded correlation data: {len(df)} muscles") |
|
|
return df |
|
|
|
|
|
def create_dev_correlation_scatter(df): |
|
|
"""Create a scatter plot for development dataset (100-120).""" |
|
|
|
|
|
fatty_df = pd.read_csv(dev_fatty_csv) |
|
|
manual_cobb_df = pd.read_csv(dev_cobb_csv, sep='\t', header=None) |
|
|
|
|
|
thor_avg = np.round(manual_cobb_df.mean(axis=1)).astype(int) |
|
|
|
|
|
fatty_manual = fatty_df[fatty_df['case_id'].str.isdigit()].copy() |
|
|
fatty_manual['case_id'] = pd.to_numeric(fatty_manual['case_id']) |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(14, 8)) |
|
|
fig.patch.set_facecolor('#f8f9fa') |
|
|
ax.set_facecolor('#ffffff') |
|
|
|
|
|
muscle_cols = [col for col in fatty_manual.columns if col.endswith('_fat_pct')] |
|
|
|
|
|
trapezius_col = None |
|
|
for col in muscle_cols: |
|
|
if 'trapezius' in col.lower(): |
|
|
trapezius_col = col |
|
|
break |
|
|
|
|
|
if trapezius_col is None: |
|
|
print("Trapezius muscle not found in the data") |
|
|
return None, None |
|
|
|
|
|
colors = ['#1f77b4'] |
|
|
col = trapezius_col |
|
|
|
|
|
muscle_data = pd.to_numeric(fatty_manual[col], errors='coerce').values |
|
|
cobb_data = thor_avg[:len(muscle_data)] |
|
|
|
|
|
valid_mask = ~(np.isnan(muscle_data) | np.isnan(cobb_data)) |
|
|
muscle_clean = muscle_data[valid_mask] |
|
|
cobb_clean = cobb_data[valid_mask] |
|
|
|
|
|
if len(muscle_clean) > 1: |
|
|
muscle_name = col.replace('_fat_pct', '').replace('_', ' ').title() |
|
|
ax.scatter(muscle_clean, cobb_clean, color=colors[0], |
|
|
label=muscle_name, s=60, alpha=0.7, edgecolors='black', linewidth=0.5) |
|
|
|
|
|
z = np.polyfit(muscle_clean, cobb_clean, 1) |
|
|
p = np.poly1d(z) |
|
|
ax.plot(muscle_clean, p(muscle_clean), color=colors[0], |
|
|
linestyle='-', alpha=0.8, linewidth=2) |
|
|
|
|
|
muscle_name = col.replace('_fat_pct', '') |
|
|
correlation_row = df[df['Muscle'] == muscle_name] |
|
|
if not correlation_row.empty: |
|
|
r = correlation_row['Correlation'].iloc[0] |
|
|
p_val = correlation_row['P_Value'].iloc[0] |
|
|
else: |
|
|
r, p_val = pearsonr(muscle_clean, cobb_clean) |
|
|
|
|
|
ax.set_xlabel('Fat Percentage (%)', fontsize=12, fontweight='bold') |
|
|
ax.set_ylabel('Thoracic Cobb Angle (deg)', fontsize=12, fontweight='bold') |
|
|
ax.set_title('Trapezius Muscle Fat Percentage vs Thoracic Cobb Angle\n(n = 21 cases)', |
|
|
fontsize=14, fontweight='bold', pad=20) |
|
|
|
|
|
ax.grid(True, alpha=0.3, color='gray', linestyle='-', linewidth=0.5) |
|
|
|
|
|
for spine in ax.spines.values(): |
|
|
spine.set_edgecolor('#333333') |
|
|
spine.set_linewidth(1.5) |
|
|
|
|
|
plt.tight_layout() |
|
|
|
|
|
output_path = "../pearson_correlation/dev_cobb_corr/muscle_correlation_scatter.png" |
|
|
plt.savefig(output_path, dpi=300, bbox_inches='tight', |
|
|
facecolor='white', edgecolor='none') |
|
|
print(f"Saved correlation scatter plot to: {output_path}") |
|
|
|
|
|
return fig, ax |
|
|
|
|
|
def create_test_correlation_scatter(df): |
|
|
"""Create a scatter plot for test dataset (251-500).""" |
|
|
|
|
|
fatty_df = pd.read_csv(test_fatty_csv) |
|
|
cobb_df = pd.read_csv(test_cobb_csv, header=None, names=['cobb_angle']) |
|
|
|
|
|
fatty_df = fatty_df[fatty_df['case_id'] != 'Mean ± SD'].copy() |
|
|
fatty_df = fatty_df[pd.to_numeric(fatty_df['case_id'], errors='coerce').notna()] |
|
|
fatty_df['case_id'] = fatty_df['case_id'].astype(int) |
|
|
|
|
|
n_cases = min(len(cobb_df), len(fatty_df)) |
|
|
print(f"Using {n_cases} cases for test correlation analysis") |
|
|
|
|
|
cobb_values = cobb_df.iloc[:n_cases, 0].values |
|
|
fat_values = fatty_df.iloc[:n_cases] |
|
|
|
|
|
trapezius_col = None |
|
|
for col in fat_values.columns: |
|
|
if 'trapezius' in col.lower() and col.endswith('_fat_pct'): |
|
|
trapezius_col = col |
|
|
break |
|
|
|
|
|
if trapezius_col is None: |
|
|
print("Trapezius muscle not found in the test data") |
|
|
return None, None |
|
|
|
|
|
trapezius_data = pd.to_numeric(fat_values[trapezius_col], errors='coerce').values |
|
|
cobb_data = cobb_values |
|
|
|
|
|
valid_mask = ~(np.isnan(trapezius_data) | np.isnan(cobb_data)) |
|
|
trapezius_clean = trapezius_data[valid_mask] |
|
|
cobb_clean = cobb_data[valid_mask] |
|
|
|
|
|
print(f"Valid data points: {len(trapezius_clean)}") |
|
|
print(f"Trapezius range: {trapezius_clean.min():.2f} to {trapezius_clean.max():.2f}") |
|
|
print(f"Cobb range: {cobb_clean.min():.1f} to {cobb_clean.max():.1f}") |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(14, 8)) |
|
|
fig.patch.set_facecolor('#f8f9fa') |
|
|
ax.set_facecolor('#ffffff') |
|
|
|
|
|
ax.scatter(trapezius_clean, cobb_clean, color='#1f77b4', s=60, alpha=0.7, |
|
|
edgecolors='black', linewidth=0.5) |
|
|
|
|
|
z = np.polyfit(trapezius_clean, cobb_clean, 1) |
|
|
p = np.poly1d(z) |
|
|
ax.plot(trapezius_clean, p(trapezius_clean), color='#1f77b4', |
|
|
linestyle='-', alpha=0.8, linewidth=2) |
|
|
|
|
|
muscle_name = trapezius_col.replace('_fat_pct', '') |
|
|
correlation_row = df[df['Muscle'] == muscle_name] |
|
|
if not correlation_row.empty: |
|
|
r = correlation_row['Correlation'].iloc[0] |
|
|
p_val = correlation_row['P_Value'].iloc[0] |
|
|
else: |
|
|
r, p_val = pearsonr(trapezius_clean, cobb_clean) |
|
|
|
|
|
ax.set_xlabel('Trapezius Fat Percentage (%)', fontsize=12, fontweight='bold') |
|
|
ax.set_ylabel('Thoracic Cobb Angle (deg)', fontsize=12, fontweight='bold') |
|
|
ax.set_title(f'Trapezius Muscle Fat Percentage vs Thoracic Cobb Angle\n(n = {len(trapezius_clean)} cases)', |
|
|
fontsize=14, fontweight='bold', pad=20) |
|
|
|
|
|
ax.grid(True, alpha=0.3, color='gray', linestyle='-', linewidth=0.5) |
|
|
|
|
|
for spine in ax.spines.values(): |
|
|
spine.set_edgecolor('#333333') |
|
|
spine.set_linewidth(1.5) |
|
|
|
|
|
plt.tight_layout() |
|
|
|
|
|
output_path = "../pearson_correlation/test_cobb_corr/trapezius_fat_vs_thoracic_cobb_250_cases.png" |
|
|
plt.savefig(output_path, dpi=300, bbox_inches='tight', |
|
|
facecolor='white', edgecolor='none') |
|
|
print(f"Saved test correlation plot to: {output_path}") |
|
|
|
|
|
return fig, ax |
|
|
|
|
|
def create_aggregate_plot(df, dataset="dev"): |
|
|
"""Create a 3x3 aggregate plot showing all 9 muscles.""" |
|
|
|
|
|
if dataset == "dev": |
|
|
fatty_df = pd.read_csv(dev_fatty_csv) |
|
|
cobb_df = pd.read_csv(dev_cobb_csv, sep='\t', header=None) |
|
|
|
|
|
cobb_data = np.round(cobb_df.mean(axis=1)).astype(int) |
|
|
n_cases = 21 |
|
|
else: |
|
|
fatty_df = pd.read_csv(test_fatty_csv) |
|
|
cobb_df = pd.read_csv(test_cobb_csv, header=None, names=['cobb_angle']) |
|
|
cobb_data = cobb_df.iloc[:, 0].values |
|
|
n_cases = 250 |
|
|
|
|
|
fatty_df = fatty_df[fatty_df['case_id'] != 'Mean ± SD'].copy() |
|
|
fatty_df = fatty_df[pd.to_numeric(fatty_df['case_id'], errors='coerce').notna()] |
|
|
fatty_df['case_id'] = fatty_df['case_id'].astype(int) |
|
|
|
|
|
muscle_cols = [col for col in fatty_df.columns if col.endswith('_fat_pct')] |
|
|
|
|
|
fig, axes = plt.subplots(3, 3, figsize=(18, 15)) |
|
|
fig.patch.set_facecolor('#f8f9fa') |
|
|
|
|
|
axes_flat = axes.flatten() |
|
|
|
|
|
colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', |
|
|
'#8c564b', '#e377c2', '#7f7f7f', '#bcbd22'] |
|
|
|
|
|
for i, col in enumerate(muscle_cols): |
|
|
if i >= 9: |
|
|
break |
|
|
|
|
|
ax = axes_flat[i] |
|
|
ax.set_facecolor('#ffffff') |
|
|
|
|
|
muscle_data = pd.to_numeric(fatty_df[col], errors='coerce').values |
|
|
cobb_clean = cobb_data[:len(muscle_data)] |
|
|
|
|
|
valid_mask = ~(np.isnan(muscle_data) | np.isnan(cobb_clean)) |
|
|
muscle_clean = muscle_data[valid_mask] |
|
|
cobb_clean = cobb_clean[valid_mask] |
|
|
|
|
|
if len(muscle_clean) > 1: |
|
|
|
|
|
muscle_name = col.replace('_fat_pct', '').replace('_', ' ').title() |
|
|
|
|
|
ax.scatter(muscle_clean, cobb_clean, color=colors[i], |
|
|
s=40, alpha=0.7, edgecolors='black', linewidth=0.3) |
|
|
|
|
|
if len(muscle_clean) > 1: |
|
|
z = np.polyfit(muscle_clean, cobb_clean, 1) |
|
|
p = np.poly1d(z) |
|
|
ax.plot(muscle_clean, p(muscle_clean), color=colors[i], |
|
|
linestyle='-', alpha=0.8, linewidth=1.5) |
|
|
|
|
|
muscle_name_csv = col.replace('_fat_pct', '') |
|
|
correlation_row = df[df['Muscle'] == muscle_name_csv] |
|
|
if not correlation_row.empty: |
|
|
r = correlation_row['Correlation'].iloc[0] |
|
|
p_val = correlation_row['P_Value'].iloc[0] |
|
|
else: |
|
|
r, p_val = pearsonr(muscle_clean, cobb_clean) |
|
|
|
|
|
ax.set_title(f'{muscle_name}\nr = {r:.3f}', fontsize=10, fontweight='bold') |
|
|
|
|
|
ax.set_xlabel('Fat %', fontsize=8) |
|
|
ax.set_ylabel('Cobb Angle (deg)', fontsize=8) |
|
|
ax.grid(True, alpha=0.3, linewidth=0.5) |
|
|
|
|
|
for spine in ax.spines.values(): |
|
|
spine.set_edgecolor('#333333') |
|
|
spine.set_linewidth(0.8) |
|
|
|
|
|
for i in range(len(muscle_cols), 9): |
|
|
axes_flat[i].set_visible(False) |
|
|
|
|
|
plt.tight_layout() |
|
|
|
|
|
output_path = f"../pearson_correlation/{dataset}_cobb_corr/aggregate_muscle_correlations.png" |
|
|
plt.savefig(output_path, dpi=300, bbox_inches='tight', |
|
|
facecolor='white', edgecolor='none') |
|
|
print(f"Saved aggregate plot to: {output_path}") |
|
|
|
|
|
return fig, axes |
|
|
|
|
|
def main(): |
|
|
"""Main function to create correlation plots.""" |
|
|
parser = argparse.ArgumentParser(description='Create muscle correlation plots') |
|
|
parser.add_argument('--dataset', choices=['dev', 'test', 'both'], default='both', |
|
|
help='Which dataset to plot (dev, test, or both)') |
|
|
parser.add_argument('--plot-type', choices=['trapezius', 'aggregate', 'both'], default='both', |
|
|
help='Which plot type to create (trapezius, aggregate, or both)') |
|
|
args = parser.parse_args() |
|
|
|
|
|
print("=== MUSCLE CORRELATION VISUALIZATION ===") |
|
|
|
|
|
if args.dataset in ['dev', 'both']: |
|
|
print("\n=== DEVELOPMENT DATASET (100-120) ===") |
|
|
df_dev = load_correlation_data("dev") |
|
|
if df_dev is not None: |
|
|
if args.plot_type in ['trapezius', 'both']: |
|
|
fig1, ax1 = create_dev_correlation_scatter(df_dev) |
|
|
if fig1 is not None: |
|
|
print("Development trapezius plot created successfully") |
|
|
plt.show() |
|
|
|
|
|
if args.plot_type in ['aggregate', 'both']: |
|
|
fig2, ax2 = create_aggregate_plot(df_dev, "dev") |
|
|
if fig2 is not None: |
|
|
print("Development aggregate plot created successfully") |
|
|
plt.show() |
|
|
|
|
|
if args.dataset in ['test', 'both']: |
|
|
print("\n=== TEST DATASET (251-500) ===") |
|
|
df_test = load_correlation_data("test") |
|
|
if df_test is not None: |
|
|
if args.plot_type in ['trapezius', 'both']: |
|
|
fig3, ax3 = create_test_correlation_scatter(df_test) |
|
|
if fig3 is not None: |
|
|
print("Test trapezius plot created successfully") |
|
|
plt.show() |
|
|
|
|
|
if args.plot_type in ['aggregate', 'both']: |
|
|
fig4, ax4 = create_aggregate_plot(df_test, "test") |
|
|
if fig4 is not None: |
|
|
print("Test aggregate plot created successfully") |
|
|
plt.show() |
|
|
|
|
|
print("\n=== VISUALIZATION COMPLETE ===") |
|
|
print("Generated Pearson correlation scatter plots for muscle fat percentages vs thoracic Cobb angles") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|